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Continuing the line of development of Paper I [J. Math. Phys. 15, 1295 (1974)], we enlarge the 
concept of canonical transformations in quantum mechanics in two directions: first, by allowing the 
definition of a canonical transformation to be made through the preservation of an so(2, I) algebra, 
rather than the usual Heisenberg algebra, and providing the bridge between the classical and 
quantum mechanical descriptions, and, second, through the complexification of the transformation 
group. In this paper we study specifically the transformations which can be interpreted as the radial 
part of n -dimensional complex linear transformations in Paper I. We show that we can build Hilbert 
spaces of analytic functions with a scalar product defined through integration over half the complex 
plane of a variable which has the meaning of a complex radius. A unitary mapping to the ordinary 
Hilbert space L ;n., (0,00) is provided with a kernel involving a Bessel function. Special cases of this 
are shown to be the Barut-Girardello, one-dimensional Bargmann and Hankel transforms. The 
transform kernels provide a series of representations of a subsemigroup of S L (2,a:) and allow the 
construction of coherent states for the harmonic oscillator with an extra centrifugal force. We present 
a hyperditTerential operator realization of these transforms which yields new 
Baker-Campbell-Hausdorff and special function relations. 

1. INTRODUCTION 

In the article which started this series (Ref. 1, 
henceforth refered to as I), we described complex 
linear transformations between the quantum-mechanical 
operators of position x and momentum p, and a new pair 
of quantities given by 

ij=aX+bp, 

f=cx+dP, 

with the unimodularity condition 

ad- bc=l, 

(l.la) 

(l.lb) 

which ensures that (l.la) is a canonical transformation 
in the sense that 

[x,p] = in. -[~, tJ = in.. (l.lc) 

The motivation for such a program was the observa
tion that particular complex transformations (1.1) have 
been fruitful: Bargmann2,3 considered (l.la) with 

a=2-1
/ 2=d, b=-i2-1

/
2=c (1.2) 

and the ensuing formalism has been applied to the co
herent-state description of quantum optics. 4 Equations 
(1.0 for a, b, c, d real have provided unitary represen
tations5

•
6 of SL{2,IR) and, when continued into some re

gions of the complex plane of the parameters, have 
been used to relate and evaluate matrix elements of n
body systems subject to Gaussian-potential interactions 
relevant for the nuclear cluster model. 7 

In I we showed that: (i) The three examples given 
above are particular cases of a canonical transform 
(1.0 for a,b,c,dEcr;, the complex field, between the 
Hilbert space H == L 2(m) of square-integrable functions 
over the real line IR and spaces J <a,b,c,d) isomorphic to 
the Bargmann space of entire analytic functions in cr; 
with the well-known scalar product and decrease condi
tions. 2 (ii) A unitary transformation between Hand J 
could be implemented [for 1m (a/b) ~ 0 and b real when 
a=O] which contained the Bargmann'transform for (1.2) 
and the Moshinsky-Quesne transform5 for a, b, c, dE IR. 
(iii) The transform kernels provided a representation of 
a subsemigroup of SL{2, cr;) for a, b, c, dE cr; subject to 
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certain conditions. 8 (iv) A realization of these trans
forms through hyperdifferential operators was given, 
defined at least on spaces of entire functions. The de
fining condition!l for J.. <a,b,C,d) were to find a scalar 
product where T) and!; had the hermiticity properties 
derived from (l.la) and the self-adjointness of i and p 
and were represented in the Schr1:ldinger realization 1] 

and - i a/aT) on functions of T) E cr;. The results were 
seen as a step towards exploiting the fact that quantum 
mechanics, being a richer structure than classical 
mechanics, and making use of the complex field in an 
essential way, should be amenable to a wider class of 
canonical transformation-defined through {l.lc)-than 
have been generally considered, 9 introducing scalar 
products more general than the usual Dirac integral 
over IR. 

Among the extensions foreseen in I were to consider 
n-dimensional transformations (1.1) where x== (XJ) , 

j = 1, ... ,n etc. were n-vectors, but a, b, c, d remained 
(complex) multiples of the unit matrix. Equation (1.1c) 
now takes the familiar form [xi' Pk ] = io Jk' etc. The 
"angular" properties, as given by the angular moment
um operators in any of the subspaces, remain invariant 
under (l.la) since the unimodularity condition (l.lb) 
insures that 

Lik == xJPk - XkPi = ~);k - ~k~j" (1. 3) 

The "radial" part of (1.1) is displayed through the 
three equations 

1]2 = a2x2 + 2abx . p + b2p2 - inab, 

~. t= aci2 + (ad + bc)i·p + bdP2 - inbc, 

:2 = c2x2 + 2caX'p + if2p - incd. 

(l.4a) 

(l.4b) 

(1.4c) 

Seen classically, the canonical transformation can be 
described setting x2 = r, X· P = rpr , where the Poisson 
bracket {r, p) = 1, so that rand Pr are canonically con
jugate quantities and p2 =p~ + p~/r, PI!' being the (con
stant) angular momentum. Correspondingly ~ = rr, 
1]'t=Ppp, ~=p:+p~/p. Equations (1,4) then read 

p= [a2r + 2abrPr + b2(p~ + p~/r)]1/2, 

Pp= [acr+ (ad + bc)rPr + bd(p~ +p~/r)J1p, 
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and the transformation of the pairs (r ,Pr ) - (p,pp ) can 
be checked to be canonical {Le., {r,Pr} = l.-.{p , pp} = 1). 
As the variable r takes values in JR+ (the half-axis 
[0,00 )), ,r E a;, and p will take values on half this region, 
which we can choose as 

a;+={pE a; I arg(p) E (- h, t1l')}. 

The transformation (1.5) is not particularly simple
looking, yet its quantum mechanical version will be 
seen to be implementable. This suggests that the def
inition of a quantum mechanical canonical transforma
tion be made not in terms of the conservation of the 
Heisenberg algebra9 as in (l.lc), which loses its mean
ing since th~ "quantization" of (1. 5) is not well defined. 
The alternative, as suggested in this paper, is its 
definition in terms of the conservation of a higher 
algebra, in this case so(2, 1), which can be built out of 
the basic classical quantities. 

The Schrodinger representation10 of the operators 
X2, x 'p, and p2 is 

xf(r) = r2f{r} , 

X 'pf(r} = - ir :rf{r}, 

~ (tP n-1 d A\ 
p2f{r) = - dy2 + -r- dr + r2)f{r} , AE JR, 

{1.6a} 

(1.6b) 

{1.6c} 

on the (at least twice-differentiable) elements of the 
Hilbert space H~ =L ~n-1(IW) of functions fir) on the 
positive half-axis with the scalar product 

(1. 7) 

(the star indicates complex conjugation). The operators 
(1.6) are Hermitian between these elements and their 
domain can be enlarged through the usual adjunction 

Procedure to self-adjoint operators inH+ 0 The constant 
n 1 

A in (1. 6c) comes from the spectrum of L2 = ;{'j, LilLil 

when acting on the so(n)-irreducible components of the 
functions, and has the values 

A=-l(l+n-2), l=0,1,2,···. (1. 8) 

The statements concerning the hermiticity of p2 continue 
to be valid, however, for arbitrary A E lR. 

It is the purpose of this article to describe a family 
of Hilbert spaces J~l(a.b.c.d) (the indices a, b, c, d will 
be suppressed) for which a Schrodinger representation 
parallel to (1.6) can be implemented for the new varia
bles in (1.4), namely 

ifj(p) = p2j(p) , 

~. tj(p) = - ip :p j(P), 

A - ( d2 n - 1 d A \ - (p) t 2
f(P) = - dp2 + -p- dp + p2)f 

(1.9a) 

(1. 9b) 

(1.9c) 

on functions of the complex variable p restricted to the 
region a;+ (Eq. (1.6)J. In order that the total derivative 
with respect to a complex variable be well defi,!led, the 
functions jwill be analytic functions of p and af(P)/ap* 
=0. The measure for the defining scalar product in 

J~" 
(1.10a) 
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is of the form 

dJ.1.nl (P) = I)nl(P,p*) dRepdImp, (1. lOb) 

where the weight function I) nl (p, p*) will be found from 
the hermiticity properties of (1.9)-(1.1) and the 
hermiticity of x and P. This will be performed in Sec. 
2 and the characteristics of the Hilbert space J~, as
certained. In Sec. 3 we will find the unitary transforma
tion between H~ and J~, as given by 

j(p) = fo"" yr-l dr AnI (p, r) f{r), 

fer) = fe+ dJ.1.", (P)Anl (p, r)*j(p) , 

(1.11a) 

(1.11b) 

through the transform kernel An,(P, r) function of n, land 
a, b, c, d. This complex radial transform will relate to 
the complex linear transform of I as the Hankel trans
form relates to the n-dimensional Fourier transform 
and, as will be shown, contains the Barut-GirardeUo 
transformll for the value (102) of the parameters12 and 
the radial transform of Moshinsky, Seligman, and Wolf 
in Ref. 13 for a, b, c, d real. In Sec. 4 it is shown that 
this last transform is indeed regained when a, b, c, d be
come real and that the scalar product (1.10) collapses to 
the line integral (1.7). The one-dimensional Bargmann 
space2 is also regained when n = 1 as the direct sum of 
J;o and J;1' We consider the interest of the complex 
radial transform to go beyond that of the mere descrip
tion of the radial part of a known transform: As we will 
be mapping the radial wavefunctions of potentials of the 
harmonic oscillator + centrifugal potential (-I/r2) kind 
on functions of the type p2N+I, coherent states for these 
systems can be defined. This is shown in Sec. 5. In 
Sec. 6 we make the composition of transforms and 
shown that the transform kernels provide a representa
tion of a subsemigroup of SL(2,a;) in (1.1). Some con
clusions of the role of complex canonical transforma
tions in quantum mechanics are presented in Sec. 7. In 
two appendices we give a hyperdifferential operator 
realization of the transform (1 08) obtaining a new rep
resentation of the associated Laguerre functions and its 
direct relation to the n-dimensional complex linear 
transform. 

2. THE SPACE J~I 

We will construct a space J~/Ia.b'C.d) of functions j,g 
over PE a;+ endowed with a scalar product of the type 
(1.10) such that the operators ~2, ~ ·t, and f have the 
Hermitian conjugation property obtained from inverting 
(1.4), 

(X2j, g)nl = ([d2n2 - 2bn . t + b2t2 + indb Jj, g)nl 

= (j,x2g)nl = <1, [d2;r - 2b~· t + b2t2 + indb]g)nl 

(2.1) 

and similar companion equations for (x .p)t =p'x 
and £>2 in the Schrodinger representation (1. 9). Equa
tion (2.1) and its companions can be turned into differ
ential equations on the weight function I) nl (p, p*) in (1.10) 
through integration by parts, using, for p = I pi exp(i e), 
dRepdImp= Ipl dlpl de, and d/dp=-!exp(-ie)[a/alpl 
+ (ip)-l a/aeJ so that iJp*/ap= 0 and, for analytic func-
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tions A(P), B(p), 

[<C lpl dlplL
B 

dBA(P) ~B(P) 

=-l<C lpl dlpllB dB (:pA(P»)B(P) 

+~Ipi r dBexp(-iBMBI J", Ipl~<c 

-~iexp(-i8) i<C dlpIAB(ls'B-ls.",). (2.2) 

By assuming the boundary integral terms vanish (the 
restrictions from this condition will be made explicit 
below), Eq. (2.1) yields the differential equation 

b*2 r_ L + (2i d* * + n-1)_3_ l 3p*2 b* P p* 3p* 

d*2 *2 . d* ( ) A + n -lJ (P *) 
+ b*2 P +Zb* 2-n - p* vnl ,p 

= b2 [_ ~ + (_ 2i ~ + n - 1) ~ 
3p2 b P P 3p 

~ --2 .d(2 ) A+n-1J (P *) + b2fJ -zb -n - p2 vnl ,p , (2.3) 

and similar ones (i. e., replacing b - a, d - c, etc) for 
the companions, with vanishing conditions for the bound
ary terms of pv.f'g, vJ*(3pg), (3 p v).f'g, and P-1vJ*g and 
similar ones replacing p and p*. Notice that whereas in 
I we had two simultaneous first-order differential equa
tions, here we have three second-order ones. Based on 
I, however, we can make the ansatz that 

vn/(p,p*)= exp(z: p2) exp(;: P*? J1.nl (pp*), (2.4) 

where, as in I, we define 

U= a*d- b*c, 

v = 2Im(b*a). 

(2.5a) 

(2.5b) 

We obtain the result that the three equations (2.3) yield 
a single differential equation for J1.nl which shows that 
J1.nl (pp*) = (pp*)n/2{3n/2+I_l(PP* Iv), where f3 is a solution 
of Bessel's modified equation: I or K functions. The 
boundary integral over the semicircle at infinity appear
ing in the integration by parts of (2.3) will vanish for 
functions of less or equal growth than exp(~p2/v) if we 
choose the MacDonald (or modified Hankel) function K. 
We find, with a specific choice of normalization, 
justified in Sec. 4 that 

vnl (p, p*) = (2/1TV) exp[ (1/2v)(up2 + U*p*2)] 

x (pp*)n/2Kn/ 2+I-l(PP*/v). (2.6) 

If we let u=wexp(icp) be the polar representation of u, 
the behavior of (2.6) at the interval end points is 

v (p p*) '" (.!.1TV)1/2Ipln-l 
nl' Ip I~<X) 2 

X exp[ - (l/v) I p 12(1 - w cos{cp + 2B})] (2.7a) 

and 

v (P p*) '" 2(2v)n/2+/-1r(.!.n+l_OlpI2(1-1 ) nl' Ipl~o 2 , 

l>-tn+1, (2.7b) 
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v (P p*) '" - 2 (1TV )-11 P 12 (1-1) In (I p 12/ v) 
nl' Ipl~o ' 

l=-~n+1. (2.7c) 

As A in (1.8) is invariant under the replacement l- -l 
- n + 2, only l ~ - ~n + 1 need be considered. Corre
spondingly, we have the property K" (z) = K_ • ..{z), The 
remaining boundary integrals over the imaginary axis 
will be made to vanish and the finiteness of (j, g)nl 
itself determined by restricting the space of functions. 
Consider 

(2.8a) 

for mE lR and cm a normalization constant. In perform
ing the scalar product (¢~, -;p~, )nl we can separate the 
integration of p E a:+ into a radial and angular part, the 
latter being f dBexp[i(m' -m)B] over [-h,h). This is 
zero if m - m' is an even nonzero integer, and 1T if 
m = m'. In the last case, the remaining integral can be 
evaluated14 and ¢;~ (p) normalized through (2. 8a) setting 

c
m 

=..9
m

[H2v)n/2+mr(Hn + l + m»r(Hm -l + 2»]-1/2, 

(2.8b) 

where..9 m is an arbitrary phase and the arguments of the 
function reflect the fact that the integration is valid and 
the result finite for m > l - 2 and m > - n - l. The latter 
is a consequence of the former for l ~ - ~n + 1. In 
checking the vanishing conditions for the boundary 
terms mentioned below Eq. (2.3), we come to the con
clusion that these hold if m - m' is an even integer. If 
we now write m = l + a + 2N with N = 0, 1 , 2, . .. and 
a E (-2,0] we can see that asking ¢~(P) to be in the in
variant common domain of the three operators (1.9) 
forces a = 0. Hence an orthonormal basis for the space 
J~, object of our construction is, with a specific choice 
of phase, 

-;PN(P) = (-1)N[~(2v)n/2N! r(N + ~n + l)]-1/2 

x exp[ - (U/2V)p2][(2v)-1/2p]2N+I, N = 0,1,2, .... 

(2.9) 

Now, the basis (2.9) is complete in the Hilbert space 
J~, of functions i of the type J(P) = exp[ - (U/2V)p2]p' 
times an entire function in p2/2v of growth (1.1) [or of 
growth (2, 1/2v) in p] completed with respect to the 
norm induced by (1.10) with the weight function (2.6). 
The proof is the standard one15 which proves that con
vergence in the norm implies pointwise convergence 
for these functions. Indeed, for 

J(P) = exp[ - (u/2V)p2]pl ~ fNP2N =t a NfN¢N(P), (2. lOa) 
N.O N=O 

aN = (_1)N(2v)N+<n/2+1)/2[~N! r(N+~n + m1/ 2, 

we have 

USing the Schwartz inequality, we obtain 

li(P) 12 = I exp[ - (U/2V)p2]pI121 ,tofnp2N 12 

.;; l'6fNa N 121 exp[ - (U/2V)p2]pI12 

X 1'6 a;~p2N' 12 

(2.10b) 

(2.10c) 

.;;'6lfN 12Q1;1 exp[- (U/2V)p2JpI 12'6 QI;~ I piaN' 
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= IIJII~,lexp[- (u/2v)p2JI2IpI2-n 
X v-lIn 1 2+1-1 (I p 12/ v) 

= II JII ~,Kn' (p, p) (2.11) 

[where the function Kn,(P,p') will be defined below], and 
hence any Cauchy sequence of functions coverging in the 
norm to a function in J~, implies the uniform conver
gence of the functions themselves on any compact set in 
«;+. The reproducing kernel in the integral (1.10)-(2.6) 
is thus 

Knl(P,p')= t 1>N(P)1>N(P')* 
N=O 

= v- l (pp'*)l-n/ 2 exp[ - (1/2v)(up2 + u* p'*2)J 
xlnI2+I_l (pp'* /v), (2.12) 

and appears in the last number of (2.11). 

Before closing this section, we will find an algebra 
of raising, lowering, and weight operators for the basis 
functions (2.9). Easiest to build, the raising operator 
is 

P. 1>N(P) = [- (1/2v)p2J1>N(p) = [(N + l)(N + tn + l)]1/21>N+l (P). 

(2.13a) 

Its Hermitian conjugate under the scalar product (1.10) 
is the lowering operator 

L 1>N(P) = - [tv d~2 + (up + tvn~ 1) :p 

+ (u
2 

p2 + !.nu + !.v ~ \] 1> (P) 
2v 2 2 iJ N 

= [N(N + tn + l-1)p/2¢N_l (P). 

The weight operator' 

N1>N(P) = 0 :p + ;p2 +tn) 1>N(P)= (2N + tn + Z)1>N(P) 

(2.13c) 

completes the set of generators of an 80(2,1) algebra 
with commutation relations 

[;V,P.J=2p', [N,L J= -2[, [p. ,L J= -N. (2.14) 

3. THE TRANSFORM BETWEEN H: AND J~I 

The transform kernel Anl(p,r) in (1.11) can be cal
culated if we ask for the conditions (1,4), (1.6), and 
(1. 9) to hold, namely, that if ](p) is the transform of 
j(r), then p2](p) be the transform of 

[ttra + 2iabrar - b2 (a~ + n ~ 1 ar + .» +niab] j(r). 

Similar conditions stem from - ipap and -{a~ 
+ [ (n - 1)/ p J a p + A/ p2}. By partial integration in (1. 11 ) 
these can be turned into three second-order differential 
equations for Ani (p, r). From I we make the ansatz that 
Anl(p,r) have the form 

exp[ (i/2b)(ar2 + dp2)JBnl (pr) 

whereupon the three differential equations for Ani (p, r) 
yield a single one for Bnl(pr) as (pr)1-n I 2 times a solu
tion of Bessel's equation. If j(r) belongs to the space 
H~ with scalar product (1. 7), for (1.1la) to be in-
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tegrable we must require Im(a/b) ~ 0 (i. e., v ~ 0) for 
the exponent and the Bessel function as solution for 
Brtl(pr). With a specific choice for phase and normaliza
tion to be justified below and in Sec. 4, we write 

An' (p, r) = b-l~n., exp[ (i/2b)(ara + dp2)J (pr)1-n 1 2 

x JnI2+'_1(pr/b) (3.1a) 

with 

.9 n• , = exp[ - ih(tn + l)J. (3.1b) 

The calculation of the expliCit form of the orthonor
mal basis transform to (2.9) can be simplified if we 
look for the eigenfunctions of the weight operator 
(2 .13c) which through (1.4) becomes 

N¢N(r)=v-l ~aI2ra--hRe(ab*)r :r _lbI2(~ 

+ n; 1 :r + ~) - tin Re(ab*)] ¢N(r) 

= (2N + tn + Z)¢N(r) , (3.2) 

plus normalization under (1.7) and a phase to satisfy 
Eq. (3.4) below. The result is, if we denote the phase 
of b by exp[i argb J with argb E [ - 7T, 7T), 

¢N(r) =') N{2N! [Im(a/b)JnI2+'/r(N +tn + Z)p / 2 

X exp[ - -h(a* /b*)raJrZ Lff1 2+1-l)[y2 1m (a/b)], (3. 3a) 

with 

~ N = exp[i(2N +tn + l)(argb +h)J. (3.3b) 

We can now verify that16 

(3.4) 

At this point it is apparent that a second pair of trans
form orthonormal bases for H~ and J~, is useful, since 
the limit v-O of real transformations of (2.9)-(3.3) is 
not manifest. As in I, we choose the basis functions 
IJ!NI (r) for H~ to be the radial part of the solutions of a 
harmonic oscillator with centrifugal force Hamiltonian 
in n dimensions given by 

2131J!NI (r)Y1 (w) = Mil + gi-2 +x2J1PNI (r)Y1 (w) 

=!.[_~_n-1~ g+L(L+n-2) _.2J 
2 ar2 r ar2+ r2 +r 

X 1J!N/(r)Yf (w) 

(3.5a) 

where Y1(w) is the n-dimensional normalized spherical 
harmonic, the collective label M standing for the trans
formation properties under SO(n -lb· .. ~ SO(2), while 
the SO(n) label L enters into the differential operator 
and relates to l through 

l(l+n- 2)= -A=g+ L(L +n-2), (3.5b) 

giving two values of l for each g and L, in general. The 
solution of the radial equation is 

IJ!NI(r) = [2N!/r(N +tn + 0)1/2 exp(- r2/2)r'L;1 2+1-1) (r2) , 

(3.6) 

whose corresponding raising and lowering operators can 
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be obtained from (3. 5a) and 

11 = Hp2 + gX-2 _;C2] , 

12 = Hi.p +p . x], 

(3.7a) 

(3.7b) 

which can be verified to close into an so(2, 1) algebra. 
The transform basis functions can be calculated direct
ly using the transform (1. 7a), (3.1), (3.6), yielding17 

'ifNI (P) = [2Nl/r (N + tn + l)p/2(a + ib)-n/2-/[ (a - ib)/ (a + ib)]N 

xexp (- ~ ::;~ tr)pIL;/2+1-1)(p2/[a2+b2]). (3.8) 

In particular, notice that when we have the Bargmann 
case (1.2), (2.5) gives u=O, v=l, only the leading 
term of the Laguerre function remains, and both bases 
coincide as (3.8) becomes proportional to p2N+1 and 
equal to ¢N(P). This determined our choice of phase for 
the latter. 

The unitarity of the transform pair (1.7) with the 
kernel (3.1) between H~ and ]~I can be established fol
lowing the same steps as in Bargmann's original work.ls 
That it transforms the orthonormal basis {<PN(r)} to the 
orthonormal basis {¢N(P)} shows that the m~ping is 
isometric. The completeness of the basis {<PN(P)} in 
]~I was found in (2.11)-(2.12) and, moreover, we can 
perform directly19 

fa'" r"-1 dr AnI (p, r)Anl(P', r)* =Knl(P, p'), (3.9) 

when (1. 7a) can be performed, i.e., when the kernel 
(3.1) is bounded, namely for Im(a/b)~O (v~O) or, when 
a = 0, b should be real. As (], g)nl = (j, g)a for any f, g 
inH~, the mapping is unitary and the existence condi
tions are identical with those found in I for the linear 
complex transforms. 

4. LIMITS AND PARTICULAR CASES 

Real transformations: We want to show that, as in I, 
when the transformation parameters a, b, c, din (101) 
become real, the space ]~I with a scalar product (1.10) 
over CC+ collapses to H ~ with a scalar product (1. 7) -
over lR+. The said limit involves first determining the 
behavior of the weight function in (2.6) as, in (2.5), 
v-O and, since luI 2+vw=1 with w=2Imc*d, for 
u = w exp (irp), w -1. Recalling that20 K" (z) - [1l/2z p/2e-· 
as Izl-oo, w=11-vwI 1/ 2-1-tvw, l.Lm.e-1 / 2 

Xexp[-z2/e]=7Tl / 2o(z) for real positive e-O and the fact 
that vnl (p, p*) is under the integral J c+ dRep dImp 
=f~ Ipl dlpl f~:J2de, 

1. Lm. vnl(p,p*) 
v-a 

= 1. i. m. [2/ TTV P/2 exp[ - (I p12/ v)(l -cos{rp + 2e}) 
v-a 

- twl p12COs{rp + 2e}] 

= Ipln-lo(1 pi sin(trp + e» exp[- twl pI2COS(rp +2e)] 

= Ipln-l[o(trp+e)+o(trp+B-7T)]exp(-twlpI2). (4.1) 

Now, as e E [- h, t7T), only the first 0 contributes to 
pick out the value e=trp in the integral, so that for 
r'= Ipl, 

lim f ... + dlJ.n, (P)!(P)*g(P) = f ~+ -II(J /2 r'n-l dr' exp(- wr 12 /2) v·o ~ ~ ~ 

xj(r')*g(r') , (4.2) 

and the normalization coefficient for vnl is thus seen to 
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be the appropriate one and the parameter l has dis
appeared from the right-hand side of (4.2). Since ur'2 
\s real, from the discussion below Eq. (2.9) we can see 
that the functions j,g must be of growth (2, 1/2v - w/2v) 
- (2, iw) in r'. In the limit when the transformation 
parameters become real, w - 0 and rp - 0, the integral 
in the right-hand side of (4.2) is over lR+ and ]~I has 
become identical with H~. The transform kernel AnI (p, r) 
in (3.1) is uneventful in this limit and now becomes a 
transform in H~ which coincides with the unitary rep
resentations of 50(2,1) in "radial" space. 21 

Transformations where b - 0 can be obtained out of 
the development above since b - 0 implies v - 0, plus 
the analysis of the behavior of Anl(P,r) in (3.1). It can 
be shown22 with due care to the phases involved for 
r~ 0, argr' E [- h,h), 
1. L m .Anl (r', r) b-a 

=r'1-na"/2-lo(r_ a-lr') exp[ic/2a)r'2]. (4.3) 

Since arga=-targu=-trp=B=argr', (4.2) acts under 
the line integral over lR+ exp(- irp/2) with the appropriate 
phase relation between rand r'. The case a = 1, c = iq, 
q real> 0 was used in Ref. 7 to reproduce the matrix 
elements of a Gaussian potential. The identity trans
formation is now obtained by simply setting a = 1, c = 0 
in (4.2), and AnI (r' ,r) is seen to become the reproduc
ing kernel under the scalar product (1.7). It is thus 
seen that our choice of the phase factor (3 .1b) is 
appropriate. 

The Hankel transform is obtained when, as for the 
ordinary Fourier transform in (1.1), we set a= O=d, 
b = 1 = - c. The transform kernel becomes23 

A~I(r' ,r)=09 nl (r'r)1-n/2Jn/ 2+I-l(r'r). (4.4) 

The Barut-Girardello transform ll was introduced in 
developing the formalism for coherent states associated 
with noncompact groups, these being eigenstates of the 
lowering operator of an so(2, 1) algebra in the ("dis
crete") D"(~) representations (~= - t, -1, - i, ... ). It 
can be obtained as a particular case of complex radial 
transforms for the values (1.2) of the parameters. The 
scalar product in the ]~I space has the weight function 

~I (p, p*) = 27T-1 1 p I nKn/ 2+I_l (I p 12
). (4. 5a) 

Similarly, the transform kernel becomes 

A~I (p, r)= 21/2(pr)1-n/2 exp[ - t(r2 + p2)]Jn/ 2+I_l (2
l / 2pr), 

(4.5b) 

and the orthonormal basis 

~(P) = (_1)N[2n/ 2-1Nl r(N + tn + Z)]-1/2(2-l / 2p)2N+I, 

(4.5c) 

with the reproducing kernel 

K~I (p, p') = (pp,*)1-n/2Inf2+l_l (pp'*). (4.5d) 

When l = 0, this agrees with the scalar product in the 
Barut-Girardell024 space z = tp2 E a: for D+(~) when the 
latter is multiplied by a factor of 2n / 2

-
2r(tn) and we set 

~ = - in. The results of Ref. 7 are regained when we 
multiply our weight function by a factor 2n / 2- 2 and set 
I q I = tn -1, integer. 25 It should be noticed that the basis 
functions (3.6) are bases for an so(2, 1) representation 

Downloaded 29 Jun 2011 to 132.248.33.126. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



2107 Kurt Bernardo Wolf: Canonical transforms. II 

given by the eigenvalue of J2=~-~-~ obtained from 
(3.5)-(3.7) to be Q=H(tn+l-1)2_1]=~(~ +1) i.e., 
labelled by ~ = - t ± t(tn + l-1). Multivalued "discrete 
series" representations of the SO(2, 1) group are im
portant as can be seen from the fact that for the ordinary 
one-dimensional harmonic oscillator (n = 1, ,\ == 0) we 
have the ~ = - t and - t representations of SO(2, 1).26 

The one-dimensional "radial" spaces are the cases 
when n = 1. As no angular momentum operators exist, 
in (1.8), O=,\=-l([-1). There are two solutions for 
this: l=O and l=1, i.e., tn+l-1 ='fi, and corre
spondingly two spaces, J~o and J~1 are transforms of 
H~. The weight function in both spaces is, recalling 
K~I/2(Z) = [7T/2z)1/2e-8, 

VI (p, p*) = 2(27Tv)-1/2 exp[ (1/2v)(up2 - 2pp* + U*p*2)] 

'!EV1(p,p*), (4.6) 

which is formally identical to the weight for the complex 
linear transform spaces in I. It has to be recalled, 
however, that, there,27 the scalar product involves in
tegration over all of ([. We shall explain this below. 
The two transform kernels are, using the particular 
expressions for J>l/2' 

AlO(p, r) = exp(- i7T/4)(2/7Tb)1/2 

X exp[(i/2b)(ar + dp2)] cos(pr/b), 

Au (p, r) = - i exp(- i7T/4)(2/7Tb)1/2 

x exp[ (i/2b)(ar + dp2)] sin(pr/b). 

(4.7a) 

(4.7b) 

Hence in J~{), the transform functions have the property 
10(P)=10(-p) under inversion of the space, while inJ11 
fo(p) = -fo(-p), as can be seen from the bases (209). 
Now if for a given function f(r) on rE IR· we extend the 
domain to the whole of IR and write f(r) = fJr) + fJr) , 
f±(r)=t[f(r)±f(-r)], expandingfinto its odd and even 
components and further demand that a transform 1(p) 
have the same parity under inversion of the argument 
as the original function [this corresponds to having L2 
with the same eigenvalue ,\ in both spaces, the trans
formation properties under O(n) now collapsing to C2 ], 

we can write 10 as the transform of f+ and il as that of 
f-. Suppressing arguments, 

J=io +11 = Jm.. dr AlOf. + Jm.+ dr Auf_ = Jm.. dr Alf (4.8) 

with 

A 1(p, r) '!E t(AlO + Au)(P, r) 

== (27Tb)-l/2 exp(- i7T/4) exp[(i/2b)(ar - 2rp + dp2)], 

(4.9) 

regaining the complex linear transform in I between 
H '!E L 2(_ 00 , 00) and J with the scalar product 

(j,g)! = 2(jO,gO)10 + 2(j1 ,gl)U 

= Ie dRepdlmpvl(p,p*)J(p)*g(p). (4.10) 

For the values (1.2) of the parameters, this is the 
Bargmann transform. 2 
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Another, quite different, way of obtaining back the 
complex linear transforms is to follow the procedure of 
Barut and Girardelloll of considering functions of z 
=e-1 /

2 with z=tp2 and letting n- oo such that en remain a 
finite number. This effects the contraction of the rep
resentations of the so(2, 1) algebra in (2.14) in the 
orthonormal basis (2.13) to that of the Heisenberg 
algebra. The limiting procedure is a delicate one, and 
we shall not pursue this point further. 

5. COHERENT STATES FOR THE RADIAL HARMONIC 
OSCILLATOR WITH A CENTRIFUGAL FORCE 

The Bargmann transform has proven to be the natural 
tool for the construction of coherent states for the 
harmonic oscillator since they map the eigenstates 
~N(x) of the one-dimensional system on functions of the 
complex variable z E ([, 1PN(z) = [(27T)1/2N! ]-1/2ZN (using 
the normalization of r). The coherent states, defined28 

as Iz)=2; IN)1PN (z) are eigenstates of the lowering opera
tor z = 2-1 / 2 (X +ip) with eigenvalue z. They resolve the 
identity as 11. = f I z) dJlI(z)(z I [using the measure dJlI(Z) 
of r] and are overcomplete29 as (z I z') =Kl(Z, z'), the 
reproducing kernel in the scalar product with measure 
dJl1(Z)' 

A similar construction for the radial functions of an 
n-dimensional harmonic oscillator with centrifugal force 
can now be made. The angular part of the wavefunctions 
continues to be the n-dimensional spherical harmonic in 
the n - 1 angles of real or complex space as in (3. 5a) 
(see Appendix B). We shall now examine the proper 
quantum-mechanical solutions of the radial part of the 
operator (3. 5a). These are (3.6) plus the conditions that 
13 be self-adjoint between them, which means that the 
constant terms in the partial integrations be zero (which 
imposes conditions on the behavior of the functions at 
r = 0) and that ~Nl' r-I~NI' and (d/ dr)~NI be square
integrable. 30 From (3.5b) we see that for each n, L, 
and g, the two solutions 

are real for centrifugal forces which include attractive 
ones but which are not more attractive than those al
lowed by the zero of the discriminant for the lowest 
angular momentum L = 0 namely 

g~-(1-tn)2. (5.2) 

Given this condition is fulfilled, square-integrability 
of </!NI under the scalar product inH· (since it is assured 
that the behavior at infinity is adequ"ate), places restric
tions on the behavior at the origin: l> - tn. The same 
conditions on r-l~NI and (d/ dr)</!NI narrows the choice to 
1 > 1 - tn. Hence, only l. of the two choices in (5.1) is 
possible for general g and n satisfying (5.2). Only in 
the case when the latter two conditions are absent (i. e. , 
g=O, n==1, L=O, and t=O), do we need the two solu
tions of (5.0. This is convenient since for all cases, 
except the one-dimensional oscillator with no centrifugal 
force, the space J~,. contains all the states of the sys
tem for a given angular momentum26 L. Henceforth 
denote l+=l(L,n,g). Recalling (4.4) define now the kets 

00 

I P)nL = fa IN)nl~(P) 
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00 

= 2-1n/2+I-l)/2p' 6 I N)nl[N! r(N + ~n + Z)]-1/2(_l)N p2N, 
N.O 

PE<r+, (5.3) 

where I N)nl stands for the state (3.6). The ket (5.3) can 
be considered as a coherent state for the system since 
it is an eigenket of the lowering operator defined, 
parallel to (2.14), with (3.7) as 

(5.4a) 

with eigenvalue - ~p2, as the bracketing suggests for 
g- O. This can be proven immediately using the so(2,1) 
raising and lowering operator matrix elements (2.13): 

L I P)nL = t [N(N+~n + l- np/2lN -1 )nl~ 
N=O 

(5.5) 

The usual coherent-state properties follow, 28 as 
nL (pi p')nL =K~I (p, p') and f r:+ I p)nL dJ.lB (p)nL (pi = u.. It 
would seem desirable to change the labels z = tp2 E <r so 
as to coincide with the treatment in Ref. 11 with l = 0 
and n = - 4<1>. There is the problem. however, that for 
l'" 2 x integer, an f(z) = (pI f) would not be an entire func
tion of z, but one with a branch cut from 0 to cO. A com
pleteness statement29 on the coherent states (5.3) is also 
wanting. Since a connection exists between the radial 
differential equations of the harmonic oscillator and 
Coulomb systems, 13,31 one expects that Similar coherent 
states can be defined for the latter. This will be taken 
up elsewhere. 

6. COMPOSITION OF TRANSFORMS AND 
REPRESENTATIONS OF HSL(2, C) 

Two related topics which are virtually identical with 
their counterparts for complex linear transforms will 
now be presented in the briefest manner 0 The first one 
pertains the possibility of composition of transforms, 
seen as active transformations A 1 : H+ =]~ and A 2 : H+ 
=]; into one transform ]~=A2Ail]~=A2l]~ between 
]~ and]~ with the same n, l but differing in the param
eters a, b, c, d, as 

] (2)(P) = Jr:+ dJ.ll (P')A (2,l)(P, p')] (l)(P'), 

] (l)(P') = Jr:+ d~(P)A (2,l)(P' p')*] (2)(P), 

(6.1a) 

(6.1b) 

where dJ.ll(P') and dJ.l2 (P) are the corresponding mea
sures and the transform kernel is 

A (2,l)(P, p') = JII+ rn-l dr A (2)(p, rIA (l)(p' , r)* 

=<I>(b2, - bt;b)n,9 n1 b-l exp[ (i/2b)(ap'*2 + dp2)] 

XJn /2+I_l (pp'* /b) 

(6.2a) 

where 

(6.2b) 
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and 

<I> (b' ,b" ;b) = exp{ - ~i[argb' + argb" - argb - arg(b'b" /bm 

=±1, (6.2c) 

when the conditions for existence ofA l andA2 are ful
filled [i. e., Im(a/bl):;. 0 and Im(~/b2):;' 0, etc]. 

The second point is that the composition of transforms 
can also be seen as that of passive transformations of 
the spaceH~ onto itself through a set of operators (6.2) 
and such that with each matrix M as defined in (6.2b) 
we associate a "D function" 

(6.3) 

which satisfies32 

J r'n-ldr'D(o),n,I(M)D(o),n,I(M) 
lEt • 1',.' 1,. -rn 2 

= <I> (b l , b2;bl2)nD:~~,n,' (M1M2). (6.4) 

We have thus a ray representation of that subset of 
MESL(2,<r) for which integration is possible. The con
ditions for the kernels to be bounded (or Hilbert
Schmidt) were examined in I. This forms a subsemi
group of SL(2,<r) called HSL(2,<r) in Ref. 7 and (6.3) is 
a representation of HSL(2, <r) labeled by the indices 
n, l. A continuum of such representations can be built as 

for MilE HSL(2,<r), with a composition law which re
places the integration over rn+ with LI;+dJ.lk(P), From 
(6.5) we see that for MESL(2,rn)cHSL(2,<r), the rep
resentation is unitary. 

7. CANONICAL TRANSFORMATIONS IN QUANTUM 
MECHANICS, EXTENDED 

In the way of conclusion, the results of I and this 
paper seem to indicate that the definition of a canonical 
transformation in quantum mechanics as that which 
preserves the Heisenberg algebra9 in (l.lc) can be ex
tended. Equation (10 1c) is the quantum analog of the 
classical concept of a canonical transformation to that 
which preserves the Poisson bracket between canonical
ly conjugate variables. The validity of (t.1c) is thus 
restricted to those transformations where the new 
operators ~ and l' exist and have the same domain and 
spectrum as the original, usual x and p. Classical 
mechanics can work with the radial coordinate r and it 
conjugate momentum Pr and establish that (1.5) is a 
proper canonical transformation and, being a local the
ory, avoid specifying what happens at r= O. The trans
lation of (1.5) to quantum mechanics appears difficult, 
as operators "p" and "P/ are not of the usual kind as 
they have no self-adjoint extension. 33 

The picture we seem to be arriving at overcomes this 
limitation on two accounts: First, we make use of 
operators which are properly defined [as the so(2, 1) 
generators (3. 5a)-(3. 7) or their linear combinations 
i2, t (i . p + P . i) and p2 with the extra centrifugal force 
term added to the angular momentum one] and say that 
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the transformation 

- ab + cd U - if - b
2 

+ c2 + IfJ) 
- ac - bd ac + bd 

ab + cd t[a2 + b2 + c2 + If] 

x(~:) 
13 

(7.1) 

obtained from (l.la), (1. 3) and (3.5)-(3.7) is canonical 
in this extended context since, as can be verified 

(7.2) 

with (j,k, l) cyclic permutations of (1,2,3) and El =E2 

= - E3 = 1. The 50(2, 1) algebra is thus conserved and we 
can turn the procedure of finding the weight function 
vnl and transform kernel AnI to stem from (6.1) and the 
hermiticity conditions on the {I~} implied by the {Ij } 

being self-adjoint. Although a Heisenberg algebra is 
undefined here, p itself retains the meaning of an under
lying space variable. The classical limit of (6.1) is 
(1. 5). 

Second, we have permitted the transformation pa
rameters Gl, b, c, d to be complex. This is in line with 
the fact that quantum mechanics allows-indeed needs
the complex field as the domain of definition of its func
tions. The consequence of the second extension is to 
require Hilbert spaces of functions which include the 
usual Dirac10 and Bargmann2

,3 spaces. The transforma
tion (6.1) is the most general one allowed by (6.2), 
since the group of linear real automorphisms of the 
algebra 50(2,1) is 0(2,1) and its complexification is 
SL(2,a:l. 

Among the canonical transformations which have been 
useful in classica1 mechanics is the one mapping the 
phase-space coordinates on a conserved quantity
angular momentum or the Hamiltonian-and its con
jugate-angle or time. One of the aims of this pro
gram2S is to give an extended quantum mechanical 
meaning to these mappings. 
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APPENDIX A:: REALIZATION THROUGH 
HYPERDIFFERENTIAL OPERATORS 

As in I, we introduce a Lie algebra structure for the 
SL(2, <e) set of canonical transforms, disregarding the 
Hilbert-space structure of the functions involved, as 

j(r) =1 r'n-l dr' AnI (T) (r, r')f(r') 
JR-

= exp[iTH~, :r) ]f{r) 
where T labels one-parameter subgroups and asking 
only the integrals involved to exist. The operator 

(Al) 

H(r, d/ dr) need not be bounded. 34 The differential opera
tor H(r, d/ dr) ean be found by inspection from 

H(r, :r)f(r) 
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=-i ( r'n-1dr'(} AnI(T)(r,r')\ )f{r') (A2) JR + uT 1'=0 

and by using the differential equations satisfied by the 
integration kernel, to pass the partial derivatives to 
act on f through partial integration, assuming the con
stant terms to vanish. 

In agreement with what we expect from I, we find 

exp(i~(r)J= exp(i~rJ: 

(~ ~), (A3a) 

exp(ibHo~ + [en -l)/rJor + A/r}) = exp(- ib~p2) : 

(~ ~), (A3b) 

exp(iaHo; + [en -l)/r]or + A/r + r}) = exp[ - iat(p2 -r)]: 

(COSh~Ci sinh~Ci) 
sinh~a coshta ' 

(A3c) 

exp[ - ~(ror +tn)J = exp[ - i,sHi .p + P . x)J : 

(
fIl/2 0 \ 
o e-/3/2)' (A3d) 

exp(irl{a~ + [en -O/rJo r + A/r - r}) 

= exp[ - iyi(p2 + X2)J : 

(
cosh Sinh) 

-sinh cosh' 
(A3e) 

The generators of the last three transforms constitute 
the 50(2,1) dynamical algebra for the radial oscillator 
with centrifugal force. Associating thus products of 
2 x 2 complex matrices to hyperdifferential operators 
yields Baker-Campbell-Hausdorff relations3S including 
a~, (1/r)or' rOr' r, and r-2 terms. A particular com
position used in I is 

(
cosh 6 - Sinhe) 
- sinh6 cosh6 

=(10 -ta1nhe)(1/cOoSh6 0)( 1 0) 
cosh6 - tanh6 1 

and involves the use of (A3) for b= -tanh6=c, ~ 

(A4) 

= - 2 In cosh 6. Rather than write the lengthy resulting 
relation, we take 6=ih. This gives the Bargmann 
(L e., Barut-Girardello, for arbitrary l) transform 
(4.4) as 

- [l(tP n-1A A) f(r)=exp -rr - + - - + - +r fer) 
8 dr r dr r 

=2-II / 4 exp - - + -- - + - er2 /4j(2-1 / 2r). [1 ( ~ n - 1 d A)] 
2dr r dr r 

Writing for f the radial wavefunction (3.6) and for j 
the corresponding (3.S) [Le., (2.9) for u=O, v=lJ 
and recalling (1.8), we obtain 

(A5) 

exp[~(:': + n~l d! _l(l+;;-2»)Jc2-1/2r)IL:/2+I-l)(t~) 
(A6) 

A special function relation which seems to be new is 
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obtained setting z = ~r and inverting (A6) as 

[ ( 
rJl- +.!. d l(l+n-2»)] N+I/2 

exp - z dz2 2 n dz - 4z z 

= (_1)NN! Zl/2 L;r/2+1-l)(z) (A7) 

and can be verified to hold independently by expanding 
in series. 

APPENDIX B: THE PASSAGE FROM n-DIMENSIONAL 
TO RADIAL TRANSFORMS 

In I, Appendix B, we gave results concerning the ex
tension to n dimensions of the complex linear trans
forms. For the case when the canonical transform is 
of the type (1.1), that is, when the transformation sub
matrices A, B, C, D of nX n', are multiples a, b, c, d of 
n., these take the form 

A" (11, x) ={(27T 1 b 1 )-1/2 exp[ - ~i(h + argb)J)" 

x exp[ (i/2b )(ax2 - 2x '11 + d112)]. (B1) 

the integration over x-space being over lR", with mea
sure (/Ix, and the scalar product (j,g) In) involving an in
tegration over 11-space, over ([:" with measure 
v" (11, 11* ) (/I Re11 (/I 1m 11 , 

v"(11, 1() = (~7TV )-" /2 exp[ (1/2v)(U112 - 211 '11* + U*11*2)] , 

(B2) 

We want to show here how expressions (Bl) and (B2) 
relate to the corresponding radial kernel (3.1) and mea
sure (1.10)-(2.6). Consider first the two-dimensional 
case (n=2). Parametrize lR2 as xl=rsinll, x2 =rcosll 
withrE[O,OO), liE [0,27T), andrJl-x=rdrdll. Now 
parametrize ([:2 as 1]1 =psin6, 112=pcos6 with PE ([:+ 

{i.e., argpd-h,h)}, Re6E[0,27T), Im6E (_00,00)' 
Noticing that if y=j(z) and dy=j'(z)dz, then dReydlmy 
= Ij'(z)1 2 dRezdlmz, we have that the measure in ([:2 is 

Now, using x '11=rp cos(lI - 6) and the Bessel generating 
function, we have 

A2(11,x) = (27Tb)-1exp(- ih) exp[ (i/2b)(ar + dp2)] 
~ 

X ~ (-iexp[-i(lI-6)])"'Jm (pr/b) 
m=-oD 

(B3) 

where A 2 •
11t 

(p, r) is given, with correct phase and nor
malization, by (3.1). This means that if we have a func
tion j(x) of definite eigenvalue m under L12 in the form 
jllt(r)[(27T)-1/2 exp(imll)] (so that the angular part be nor
malized), then 

.1(11)= fIR2 rJl-xA2(T/,X)j(x) 

= f
lR

+ r dr A2•m(p, r)jm(r)[ (27T)-1/2 exp(im6)] 

=jm(P)[(27T)-1/2 exp(im6)], (B4) 

and the dependence of j on 6 is the same as that of j on 
II (the range of the former being now over a strip in the 
complex plane), and only a transform of the radial part 
has taken place. The scalar product in the transform 
space of two such functions can now be calculated USing 
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(B2) and T/ '11* = I pl2 cosh(2 Im6), and an integ:ral rep
resentation of the Macdonald function36 

(j, g)~) = f 2 rJl- Re11 rJl- Im11 v2(T/, 11*) 
I: 

X {jilt (P)(27T)-1/2 exp[im(Re6 + iIm6)])" 

x {g .. (P)(27T)-1/2 exp[im(Re0 + i Im6)]} 

= (2/ 7TV >J
t

+ 1 P 12 dRep dlmp 

x exp[ (1/2v )(up2 + u* p*2)]j", (p)*gm (P) 

xL: dlm6 exp[ - (1/v) 1 pl2 cosh(2 ImO)] 

Xexp(-2mlm0) 

= ft+ d Rep d Imp v2 ... (p, p* )jm (P)*gm (P) 

= (jm,g"')2.m' (B5) 

where v2m(P, p*) is given correctly by (2.: 6). l:ndeed, had 
we used different angle dependence for j and g, a 
Kronecker 1) in their eigenvalue under L12 would appear. 

The problem for the n-dimensional case can be form
ulated similarly: Parametrize the real n-space IR" in 
the usual hyperspherical coordinates where the jth 
component reads Xj = r sinll"_1 ... sinll) COSll)_l for 
1 ,,;j";n-1 (lIo=O) and x"=rcosll"_l' The ranges are 
rE[O,OO), (il E[0,27T), and lIk E[0,7T]for2,,;k,,;n-1. 
Now parametrize the complex n-space ([:" replacing r by 
p and lIk by Ok with pE ([:+. Re6k having the same 
ranges as lIk and37 Im6k E (- 00 , O(). The measure in lR" 
is (/Ix = r"-1 dr (/I-IW"_l with d"-lW"_l = sin"-2 8"_1 dll"_l d"~2W"_2 
and dWl = dlll while, in ([:", (/I ReT/ (/I ImT/ is found from 
the former with the weight function given by the absolute 
square of the weight function in lR". In order to ex
'press the n-dimensional transform kernel (B1) in a 
suitable way, expand the factor exp(- ix -17 /b) in a series 
of Bessel times Gegenbauer polynomials, 311 the former 
in rp/b and the latter in 

cos lIn_l cos0n_l + sinll"_l sin0"_1[cOS lIn- 2 COS0"~2 

+ sinlln~2 sin6"_2(' .. )] 

which can be identified with a degenerate 80(n) ~oo 
function39 and turned into a sum of products of hyper
spherical harmonics in W = {lI)} and O={0j } as 

~ 

exp(- ix . T//b) == (27T)"/2(rp/b)1~"/2~ exp(- i7TI/2) 
1=0 

where the sum over the collective index M runs over 
the allowed SO(n -1):=J ... :=J SO(2) irreducible represen
tation labels. Replacement of (B6) in (Bl) and com
parison with (3.1) gives 

~ 

A"(T/,x) = ~ A"/(p, r) ~ Y:(w)*Y~(O), 
'=0 M 

(B7) 

which is the n-dimensional version of (B3) and which 
tells us, performing the integrations parallel to (B4) 
that the angular dependence of] is the S2,me as that of 
j, with only the additional domain of the angles in the 
complex plane. Finally, in order to show the n-dimen
sional analog of (B5), 

(],g) In) = ft" (/I ReT/ d" ImT/ v"(T/, 11*) 

x [f, (p)Y~(O)]*[ g, (p)Yf(O)] 
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= Jr:+ dRep dlmp Vn, (p, p*)f, (p)*g, (p) 

= Up "it')n!' 

we must prove 

J d"-lReOd"-lImO Yf(O)*Yf(O) exp[- (l/v)'I} ''I}*] 

= (2pp* /rrv)1-n/2K,./2+I_l (pp* /v), 

(B8) 

(B9) 

where the integration ranges over the strips in the com
plex plane of each of the angles as indicated above. The 
direct proof of Eq. (B9) is difficult. Differential or 
recursion-relation manipulations run into hopeless 
multiple integrals or combinatorics. A procedure which 
has allowed the verification of a fair number of individ
ual cases for low 1 is that which uses the fact that (B9) is 
independent of M and shows that the Nth moment of the 
two sides of Eq. (B9) in I pl2 are equal. For this, 
multiply Eq. (B9) by (pp*)2N+n+2'-1 and integrate over 
PEa:+. By using (2.6) and (2.9), the right-hand side has 
the value 

~rr"/ 2v" (2v )1+2N N! r (N + ~n + 1) 

while the left-hand side has become, for ~=V-l/2'1} the 
Bargmann integral over a:n of the absolute square of 
(~2)Ny~W, where 

y: w = [r(~n + 1)/2rrn / 2r(l+ 1 )]1/2(~1 + i~2)' 

is the extreme, normalized, solid spherical harmonic. 
This seems to point out that no true Bargmann-type 
integral tables exist. The separation of n-dimensional 
integrals into radial and angular40 parts can be seen as 
a step in that direction. 

Note added in proof: It has been pointed out by Professor 
M. Toller that the semigroup HSL(2,a:) used here and in 
Ref. 1 has also been exploited in the harmonic analysis 
approach to multiperipheral dynamics. See G. Soliani 
and M. Toller, Nuovo Cimento 15, 430 (1973) and S. 
Ferrara, G. Mattioli, G. Rossi, and M. Toller, Nucl. 
Phys. B53, 366 (1974). A particular case of Eq. (A7), 
for 1=0, appears in C.M. King, M. Sc. Thesis, 
Auburn University (1963), unpublished. 
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