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Recent work by Moshinsky et aL on the role and applications of canonical transformations in 
quantum mechanics has focused attention on some complex extensions of linear transformations 
mapping the position and momentum operators x and p to a pair ~ and t of canonically 
conjugate, but not necessarily Hermitian. operators. In this paper we show that for a continuum of 
complex linear canonical transformations, a related Hilbert space of entire analytic functions exists 
with a scalar product over the complex plane such that the pair~, f can be realized in the 
SchrOdinger representation 'II and - id / d 'II. We provide a unitary mapping onto the ordinary Hilbert 
space of square-integrable functions over the real line through an integral transform. The transform 
kernels provide a representation of a subsemigroup of SL (2, C). The well-known Bargmann transform 
is the sp_ecial case when ~ and if are the harmonic oscillator raising and lowering operators. The 
Moshinsky-Quesne transform is regained in the limit when the canonical transformation becomes real, 
a case which contains the ordinary Fourier transform. We present a realization of these transforms 
through hyperdifferential operators. 

I. INTRODUCTION 

The purpose of this work is to explore some of the 
consequences of the use of general canonical transform­
ations in quantum mechanics. We shall concentrate here 
in studying complex linear transformations between the 
quantum mechanical operators of position and momen­
tum x and p, and a new pair of quantities given by 

f = c~ + dp, a, b, c, d E?a: complex field, 

with the unimodularity condition 

ad-bc= 1 

(1. 1a) 

(1. 1b) 

which ensures that, if x and p are canonically conjugate 
operators, then ~ and ~ will also be canonically conju­
gate, namely 

(1.2) 

in units where Ii: 1. In the usual Hilbert space H of quan­
tum mechanical states,1 we have the space of square in­
tegrable functions over the real line R with the scalar 
product 

(f,g)o= JlRdxj(x)*g(x) (1. 3) 

for j, g~H. (The star denotes complex conjugation.) The 
stone-von Neumann theorem states, moreover, that we 
can always (through a unitary transformation if neces­
sary) use the Schrlidinger realization of the realization 
of the Heisenberg algebra (1. 2), i. e., represent x and p 
by x and - id/ dx over a set dense in H. 

When the transformation (1.1) is real, a scalar pro­
duct where Tt and t are Hermitian and realized by the 
Schrodinger representation as 7j and - i d/ d7) on functions 
of 1) in H' '" H, with a scalar product analogous to (1. 3) 
leads to the Moshinsky-Quesne transform2 between H 
and H'. The ordinary Fourier transform is a special 
case of this for a = 0 = d, b = 1 = - c. 

The use of a complex linear transformation (1.1) with 

a = 2-1 /2 = d, b = _ i2-1 /2 = C (1. 4) 

has proven to be of great importance, as developed by 
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Bargmann3,4 and applied to the coherent-state formula­
tion of quantum optics. 5 Equation (1.1) with (1. 4) gives 
to Tt and it (notice that Bargmann' s ~ is here it) the 
meaning of creation and annihilation operators with re­
spect to the harmonic oscillator states. Hermitian con­
jugation inH induces the properties ~+=i~ and (it)+=~. 
In order to find a Hermitian form where the Schrodinger 
realization for ~ and t can be implemented, Bargmann 
introduced a space] of entire analytic functions J in 
7)Ea:-the complex field-restricted by the condition 
I](r,) I"" Y exp( to! 1]*1]) for finite y> 0 and 0 < a < 1, with a 
scalar product given by 

(1.5a) 

(1.5b) 

for J, gE], where the integration is extended over the 
complex 1]-plane (with a definite limiting procedure, see 
Ref. 3) and, in Bargmann's case, the weight v(1j,1j*) 
= 1T-1 exp( - 1]* 1]). It was also shown in Ref. 3 that] com­
pleted with respect to the norm induced by (1.5) is a 
Hilbert space and, moreover, a unitary mappingA:H =] 
can be implemented through the transform pair 

J(1]) = Jm. dxA(1], x)j(x) , 

j(x) = Jet d/.l(1])A(1j, x)*J(7) , 

(1.6a) 

(1. 6b) 

with the kernel A(1j, x) = 1T-1 /4 exp[ - t(x2 + 7)2) + 21/2X7)]. 

In a recent work, Kramer, Moshinsky, and Seligman6 

have considered a class of complex linear transforma­
tions of the type (1, 1) and applied them to the study of 
clustering in nuclei, thereby achieving Significant con­
ceptual and calculational simplifications. We have taken 
their motivation to study the general ease of complex 
linear transformations and set up a continuum {)f spaces 
] of entire analytic functions with different growth re­
strictions In the complex 7)-variable and a scalar pro­
duct of the general type (1, 5) with appropriate measures 
v(1j,7j*), where the Schrodinger representation is real­
ized. As in Bargmann's case, completion with respect 
to the norm induced by (1. 5) shows that the]' s are 
Hilbert spaces and that unitary maps A:H =] can be 
implemented through transforms of the type (1.6). We 
shall call these canonical transforms, 
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In Sec. II we construct and characterize the spaces] 
and find the transform kernels in Sec. III. In Sec. N we 
determine the behavior of the transforms in the limit 
where the parameters a, b, c, d become real. The scalar 
product (1. 5) is shown to collapse to an integral over R, 
so that the Moshinsky-Quesne transform is regained. 
As the composition of two canonical transformations is 
of the same type, the composition of the corresponding 
transforms is developed in Sec. V. In Sec. VI, the 
transform kernels are shown to provide, when bounded, 
representations of a semigroup HSL(2, 0:) of the group 
SL(2, 0:) of canonical transformations (1.1). In Appendix 
A we give a realization of canonical transforms through 
hyperdifferential operators, while in Appendix B results 
for general n-dimensional spaces are presented. 

In a future series of articles we intend to explore the 
consequences of more general complex canonical trans­
formations in quantum mechanics. In Ref. 6 it was 
shown that a transformation in the radial coordinate 7 of 
a higher -dimensional space unde rgoing a linear trans­
formation is related with the Barut-Girardello trans­
form. B Among the classes of canonical transformations 
where classical and quantum mechanics follow each 
other9 are point transformations followed by linear ones. 
This has been used to relate10 the representation of the 
algebra 50(2,1) given by the dynamical algebra of a har­
monic oscillator (with the addition of an inverse-square 
potential) and its exponentiation to the discrete series 
representations of the group SO(2, 1), with Bargmann's 
realizationll of the same series. Finally, many-sheeted 
canonical mappings of phase space into itself such as 
those considered in Ref. 12 can be implemented with the 
help of the representations of the group of automor­
phisms and an associated transform. 6 

II. THE SPACE] 

Consider the complex unimodular linear transforma­
tion (1. 1) written in matrix form as 

(2.1) 

(i.e., Mr-:SL(2,0:». The corresponding adjoint opera­
tors, relative to the scalar product in H, where x and p 
are Hermitian, can be then written in terms of the ori­
ginal ones as 

Z+ "O(~) =M*Zo=M*M-1Z = CZ 

where the conjugation matrix 

c=(~ iV) 
tW u* 

(2.2a) 

(2.2b) 

is such that detC = 1, CC* = 1 and its elements are given 
and restricted by 

u= a*d - b*c r=:<I: , 

v = 2 Imb*a, w = 2 Imc*d r=c1R, 

(2.3a) 

(2.3b) 

(2.3c) 

For every M r=cSL(2, <1:) we have thus a conjugation ma­
trix C(Mlo In particular, if RFSL(2,lR), then C(R)= 11. 
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and r, and t are Hermitian, and C(MR) = C(M). Barg­
mann's case (1. 4) corresponds to the imaginary anti­
diagonal matrix with u = 0, v = 1 = w. Since from (1. 2), 
r, and t are canonically conjugate, we want to implement 
the SchrOdinger representation 

1i1(1) = 111(1), (2.4a) 

tJ( 1) = - i :1) J( 1) (2.4b) 

on any suitable function] of the complex variable 1). In 
order that the total derivative in (2. 4b) be well defined, 
the function] must be analytic in 1). The conditions we 
are asking for a scalar product to satisfy can then be 
formulated, through (2.2), as 

(ii!, g) = (j, [ur, + ivE]g), 

(t], g) = (j, [iwr, + u* ~]g). 

(2.5a) 

(2.5b) 

We can see that an ordinary scalar product of the type 
(1. 3) cannot fulfill this requirement. One must look for 
a more general kind of scalar product. PropOSing the 
form (1. 5) we can turn Eqs. (2.5) into differential equa­
tions for the weight function v(1), 1)*). Using (1. 5), (2.4) 
and performing an integration by parts [provided that the 
boundary value of J(1)*v(1), 1)*)g(1) at infinity be zero]' 
the conditions (2. 5) can be given as 

d 
1)*v(1), 1)*) = (U1) - v-)v(1i, 1j*), d1j 

2-.v(1j 1j*) = _I W1j + u*1....)V(1j 1j*) 
ilTj*' \ il1j" 

(2.6a) 

(2.6b) 

The solution of (2.6) with a specific choice of normaliza­
tion is 

V( 1), 1j*) = 2 (21TV)-1 /2 exp {2~ [U1j2 - 21j1)* + U*1j*2]} 

= V(1j* , 1j)* • (2.7a) 

A convenient representation is obtained when we write 
in polar form Ti=pe i8 , u=wei0 , whereupon (2.7a) 
becomes 

v(1j, 1j*) = v[p, 0] = 2(21TVtl /2 exp{- : [1 - w cos(rp + 20)]}. 

(2.7b) 
The boundary condition onJ(1j)*v(1j, 1j*)g(Ti) can now be 

made explicit: we write J(1) = f
b
(1jV-1 /2) exp[( - U/2V)1j2], 

imposing the condition v> 0, then the scalar product 
(1. 5)-(2. 7) becomes the Bargmann scalar product3 be­
tweenfb(1j') and gb(7J') for 1j'=1jV-1 / 2• The growth 50ndi: 
tions imposed on these functions imply then that f and g 
must satisfy 

Il(pei8 ) I .;yexp{ ~\y -wcos(rp +20)]}, (2.8) 

for finite y> 0 and 0 < ct < 1, which is dependent on the 
direction 0 in the complex Ti-plane. This is sufficient to 
characterize the space] of entire analytic functions for 
which the scalar product (1. 5) is finite. Bargmann's 
analysis3 can now be translated to state that for V> 0, 
the space J with the scalar product (1. 5) is a Hilbert 
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space, unitarily equivalent to H through a transform of 
the kind (1. 6). It should be noticed that Bargmann's 
transform is indeed regained in the particular case (1.4), 
allowing for the choice in the measure normalization: 
here it is chosen as 2(21TV)-1/2 so that it go over smoothly 
to the Moshinsky-Quesne transform (Sec. IV), while in 
the original work3 it is set as 1T-1 • For every matrix ME 
SL(2,0:) such that C(M) satisfies v> 0 we have thus a 
Hilbert space J . 

A dense orthonormal basis for J can now be con­
structed as 

Un(7j)=[(21TV)1/2n !]-1/2 exp (- 2: rr)(1/V-1/2)n, 

n=0,1 9 2, ..•• (2.9) 

These functions satisfy the following recursion relations: 

(2. lOa) 

~ d] - -UV-1 / 27j+V1/2_ U(7j)=-n1 / 2U (7j) d7j n n-1' (2. lOb) 

and, in particular, 

[U1) + v d~,] Uo(1) =- O. (2.10c) 

They are, thus, eigenfunctions of a number operator 

A - [ d] - 1 AA - -NuUn(1) '" UV-17j2 + 1) d7j Un(Ti) =- v 1)TJtun(TJ) =-nUn(TJ). 

(2.11) 

From the orthonormal basis (2. 9) we can build the 
generating function 

K(Ti, 7j') ",t Un(TJ)Un(TJ')* =- (21TV)-1/2 
",0 

x exp{- ;)u~ - 2Ti7j'* + U*Ti,*2]} =-K(T/', TJ)*, (2. 12a) 

which acts as the reproducing kernel under the scalar 
product (1. 5): 

(2. 12b) 

III. THE TRANSFORMATION KERNEL AND PAIRS 
OF TRANSFORM BASES 

We want to establish a mapping between the elements 
f of the Hilbert space H and the elements! in J, as 
given by (1. 6) in such a way that if f(x) is mapped into 
!(n), then ~f(x) maps into TJ](TJ) and ~f(x) into 
-i(d/d1)J(7jL Through (2.1), this means 

ril (TJ) =- fIR dxA(TJ, x)rif(x) = fIR dX([ ax + ib a~ ]A(7j, x»)f(x) , 

(3.1a) 

d - r A 

-i dr/(7j)= )IRdxA(Ti,x)l;f(x) 

= fm dx (~X+id a~]A(7j,x»)f(x), (3.1b) 

and hence the transformation kernel A(TJ, x) must satisfy 
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(3.2a) 

(3.2b) 

(3.3a) 

(3.3b) 

where <I> (b) '" phase of b E [- 1T, 1T). This choice of phase 
has been made so that the representation properties of 
the A(1), x) be simple (Sec. VI) and for M<=:SL(2, R) they 
agree with Ref. 2. The integrability condition in (1.6a) 
requires that Im(a/b):;. 0 (i. e., v:;. 0) and that if a=- 0, 
then b should be real. The integrability of Eq. (1. 6b) can 
then be seen to hold through the identity ub =- - ivd + b* 
since this implies that I id/2bl .,; 11- wl/2v. The nor­
malization makes the transforms (1. 6) be inverse to 
each other 9 as 

fIR dxA(1), x)A(1) I ,x)* =-K(1), 1)'), 

fa: dt.J.(1)A(1), x)*A(17, x') = 6(x - Xl). 

Equation (3.4a) can be verified directly, while Eq. 

(3.4a) 

(3.4b) 

(3. 4b) will be shown to hold when we will write the trans­
form kernel A(17, x) as the generating function linking two 
orthonormal bases, one in H and one in J. 

We have constructed an orthonormal basis of functions 
{Un (17)} for J in (2.9). In searching for a corresponding 
basis {Un(x)} for H we can go directly through the trans­
form definition (1. 6b) or, preferably, use the indepen­
dent method of using the raising operators (2.10) for 
{Un(17)} translated to operators in x and d/ dx through 
(2.1). The extremum Uo(x) of the ladder is found from 
(2.10c) as 

(3.5a) 

normalized with respect to the scalar product in H, with 
cP A given by (3. 3b). From Uo(x) and the raising operator 
(2. lOa) we find 

Un(x)=-[vnn!]-1/2 [ax -ib d!]" Uo(x) 

(3.5b) 

with 

(3.5c) 

The basis {Un (x)} can be checked to be indeed orthonor­
mal under the scalar product in H and we can verify di­
rectly that the transformation kernel is indeed the gen-
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erating function between the bases: .. 
A(1),x)=~ U,,(1)U,,(x)*. (3.6) 

".0 

In particular, notice that for Bargmann's case (1.4), 
{U,,(1)}} is the basis of monomials in 1) while {U,,(x}} are 
the harmonic oscillator wavefunctions 1/J,,(x}. 

There are reasons for not being satisfied with the ba­
sis {ii,,(1)} alone. There is the problem of not having a 
manifest limit as v - 0 (when the transformation matrix 
M becomes real) and that of being eigenfunctions of the 
number operator (2.11) which inH reads v-1(ax-ibd/dx} 
x (a*x - ib* d/ £Ix). Thus, we introduce the well-known 
harmonic oscillator wavefunction basis (with the usual 
phase convention) 

1/J,,(x} =[2"n! 1T1/ 2J-l/2 exp( - t,x2)H,,(x}, n = 0,1,2, •••• (3.7) 

The raising, lowering, and number operators are sim­
ple and can be translated to operators in 1) and d/ d1) 
through (2.1) in order to find the transform basis. The 
differential equation for the ground function yields 

~O(1)=[1Tl/2(a+ib}]-1/2exp(- d-~c 1)2) 
a+zb 2 ' 

where we must take the sheet given by (a + b}-1/2 

(3.8a) 

= I a +ibl-1/2 exp- ti .p(a + ib), and the rest of the basis 
can be generated through the application of the raising 
operator, i. e. , 

(3.8b) 

which reduces to (3.7) when M becomes 1. It is also 
interesting to notice that Bargmann's case (1.4) gives 
back the basis {U,,(1)} with the proper normalization. 
(Notice that only the leading term of the Hermite poly­
nomial survives). As a final check of the calculation we 
can verify that the transformation kernel A(1), x} in (3. 3) 
is the generating function between the bases {I/J,,(x)} and 
{~,,(1)}, i. e., .. 

A(1), x) =~ ~.(1)1/J,,(x)* (3.9) 
".0 

implemented through the use of an integral representa­
tion for one of the Hermite functions. 13 

IV. THE LIMIT OF REAL TRANSFORMATIONS 

We now want to examine the behavior of our construc­
tion when the parameters a, b, c,dE"(I; in (2.1) become 
real. Notice that the basis functions {~n(1)} present no 
peculiar behavior and indeed go smoothly into {I/Jn(x)} 
when M- :n. The transformation kernel A(1),x) in (3.3) 
is uneventful when a, b, c, d become real and only when b 
approaches zero does the expression become indetermi­
nate at first sight. The analysis in Ref. 2 leads us to 
expect that the kernel will become a Dirac 6 in 1) - x. 
This has to be examined further. Indeed, we intend to 
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show that the scalar product (1.5) collapses to a line 
integral as v- O • 

Consider the measure (1. 5b) parametrized in its polar 
decompOSition (2.7b) as dj.L(1) = v[p, B]pdpdB. When v- 0, 
w = 11 - vw1 1/2 "" 1 - ~vw- 1. Recalling that for real, 
positive e- 0, l.i.m.e-1/2exp(-r//e)=1T1/26(q), we can 
write 

1. i. m. v[p, B] =1. i. m. 2(21Tv)-1/2exp {- p2 [1 - (1 - ~vw) 
v-a v-O V 

xcos(cp +2B)]} 

= 21/26 (p[ 1 - cos(cp + 2B)]l/2) 

x exp[ - ~p2W cos(cp + 2B)] 

=p-16(sin(~ +B)}exp[-~p2wcos(cp +2B)] 

= p-l[6(B +~) + 6(B + ~ -1T) 1 exp[ - ~p2W]. 

(4.1) 

All of these steps should be done remembering that the 
functions are under the double integral fo" pdp fo2n dB, in 
particular, the third step takes into account the fact that 
the point p = 0 is immaterial for the 6 as it is cancelled 
by the measure in p, and the last step makes use of the 
consequence that the 6 will act only in picking out values 
in the integration over B. The growth condition (2. 8) on 
the function space is such that the scalar product is fi­
nite and for the line Bo: - ~, 1T - ~ is 

Il(pef90) I ,.; y exp(iv\~ - wl)< Y exp(twp2) (4,2) 

when we write w"" 1 - ~vw, a = l-A(v) and let A(v) be 
any function of v which decreases faster than v as v- O. 
Similarly for g. If we now define for J(1) =J[p, B], J(x) 
: J[x, - ~} andIe-xl: J[x, 1T - ~ ] for x;;. 0, the limit 
indicated follows, 1. e. , 

with the condition, in effect, that J be such that I (x) 
Xexp(- twX2) is square integrable over R, and similarly 
for g. 

As can be seen, as v- 0 the integral over 1),:::(1; be­
comes an integral over a straight line passing through 
the origin and with a phase - ~ = - #(u) = .p(a). When 
the transformation matrix M is real, u=l and the in­
tegration path becomes the real axis. By a Similar argu­
ment, the reproducing kernel K(1)~ 1/') in (2.12) becomes 
the Dirac Ii(x -x'). The behavior of the transformation 
kernel A(1),x) at the limit b- 0 can be analized when this 
takes place from any direction in the complex plane. 
Using (1.1b), 

A(x', x) = (21T)-1/2cp A I b 1-1/2 exp{ -I b 1-1[(,0 A (2/ a>-1/2x 

- CPA (2a)-1/2x ')2) exp G~ X'2) 

_ a-1/26(x _ a-1x') exp(iC X'2) 
Ibl-O 2a 

and the phase of the direction in which the inverse 

(4.4) 
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transform takes place, ~(a) = - #(u), is the appropriate 
one which will make use of the Dirac 6. 

We can make explicit the condition that a transforma­
tion M in (2. 1) lead to a transform involving only a line 
integral. Notice first that C(M) = 11 if and only if M 
E SL(2, R), the measure in the transform space being 
simply dx. Next, we can examine the cases when C(M) 
is a lower triangular matrix (v = 0). We consider the 
case u = 1 so that the integral be along the real axis. 
Analysis of the conditions (2.3) leads us to the restric­
tions: a, b real. An important subclass is that consid­
ered in Ref. 6, namely b=O, a=d-1 real, where (4.4) 
simulates the matrix elements of a Gaussian potential 
for c=iq, q> O. 

Transforms involving line integrals along a path tilted 
by a phase a can be obtained multiplying the transfor­
mation matrix M on the left by a diagonal matrix with 
elements exp( ia), exp( - ia) as then u = exp( - 2iQ'). In 
particular, forb=i=-c-\ d=O (Q'=1T/2) we obtain a 
Laplace transform with kernel (3.3) given by - i(21T)-1/2 
x exp( - xx'), which is off by a factor and a phase from 
the usual Laplace transform. The condition "b real 
when a = 0" for the kernel (30 3) is now violated, so it 
is not surprising that the integral in (1. 6a) can diverge 
for f r:=H. A restriction on H [for instance f(x) = 0 for 
x < 0] may make the transform meaningfuL The inverse 
transform is an integral over a Bromwichcontour up 
along the imaginary axis 0 

V. COMPOSITION OF TRANSFORMS 

For every matrix M r:= SL(2, <t) in (2.1) satisfying 
Im(a/b);:' 0 we have associated a canonical transform 
(1. 6) from the Hilbert space H to a Hilbert space J 
characterized by (1. 5), (2.7), and (2.8). Take now two 
such spaces J 1 and J 2 associated to the transformations 
Z1 = M 1 Zo and Z2 = M 2Z0, with transformation kernels 
A1(11,x) andA2(1),x). Then, since z2=M2MilZ1=M21zl> 
we want to find the unitary mappingbetweenJ1 andJ 2. 
Labelling jCk) (T/) r:= J k and the corresponding measures 
dJ.l k(11), we obtain from (1. 6), 

jC2)(11) = J
a

dJ.l1(1)')A21 (r;, r;')jC1)(r;'), 

j<1 )(11') = J
a 

dJ.l 2(1)A21 (1/, 11')*l<2)(r;), 

(501a) 

(5.1b) 

where the transform kernel A 21 (11, TI') from J1 to J2 is 

A21 (T/, T/') = J
IR 

dx A2(11, x)A2(1j', x)* =A12(Tj', T/)*. (5.1c) 

Explicitly, it is 

A21 (11,11') = <I> (b2, - bt;b) exp[ - 'h(1T/2 + ~ (b ))](21T 1 b 1-1
/ 2 

xexp{(i/2b)[a11,*2 - 2TI'*11 + d112]}, (5.2a) 

where 

and 

=±1 

[compare with Eqs. (303)J, and can be written as a 
generating function 
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~ 

A 21 (1), 1)')=~ ~~2)(11)ljj~I)(1)')*0 (5.3) 

In particular, this allows us to define Ak(11, x) =AkO (11, x), 
AOk(x, TI) =Ak(Tj, x)* and the reproducing kernel in each 
space as Kk(r}, 11') = Akk(TJ, TJ'). The composition of trans­
forms can then be effected through any (allowed) space 
J 3 as 

A 21 (T/, T,")= Ja dJ.l 3(11')A 23(r;, T/,)A3l (11', 11"), (5.4) 

which generalizes (5.1c) when we understand that 
fa dJ.lo(11) ••• = fIR dx· •• and H = Jo, it corresponds to 
M21 =M23M31 for M3l = MaMi\ etc. with the explicit 
forms as obtained from (5.2). Notice that when M1 and 
M2 belong to the class v = 0, the transform (5.1) in­
volves only line integrals although M2Mii may not be­
long to this class. Similarly, the condition Im(a/b) ~ 0 
which must hold for M1 and M2 may not hold for their 
composition M ~i1. The existence of the transform 
(5.1) is assured, however, as A 21(1i, Tj') belongs to J 1 

as a function of its second argument and to J 2 as a 
function of the first. Square integrability is only de­
manded in H or its isomorphic spaces. 

VI. LINEAR OPERATORS AND REPRESENTATIONS 
OF HSL (2,C) 

Let P be a bounded operator mapping H onto itself, 
represented by an integral kernel P(x, x') through 

f'(x) = J
IR 

dx' P(x, x')f(x'). (6.1) 

It then follows from (106) that P will also map J onto 
J through 

l'(11) = f dJ.l(11')P(TI,11')f(rl'), (6.2) 
a 

represented by the integral kernel 

P(11, 11') = J J
IR 

dx dx'A(1), x)P(x, x')A(rl', x')* 0 (6.3) 

To a productR =fQ of such bounded operator then 
corresponds 

R(x x") = f dxP(x x')Q(x' x") , IR ' , 
(6.4) 

which is also bounded and 

R(11, 1/") = Ja dJ.l(TI')P(11, 11')Q(1J', 1J"). (6.5) 

In particular, to the unit operator, whose representa­
tive in H is 6(x - x'), will correspond through (3.4a) the 
reproducing kernel K(1J, 11') in J. 

Now, for every M!=' SL(2, <t), consider the operator 
A (M) with the integral kernel given by (303), when we 
restrict 11 to the real line 0 These are now operators 
mapping H onto H, and can be seen as passive SL(2, <t) 
transformations, as opposed to the active transforma­
tions seen in the last section, which mapped H onto J. 
We shall denote this integral kernel by 

D;~J(M) =AM(x, x') 

= exp[ - ti{1T/2 + <I> (b»)](21T 1 b \)-1/2 

xexp{(i/2b)[ax,2 - 2x'x + dX2]}. 

When integration is possible, these kernels satisfy 

(6.6) 

JJR dx'D~1(M1)D;~) .. (M2) = ~(bl> b2;b12)D;~, (M1M2) (6.7) 

and hence form a ray representation of a subset of 
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SL(2,<I:): the subset for which the operatorsA(M) are 
bounded. As the product of two bounded operators is 
bounded, such a set must be a semi group contained in 
SL(2, <1:). 

Notice first that the kernels representing A (M) with 
ME SL(2, R) are bounded. This is obvious when we ex­
amine the transform normalized basis (3.8), as here 
J =H, <A(M)lJin,A(M)lJin)o=(~n' ~n)o=l and {lJin(x)} is dense 
in Hand J. For ME SL (2, <1:) the operators A (M) will be 
HUbert-Schmidt operators when the kernels (6.6) 
satisfy f f dx dx' I D~J(M) 12 < 00. In performing the in­
tegrals, we see that we obtain the conditions 

Imb*a> 0: v> 0, 

Imb*aImb*d> Im2b. 

(6.8a) 

(6.8b) 

Now, the product of a Hilbert-Schmidt and a bounded 
one is a Hilbert-Schmidt operator, hence the set of 
matrices 

(
0 (3)(COShl: -iSinhl:)(O' W) 
Y 0 i sinh I: cosh I: Y' 0' 

(6.9) 

(0,0', f3, ••• , 0' real) will be represented by Hilbert­
Schmidt operators for I: > 0, as can be verified directly 
from (6.8). This is a semigroup which does not con­
tain the identity. If we add to (6.9) the point 1:=0, 
thereby making (6.9) contain SL(2,R), we will have a 
set of bounded operators representing the semigroup 
denoted by HSL(2, <1:) in Ref. 6. Notice that the matrix 
(1. 4) corresponding to the Bargmann transform does 
not belong to this seL 

An important subset of HSL(2, <1:) is the set of 
matrices which we write and decompose as 

(
0" - if3") = (1 O)(D 0 \(1 -i q') 
iy" 0 " i q 1 ° D-l

) ° 1 
(6.10) 

with 0", ... , 0", q, q';" 0, D> 0, which are bounded, but 
not Hilbert-Schmidt operators [as conditions (6.8) 
may be violated]. The set (6.10) manifestly forms a 
semigroup denoted by HSL(2,R) in Ref. 6, since it is 
related through a similarity transformation [by a 
diagonal matrix with elements exp(-ill/4), exp(i1T/4)] 
with the set of SL(2, R) matrices with nonnegative ele­
ments. The parametrization (6.10) furthermore allows 
us to reach the special cases f3" = ° [Eq. (4.4) which 
simulates the Gaussian potentialJ for which the decom­
position (6.9) fails. 

From the representation (6.6) we can build through 
(6.3) a continuum of representations of HSL(2, <1:) 
through (5.1c) as 

D~~!(M) =D~~!(MkMMrl) (6.11) 

where Mk E SL(2, <1:) satisfying the conditions for the ex­
istence of a transform. Notice that the variable 1)' in 
(6.11) appears as 1)'* in the explicit form (6.6). These 
D's will exhibit the composition 

fa dll k(1)')D~~I(Ml)D~~~. (M2) = <PD~~J.(MIM2) (6.12) 

and the property 

(6.13) 

so that the representation is unitary for ME SL(2, R). 
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APPENDIX A: REALIZATION THROUGH 
HYPERDIFFERENTIAL OPERATORS 

In this Appendix we want to introduce a Lie algebra 
structure for the set of canonical transforms as 

(Al) 

where 'T labels the elements of a one-parameter sub­
group (or subsemigroup) of SL(2, <1:). For our purposes it 
is sufficient to ask that the integral in (A 1) to exist, so 
that we can disregard the Hilbert space structure of the 
functions involved, and the operator UT need not be 
bounded. l4,ls 

We want to find a differential operator H which gen­
erates the transform (Al), i. e. , 

H(X' :X)f(x) = -i £ dX'[o~ AT(x,x') IT=o /(x')] (A2a) 

with the boundary condition 

AT(x, x') [T"o= O(x -x'). (A2b) 

If we knew H and solved for AT(x,x'), this would be a 
Green's function problem, 16 where AT(x, x') is the 
Green's function of exp( + i'TH). Here we know AT(x, x') 
as given by (6.6) and [and (4.4)], so that we can build 
the operator H(x, d/ dx) by inspection of (A2a), for vari­
ous one-parameter subgroups of SL(2,<I:), viz.: 

exp[ic(ix2)]: (! ~), (A3a) 

exp[ib(iP2)]:(~ -l
b), (A3b) 

[ . 1 (~2 ~2)] (COShtO - sinhto) 
exp to .. p -x : _ sinhto coshto ' 

[ . l( ~2 ~2)] cos2/' - sm2y 
( 

1 • 1 ) 

exptY .. p +x : .ly ly' sm2 cos 2 

(A3c) 

(A3e) 

The last three generators can be seen to constitute the 
well-known su(l, 1) dynamical algebra of the harmonic 
oscillator, 2 (A3d) being a scale operator, i. e. , 

f(x) =exp[if3t(xp + Px)]/(x) = exp( tfJ).tfexp( t(3)x] (A4) 

while Eq. (A3e), t<? + p2) being the oscillator Hamil­
tonian, gives the development in time t= ty of the 
system. ' 

The association of hyperdifferential operators in (A3) 
with 2 x 2 matrices can yield a host of Baker -Camp­
bell-Hausdorff relations between second order differen-
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tial operators, 17 as 

(
COShO - sinhO) 
sinhO coshO 

_(1 -tanh8)(1/COSh8 0)( 1 0) 
- 0 1 0 coshO -tanhO 1 

which gives 

exp [- tW(::2 + X2) ] 

(A5a) 

(A5b) 

Further, when allowed to act on specific functions! 
whose canonical transforms J are known, (A3) yield 
special function relations. For O=irr/4, (A5a) becomes 
the Bargmann transform matrix (1. 4), thus 

1(x)=exp[irr(d~2 +x?J!(x) 

=2-1/4expG ::2 )exp(ix2)!(2-1/2x). (A6) 

In particular, letting! be one of the harmonic oscillator 
wavefunctions IJin(x) given by (3.7), 1 will be (2.9) for 
u = 0, v = 1. Eq. (A6) with a change of scale gives 
immediately 

xn =2-'exp(i ::2 )H,(x) 

and its inverse 

which are formulas that do not commonly appear in 
special function tables. 14,18 

APPENDIX B; EXTENSION TO n DIMENSIONS 

(A7a) 

(A7b) 

We shall sketch here some of the results for the case 
of n-dimensional spaces Jft. The most general complex 
linear canonical transformation (2.1) now reads 

(Bl) 

where x, p, ~, and tare n-component column vectors 
and A, ••. ,D are nXn matrices satisfyinw AB=BA, 
CD = DC, and AD - BC = 11 (the tilde means matrix 
transposition). Hermitian conjugation is achieved as 

( ii+) (A* B*)( D _B)(A) (U iV)(ii) t+ = C* D* -C A 1 = iW u* t' (B2) 

where U=A*D-B*C, V=2Ah(B*A), and W=2Ah(C*D), 
the symbol AhM=(2i)-1(M -M*) denotes the anti-Hermi­
tian part of a matrix, so that V and Ware Hermitian and 
their determinants are real. An analysis parallel to 
(2.4)-(2.7) yields a Hermitian form for the space J" 
given by 

(j,g) = f«,v('1/, '1/*)d"Re'1/d"Im1){(1)*g(1) (B3) 
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= ([ trr]' detV)-1/2 exp{tij"V-1UlI -1iv-~* + m* V*-lU*lI*} 

(B4) 

the growth restrictions on 1 E J' can be seen writing 
1(11) = !b(V*-l/~) exp{- mV-1UlI} where (V1/2)2 = V, As V 
is Hermitian, when we ask it to be positive definite, 
its positive definite square root is uniquely defined and 
! b can be asked to be in the n-dimensional Bargmann 
space. The restrictions are then 

11(1I)I"'yexp{ta7j'V-~*-tRe[7j'V-1U1)]}, a<1. (B5) 

The transform kernel between H' and J n will be, in 
terms of the sub matrices in (B 1), up to a phase cp, 

A(Ti, x) =cp([2rr]n IdetB 1)"1/2 expi{tiB-1Ax -iB-~ + t7j'DB-~} 

(B6) 
out of an analysis parallel to (3,1)-(3.3), 
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