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ABSTRACT
Free motion on a 3-sphere, properly projected on the 2-dimensional manifold of a disk, yields the Zernike system, which exhibits the
fundamental properties of superintegrability. These include separability in a variety of coordinate systems, polynomial solutions, and a par-
ticular subset of Clebsch-Gordan coefficients as interbasis expansion coefficients that are higher orthogonal polynomials from the Askey
scheme. Deriving these results from the initial formulation in spherical geometry provides the Zernike system with interest beyond its optical
applications.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5099974

I. INTRODUCTION
In our recent research on the Zernike system,1 we found that the plane disk of a circular pupil where polynomial solutions are

sought, when “lifted” to a half-sphere, provides a very clear selection of coordinates where the two dimensions separate the defining
Hamiltonian-type differential equation into two such one-dimensional equations. In Ref. 2, we considered three separating coordinate
systems, shown in Fig. 1, and all stemming from polar coordinates on the upper half of a 2-sphere S2

+, whose coordinate poles lie in
the z-, x-, and y-directions of the ambient 3-space R3; they were characterized as systems I, II, and III, respectively. These will be given
explicitly in Secs. II–IV. Note that although we also considered elliptic coordinate systems,3,4 those will not be addressed here. The sep-
arated solutions for systems I, II, and III involve Legendre, Gegenbauer, and special Jacobi polynomials (and in system I, also a cir-
cular trigonometric factor is involved). All these solutions are characterized, by definition, as having finite values at their geometrical
boundaries.

On the disk, system I represents the usual polar plane coordinate mesh, and Zernike’s solutions are characterized by a “principal quan-
tum number” n ∈ Z+

0 = {0, 1, 2, . . .} and “angular momentum” m ∈ {n, n − 2, . . . ,−n}. Systems II and III, on the other hand, classify the
solutions by two indices n1, n2 ∈ Z+

0 such that n1 + n2 = n yields the same principal eigenvalue in the Zernike system; we shall refer to the lat-
ter as Cartesian coordinate meshes on the disk. Although there is an apparent analogy with the quantum indices in the two-dimensional
quantum oscillator on the full plane R2, its underlying symmetry is a Lie algebra, while the Zernike system leads to a nonlinear Higgs
algebra.2,5

In Ref. 6, we inquired into the overlap coefficients between solutions in systems I, II, and III. Since the three systems are related through
rotations of the full sphere S2, one could expect that the Wigner SO(3) rotation matrices would play a role. This is not so. The overlap
coefficients between the polar- and Cartesian-mesh systems I and II, (n, m) and (n1, n2), respectively, turn out to be a special type of Clebsch-
Gordan coefficient, Cn1 ,0

1
2 n,− 1

2 m; 1
2 n, 1

2 m. These can also be written in analytic form as 3F2(⋅ ⋅ ⋅ ∣1) hypergeometric functions that are particular Hahn

polynomials. Previous works by Zernike, Brinkman,7 and Tango8 have addressed some of these issues that we discuss at the end of this
paper. The connection between the Zernike system and the 3-sphere is here explicitly exploited to yield the wavefunctions, their separating
coordinate systems, and thus the Clebsch-Gordan coefficients, as properties of a system that is superintegrable.10–12
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FIG. 1. Top row: three coordinate systems on the upper half-sphere ⃗ξ ∈ S2
+, ∣ ⃗ξ ∣= 1, and ξ3 ≥ 0, referred to as systems I, II, and III. Bottom row: projections of the latter on

the disk of the Zernike pupil r = (x, y) ∈ D ⊂R2, ∣r∣ ≤ 1.

In this paper, we shall elucidate the symmetries behind the appearance of polynomial solutions, by lifting our considerations to the
3-sphere S3 in an ambient 4-space. The 3-sphere S3 exhibits six coordinate systems where the Laplace-Beltrami operator separates, and these
were found and described in Ref. 9 in the context of quantum free motion in this manifold. In Sec. II, we detail the cylindrical and two
spherical coordinate systems of the 3-sphere to be used here, giving the solutions of the Laplace-Beltrami operator that are the complete and
orthogonal sets of hyperspherical harmonics.

In Sec. III, we project coordinates of S3 on the polar and Cartesian coordinates of a 2-dimensional manifold, the upper hemisphere S2
+.

Then, we recall the original differential equation which determines the Zernike system on the domain of the unit circular pupil D, obtained
from a vertical projection of the upper half of S2 shown in Fig. 1, which is itself a projection of the 3-sphere S3.

In Sec. IV, we bind the hyperspherical harmonics on S3 to the solutions found in Ref. 2 for the three coordinate systems of S2. These
solutions are so(3) bases for unitary irreducible representations, where the overlap between eigenstates in systems I and II is recognized as
representation couplings and given by particular Clebsch-Gordan coefficients, derived in Refs. 6 and 17 through laborious integration. We
also generalize system II to system II(α) that are rotated by α from II, which includes system III for α = 1

2 π that results in special Racah
polynomials.6

As we indicate in Sec. V, referring to the previous works in Refs. 1, 7, and 8, we suggest that a wider endeavor to understand the common
origin of a system from free motion on a higher manifold projected in various forms on a compact domain could be fruitful for other two- or
higher-dimensional superintegrable systems.

II. COORDINATE SYSTEMS ON THE 3-SPHERE S3

Before presenting the Zernike system through its differential equation and domain,1 we dedicate this section to set up the three coordinate
systems of the 3-sphere that will be used below to embed this equation.

Consider an ambient 4-space (s1, s2, s3, s4) ∈ R4, embedding the S3 sphere on the 3-dimensional submanifold Ω3, determined by
∑

4
i=1s2

i = 1. In Refs. 9 and 13, its six orthogonal coordinate systems were characterized and called spherical, cylindrical, spheroelliptic, oblate
and prolate elliptic, and ellipsoidal. Of these, we need here only the spherical (in two versions) and the cylindrical. Thus, we introduce the
following three coordinate sets, with their labels referred to Fig. 1 on S2, but here preceded by “S3” to indicate that they parameterize the
3-sphere,
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SystemS3
− I

cylindrical:

s1 = cos γ cos ϕ1,

s2 = cos γ sin ϕ1,

s3 = sin γ cos ϕ2,

s4 = sin γ sin ϕ2,

0 < γ < 1
2 π,

0 ≤ ϕ1, ϕ2 < 2π.

SystemS3
− II

canonical spherical:

s1 = sin χ sin θ cos ϕ,

s2 = sin χ sin θ sin ϕ,

s3 = sin χ cos θ,

s4 = cos χ,

0 < θ, χ < π,

0 ≤ ϕ < 2π.

SystemS3
− III

non − canonical spherical:

s1 = sin χ′ cos θ′ cos ϕ′,

s2 = sin χ′ cos θ′ sin ϕ′,

s3 = cos χ′,

s4 = sin χ′ sin θ′,

0 < θ′, χ′ < π,

0 ≤ ϕ′ < 2π.

(1)

To describe the hyperspherical harmonics on the 3-sphere, find conserved quantities, and determine the Clebsch-Gordan coupling
coefficients, we recall the construction of the Laplace-Beltrami operator from the six generators of rotations of S3,

Li ∶= sj
∂

∂sk
− sk

∂

∂sj
, Mi ∶= si

∂

∂s4
− s4

∂

∂si
(2)

for i, j, k cyclic in {1, 2, 3}. These operators close under commutation into the four-dimensional orthogonal Lie algebra so(4), namely,

[Li, Lj] = −Lk, [Mi, Mj] = −Lk, [Li, Mj] = −Mk. (3)

The canonical subalgebra chain14 is so(4) ⊃ so(3) ⊃ so(2), generated by the operator sets {Li, Mj} ⊃ {Li} ⊃ {L3}, where the middle set is
characterized by the so(3) invariant L2

∶= ∑
3
i=1L2

i whose spectrum is well known to be ℓ(ℓ + 1), ℓ ∈ Z+
0 .

The structure of the so(4) algebra is further revealed through introducing

J(1)
i ∶=

1
2

(Li + Mi), J(2)
i ∶=

1
2

(Li −Mi) (4)

for i ∈ {1, 2, 3} and noting that these two sets commute

[J(1)
i , J(1)

j ] = −J(1)
k , [J(2)

i , J(2)
j ] = −J(2)

k , [J(1)
i , J(2)

j ] = 0; (5)

this algebra splits reducing as so(4) = so(3)(1)
⊕ so(3)(2)

⊃ so(2)(1)
⊕ so(2)(2), and where the algebra is now characterized by the two so(3)

invariants J(1,2) 2
∶= ∑

3
i=1(J(1,2)

i )2, with independent spectra j(1,2)(j(1,2) + 1), j(1,2)
∈ Z+

0 .
Writing L ∶= (L1, L2, L3) and M ∶= (M1, M2, M3), the Lie algebra so(4) is seen to have two second-degree invariant Casimir operators, the

first of which is L2 +M2, with spectrum J(J + 2), J ∈ Z+
0 on S3, while the second is L.M + M.L = 0; the latter vanishes because the group coset

space on which the algebra acts,15 i.e., the realization of the algebra in the form (2) is on the group coset manifold Ω3 = SO(4)/SO(3). This
vanishing implies that

J(1) 2
=

1
4

(L ±M)2
= J(2) 2

⇒ j(1)
= j(2)

=: j. (6)

The first Casimir operator is the three-dimensional Laplace-Beltrami operator; from whose form and spectrum, we conclude that

Δ (3)
LB ∶= L2 + M2 spectrum J(J + 2)
= 4J(1) 2

= 4J(2) 2
′′ 4 j(j + 1)

} ⇒ J = 2j ∈ Z+
0 . (7)

The key properties of this construction are well known: spherical harmonics form eigenspaces of the Laplace-Beltrami operator, which
have the discrete, lower-bound spectrum in (7),

Δ (3)
LB ΦJ(Ω3) = −J(J + 2)ΦJ(Ω3), (8)

and which provides J as a label to classify eigenspaces of solutions. It is also clear that Eq. (8) is independent of the parameterization of Ω3 and
that their differential equations will be different between the three 3-sphere coordinate systems (1).
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A. System S3-I
The cylindrical coordinates of this system in (1) follow the cylindrical subalgebra chain so(4) = so(3)(1)

⊕ so(3)(2) leading to

Δ (3) I
LB =

∂2

∂γ2 + (cot γ − tan γ)
∂

∂γ
+

1
cos2 γ

∂2

∂ϕ2
1

+
1

sin2 γ
∂2

∂ϕ2
2

. (9)

This allows the separation of the solutions ΦJ(γ, ϕ1, ϕ2) and the generators in so(2)(1)
⊕ so(2)(2); these determine the rest of the quantum

number labels,

L3ΦJ,m1 ,m2 = im1ΦJ,m1 ,m2 , M3ΦJ,m1 ,m2 = im2ΦJ,m1 ,m2 . (10)

When the explicit form of (9) and that of the generators as differential operators is written out, they lead to a Pöschl-Teller quantum
mechanical equation in the angle γ and give J its quadratic spectrum. The (not normalized) solutions to (10) are

ΦI
J,m1 ,m2 (γ, ϕ1, ϕ2) = (cos γ)∣m1 ∣(sin γ)∣m2 ∣ P(∣m2 ∣,∣m1 ∣)

1
2 (J−∣m1 ∣−∣m2 ∣)

(cos 2 γ)

× ei(m1ϕ1+m2ϕ2)
=: eim1ϕ1 ΞI

J,m1 ,m2 (γ, ϕ2),

(11)

labeled by m1, m2, being restricted by J − ∣m1∣ − ∣m2∣ = even, and taking special care of their signs. Here, P(α,β)
n (x) is a Jacobi polynomial, and

ΞJ,m1 ,m2 is a function of two angles on S2.

B. System S3-II
The canonical spherical coordinates in (1) follow the canonical subalgebra chain so(4) ⊃ so(3) ⊃ so(2) and lead to

Δ (3) II
LB =

∂2

∂χ2 + 2 cot χ
∂

∂χ
+

1
sin2 χ

(
∂2

∂θ2 + cot θ
∂

∂θ
+

1
sin2 θ

∂2

∂ϕ2), (12)

which, in this case, separates ΦJ(χ, θ, ϕ) with a different subalgebra chain for the remaining quantum numbers,

L2ΦJ,ℓ,m = −ℓ(ℓ + 1)ΦJ,ℓ,m, L3ΦJ,ℓ,m = imΦJ,ℓ,m, (13)

where the branching rules of the orthogonal algebras14 restrict 0 ≤ ℓ ≤ J and ∣m∣ ≤ ℓ, all in Z+
0 . The differential Eq. (12) provides us with the

(not normalized) solutions,

ΦII
J,ℓ,m(χ, θ, ϕ) = (sin χ)ℓ Cℓ+1

J−ℓ(cos χ)

× Pm
ℓ (cos θ)eimϕ

=: eimϕ ΞII
J,ℓ,m(χ, θ),

(14)

where Ck
n(x) is a Gegenbauer polynomial and Pm

ℓ (x) an associated Legendre polynomial, both satisfying Pöschl-Teller type equations in χ and
θ; again ΞII

J,ℓ,m is a function of these two angles.

C. System S3-III
The noncanonical spherical coordinates relate to the S3-II canonical ones through a rotation in the plane of the last two axes,

(s3, s4)II
→ (−s4, s3)III. The subalgebra chain is also so(4) ⊃ so(3)′ ⊃ so(2) but with a subalgebra so(3)′ rotated in the (s3, s4)-plane from

the so(3) subalgebra of S3-II. This is produced by exp(iα[M3, ○]) for α = 1
2 π, mapping (L1, L2)→ (−M2, M1) and (M1, M2)→ (−L2, L1), while

L3 and M3 are invariant. The quadratic operators thus exchange as L2
1 + L2

2 ↔M2
1 + M2

2 . In the coordinates (1), this entails θ↔ θ′ + 1
2 π so that

the canonical Laplace Beltrami operator (12) becomes

Δ (3) III
LB =

∂2

∂χ′2
+ 2 cot χ′

∂

∂χ′
+

1
sin2χ′

(
∂2

∂θ′2
− tan θ′

∂

∂θ′
+

1
cos2θ′

∂2

∂ϕ′2
). (15)

This case separates the solutions ΦIII
J (χ′, θ′, ϕ′) in the rotated subalgebra chain, cf. (13), namely,

J. Math. Phys. 60, 101701 (2019); doi: 10.1063/1.5099974 60, 101701-4

Published under license by AIP Publishing

https://scitation.org/journal/jmp


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

(M2
1 + M2

2 + L2
3)ΦIII

J,ℓ,m = −ℓ
′(ℓ′ + 1)ΦIII

J,ℓ′ ,m, L3ΦIII
J,ℓ′ ,m = imΦIII

J,ℓ′ ,m, (16)

where also in Ref. 14 0 ≤ ℓ′ ≤ J and ∣m∣ ≤ ℓ′, with the same restrictions and satisfying Pöschl-Teller equations as in the previous system. The
(not normalized) solutions of (15) are now, cf. (14),

ΦIII
J,ℓ′ ,m(χ′, θ′, ϕ′) = (sin χ′)ℓ

′

Cℓ′+1
J−ℓ′ (cos χ′)

× Pm
ℓ′ (sin θ′)eimϕ′

=: eimϕ′ ΞIII
J,ℓ′ ,m(χ′, θ′).

(17)

We have thus three sets of functions of the 3-sphere manifold, each labeled by J ∈ Z+
0 , and two extra labels stemming from the different

subalgebra chains for each coordinate system of S3. The algebraic problem of relating them has been solved in quantum angular momentum
theory and involves the well-known Clebsch-Gordan coefficients.16 Before applying these results, we should first relate the previous functions
on Ω3 with those on the manifold Ω2, whose two coordinates are such that one of them has a constant value on the maximal circle that
separates the two half-spheres so that the two have independent ranges on the upper 2-sphere, S2

+ in Fig. 1; this further reduces the three
eigenvalue labels in Eqs. (10), (13), and (16) to two.

III. FROM S3 TO S2 AND THE ZERNIKE DISK
By means of a useful reparameterization of S3, we now connect this manifold to the upper-half 2-spheres S2

+ shown in Fig. 1 that are
relevant in the Zernike system and an angle that will be rendered ignorable.

Consider the change of coordinates (s1, s2, s3, s4)↦ (ξ1, ξ2, ξ3, φ), where the 3-sphere ∑4
i=1s2

i = 1 maps on the 2-sphere ∑3
i=1ξ2

i = 1 and
φ ∈ S1 (the circle) given by

s1 = ξ3 cos φ, s2 = ξ3 sin φ, s3 = ξ2, s4 = ξ1. (18)

In these coordinates, the summands in the Laplace-Beltrami operator Δ (3)
LB contain the two-dimensional Δ (2)

LB in s3 and s4, i.e., in (ξ1, ξ2, ξ3),
plus derivatives in ξ3 and φ, thus,

Δ (3)
LB = Δ (2)

LB −
3

∑
i=1

ξi
∂

∂ξi
+

1
ξ3

∂

∂ξ3
+

1
ξ2

3

∂2

∂φ2 . (19)

The application of this operator Δ (3)
LB on the three functions of the 3-sphere, (11), (14), and (17), now applies to functions in the new coordinates

(ξi, φ), where ξ2
1 + ξ2

2 + ξ2
3 = 1; this eliminates the term∑3

i=1ξi∂ξi from (19). As we saw, those three functions that we encompass writing them
as ΦJ,ν,μ(ξ⃗, φ) factor into a phase exp(iμφ), time functions on the 2-sphere that we call ΞJ,ν,μ(ξ⃗ ), leaving the correspondence between J, ν, μ and
the three sub-index sets to be determined below.

With this factorization, we write the solutions (11), (14), and (17) as

ΦJ,ν,μ(ξ1, ξ2, ξ3, φ) = eiμφ ΞJ,ν,μ(ξ1, ξ2, ξ3), (20)

while the Laplace-Beltrami Eq. (8) reduces to

Δ (3)
LB ΦJ,ν,μ = (̂Z + 1

ξ2
3

∂2

∂φ2)ΦJ,ν,μ

= (̂Z − μ2

ξ2
3
)ΦJ,ν,μ = −J(J + 2)ΦJ,ν,μ,

(21)

where we introduce the Zernike operator

Ẑ ∶= Δ (2)
LB +

1
ξ3

∂

∂ξ3
. (22)

In previous papers,2,6 the Zernike system was characterized through the quantum-type Hamiltonian operator

Ẑ(x, y) = ∇2
− (r ⋅ ∇)2

− 2 r ⋅ ∇, (23)

with the domain on the closed unit disk D ∶= {(x, y) ∣ x2 + y2
≤ 1} and determining the Schrödinger-type Zernike equation,

Ẑ(x, y) Ψ(r) = −E Ψ(r), (24)

on the space of functions on the disk D that are finite on its boundary,
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Ψ(r)∣∣r∣=1 < ∞. (25)

The eigenfunctions of the Zernike equation (24) with this boundary condition are characterized by the discrete “energy” eigenvalues

E = J(J + 2), J ∈ Z+
0 . (26)

As shown in Ref. 3 for generic elliptic coordinates, and including the three systems in Fig. 1,4 the solutions (24) are necessarily of polynomial
type (in system I, one has also sine and cosine functions). We should emphasize that although the spectrum (26) is identical to the energies
of a two-dimensional harmonic oscillator on R2, the Zernike and oscillator systems are distinct in their Hamiltonians and in their respective
boundaries.

The key to finding the symmetry hidden in (23), which is embodied in the separability of its solutions in various coordinate systems, has
been to lift the unit disk D to the upper half of a 2-sphere S2

+. This is easily achieved defining new coordinates, purposefully labeled with the
same symbols as in (18), and their partial derivatives,

ξ1 : = x,
∂

∂x
=

∂

∂ξ1
−

ξ1

ξ3

∂

∂ξ3
,

ξ2 : = y,
∂

∂y
=

∂

∂ξ2
−

ξ2

ξ3

∂

∂ξ3
.

ξ3 : =
√

1 − x2 − y2,
(27)

Under this map (x, y) ∈ D↦ ξ⃗ ∈ S2
+, ∣ ξ⃗ ∣= 1, and ξ3 ≥ 0, the Zernike operator (23) becomes

Ẑ(ξ⃗ ) = Δ(2)
LB −

3

∑
i=1

ξi
∂

∂ξi
+

1
ξ3

∂

∂ξ3
, (28)

with Δ(2)
LB being the usual Laplacian on the (ξ1, ξ2, ξ3) surface. When acting on functions independent of ∣ ξ⃗ ∣ and geometrically fixed to 1, the

middle summation term is zero. Hence, we arrive at precisely the Zernike operator in (22). The boundary condition for polynomial solutions,
Eq. (25), becomes Ψ(ξ1, ξ2, ξ3)∣ξ3=0 < ∞.

To establish the bridge between the solutions of the Laplace-Beltrami operator in S3, ΦJ,ν,μ(ξ1, ξ2, ξ3, φ) in (20), and solutions ΨJ,κ(ξ⃗ )
(where κ will stand for ν or μ) of the simple equation on S2

+,

Ẑ(ξ⃗ )ΨJ,κ(ξ⃗ ) = (Δ(2)
LB +

1
ξ3

∂

∂ξ3
)ΨJ,κ(ξ⃗ ) = −J(J + 2)ΨJ,κ(ξ⃗ ), (29)

clearly the S3 coordinate φ ∈ S1 must be made ignorable. This we do next for each of the three coordinate systems.

IV. REDUCTION TO so(3), CLEBSCH-GORDAN COEFFICIENTS AND RACAH POLYNOMIALS
We now render the ignorable phases φ ∈ S1 in the exponential factors in (11), (14), and (17) by integrating over their circle. This results

in a Kronecker δ that sets one of their indices to zero. We refer to the remaining angles to (x, y) ∈ D in the disk of the Zernike pupil through
(27) for each coordinate system. Thus, we write the (not normalized) solutions as

System I:

ΨI
n,m(x, y) ∶=

1
2π∫

π

−π
dϕ1 ΦI

J,m1 ,m2 (γ, ϕ1, ϕ2) = δm1 ,0ΞI
J,0,m2 (γ, ϕ2)

= e−i 1
2 πm(x2 + y2)

1
2 ∣m∣P(∣m∣,0)

nr (1 − 2(x2 + y2))eimϕ , (30)

with indices: n = J ∈ Z+
0 principal quant. num., m = −m2,

nr ∶=
1
2

(n − ∣m∣) ∈ Z+
0 radial quantum number,

coordinates: x = ξ1 = sin γ sin ϕ2, y = ξ2 = sin γ cos ϕ2,

ξ3 = cos γ, ϕ =
1
2

π − ϕ2 γ∣π/20 , ϕ∣π−π ,

eigenfunction of: L2 + M2 : n(n + 2), M3 : m2 = −m, (31)

⇒ ΨI
n,m(x, y) indices: n, m ∈ {−n,−n + 2, . . . , n}.
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System II:

Ψ̄II
n1 ,n2 (x, y) ∶=

1
2π ∫

π

−π
dϕ ΦII

J,ℓ,μ(χ, θ, ϕ) = δμ,0 ΞII
J,ℓ,0(χ, θ)

= (1 − x2)
1
2 n1 Cn1+1

n2 (x) Pn1(
y

√
1−x2

), (32)

with indices: n = n1+n2 = J ∈ Z+
0 principal quant. num., n1 = ℓ,

coordinates: x = ξ1 = cos χ, y = ξ2 = sin χ cos θ,

ξ3 = sin χ sin θ, χ∣π0 , θ∣π0 ,

eigenfunction of: L2+M2 : n(n+2), L2 : n1(n1+1), (33)

⇒ ΨII
n1 ,n2 (x, y) indices: n1 ∈ {0, 1, . . . , n}, n2 = n−n1.

System III:

Ψ̄III
n′1 ,n′2

(x, y) ∶=
1

2π ∫
π

−π
dϕ′ΦIII

J,ℓ′ ,μ(χ′, θ′, ϕ′) = δμ,0 ΞIII
J,ℓ′ ,0(χ′, θ′)

= (1 − y2)
1
2 n′1 Cn′1+1

n′2
(y) Pn′1(

x
√

1−y2
), (34)

with indices: n = n′1+n′2 = J ∈ Z+
0 principal quant. num., n′1 = ℓ

′,

coordinates: x = ξ1 = sin χ′ sin θ′, y = ξ2 = cos χ′,

ξ3 = sin χ′ cos θ′, χ′∣π0 , θ′∣π/2−π/2,

eigenfunction of: L2+M2 : n(n+2), M2
1+M2

2+L2
3 : n′1(n′1+1), (35)

⇒ ΨII
n′1 ,n′2

(x, y) indices: n′1 ∈ {0, 1, . . . , n}, n′2 = n−n′1.

Here, P(α,β)
n (x), Cm

n (x), and Pn(x) are Jacobi, Gegenbauer, and Legendre polynomials, respectively.

A. States in system I
With this list, let us now return to the algebraic structure of so(4) seen in Sec. II to identify system I with its subalgebra chain

so(4) = so(3)(1)
⊕ so(3)(2) through defining J(1,2) in (4) and (5). Recall Eq. (7), where we concluded that their two so(3) Casimir operators

J(1,2)2 characterize these representations by j(1,2)
= 1

2 J = 1
2 n. We also recall that as Lie group manifolds, one has SO(4) = SU(2)(1)

⊗ SU(2)(2),
so the functions on the 3-sphere can beget two-valued functions on the real 2-sphere.

Regarding the so(3) representation row eigenlabel −m of M3 in (31), we note that M3 = J(1)
3 − J(2)

3 so that the J(1,2)
3 eigenlabels will be

such that m(1)
−m(2)

= −m. Yet looking back at (2), we see that L3 rotates the (s1, s2)-plane which, according to (18), is over the angle φ
that was integrated in (30) so that L3 is projected to zero; hence, J(1)

3 = −J(2)
3 and m(1)

= −m(2). The row labels in this subalgebra chain are
therefore m(1)

= − 1
2 m and m(2)

= 1
2 m. In a convenient bra-ket notation, we can thus write the (normalized) solutions in system I coordinates

as

ΨI
n,m(x, y) = CI

n,mΨI
n,m(x, y) = (x, y ∣

1
2

n, −
1
2

m⟩
I
∣
1
2

n,
1
2

m⟩
I
, (36)

where ∣x, y) with (x, y) ∈ D is the Dirac basis for functions on the disk. Up to a phase ωI
n,m, the normalization constant Cn,m is equal to2
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CI
n,m = ωI

n,m(−1)nr
√

(n + 1)/π. (37)

B. States in system II
System II is based on the canonical Gel’fand-Zetlin subalgebra chain so(4) ⊃ so(3) ⊃ so(2), here in representations where L.M + M.L = 0

and reduced by L3 = 0 as in system I; the so(4) eigenstates ∣J, ℓ, m⟩ are, according to (33), labeled ∣n, n1, 0⟩ and so(3) states ∣n1, 0⟩II. Thus, as
in (36) and n1 + n2 = n,

ΨII
n1 ,n2 (x, y) = CII

n1 ,n2 ΨII
n1 ,n2 (x, y) = (x, y ∣ n1, 0⟩II, (38)

and, up to a phase ωII
n1 ,n2 , the normalization constant is2

CII
n1 ,n2 ∶= ωII

n1 ,n2 2n1+ 1
2 n1!
√

(2n1 + 1)(n1 + n2 + 1) n2!
2π (2n1 + n2 + 1)!

. (39)

Finally, it can be seen that system III is only a 1
2 π-rotation of the (x, y) disk to (y,−x) of system II, so the above results are valid replacing

ni by n′i , picking up an extra phase. The II–III interbasis expansion will be discussed after examining further the I–II expansion.

C. Interbasis expansion I–II
Having written ΨI

n,m(x, y) and ΨII
n1 ,n2 (x, y) as so(3) states, we inquire into the direct and inverse expansions

ΨII
n1 ,n2 (x, y) =

n

∑
m=−n (2)

Wn,m
n1 ,n2 ΨI

n,m(x, y), (40)

ΨI
n,m(x, y) =

n

∑
n1=0

W̃n1 ,n2
n,m ΨII

n1 ,n2 (x, y), (41)

where n2 = n − n1 and∑n
m=−n (2) indicates that m ∈ {−n,−n + 2, . . . , n}. Using (36) and (38), we write (40) in bra-ket form as

(x, y∣n1, 0⟩II
= (x, y∣

n

∑
m=−n (2)

∣
1
2

n,−
1
2

m⟩I
∣
1
2

n,
1
2

m⟩I I
⟨

1
2

n,
1
2

m∣I⟨
1
2

n,−
1
2

m∣n1, 0⟩II. (42)

We thus recognize that the linear combination coefficients in (40) are, up to phases ω, a special subset of Clebsch-Gordan coefficients,

Wn,m
n1 ,n2 =

I
⟨

1
2

n,
1
2

m∣ I
⟨

1
2

n,−
1
2

m∣n1, 0⟩II
= ω Cn1 ,0

1
2 n,− 1

2 m; 1
2 n, 1

2 m = W̃n1 ,n2
n,m

∗, (43)

where the asterisk indicates complex conjugation.
It is useful to recall that the general form of the Clebsch-Gordan coefficients, Cj,m

j1 ,m1 ;j2 ,m2
, couples the so(3) states ∣j1, m1⟩ and ∣j2, m2⟩

to a single state ∣j, m⟩ with the usual branching rules ∣j1 − j2∣ ≤ j ≤ j1 + j2 and m1 + m2 = m. A property of the special kind of coefficient
(43) is that, as shown in Ref. 6, they can be written in terms of hypergeometric 3F2(⋅ ⋅ ⋅ ∣1) terminating series which are known as Hahn
polynomials,

Cn1 ,0
1
2 n,− 1

2 m; 1
2 n, 1

2 m =
n!

( 1
2 (n1−n2−m))!( 1

2 (n+m))!

√
2n1+1

n2! (n+n1+1)!

× 3F2(
−n2, n1 + 1, − 1

2 (n + m)
−n, 1

2 (n1 − n2 −m) + 1 ∣ 1) (44)

=
(n!)2

( 1
2 (n−m))! ( 1

2 (n+m))!

√
2n1+1

n2! (n+n1+1)!

×Qn2(
1
2

(n + m); −n − 1, −n − 1, n). (45)

Wenote that of the five parameters available in 3F2(⋅ ⋅ ⋅ ∣1) and in Q.(.; ., ., .), only three, e.g., (n1, n2, m), are present in the interbasis coefficients
Wn,m

n1 ,n2 . Their phase was determined in Ref. 6 through direct integration of pairs of basis functions and is given by
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Wn,m
n1 ,n2 = in1 (−1)

1
2 (m+∣m∣) Cn1 ,0

1
2 n,− 1

2 m; 1
2 n, 1

2 m. (46)

We should mention that this phase is the appropriate one to intertwine between the complex system I functions ΨI
n,m(x, y)∗ = ΨI

n,−m(x, y) and
the real system II functions ΨII

n1 ,n2 (x, y), which is assured by the property Cn1 , 0
1
2 n, 1

2 m; 1
2 n,− 1

2 m = (−1)n2 Cn1 , 0
1
2 n,− 1

2 m; 1
2 n, 1

2 m.

D. Interbasis expansions I–III
We now turn to system III, which we saw is obtained from system II by the rotation (x, y)↦ (y,−x) of the disk plane and is generated

by M3 through R̂(α) ∶= exp(iα[M3, ○]) for α = 1
2 π. Keeping α ∈ S1 generic, we can thus define systems II(α), all of whose eigenstates will be

characterized by the pair of integers (n1, n2) with n1 + n2 = n. Since M3 = J(1)
3 − J(2)

3 (as L3 = 0), we have

R̂α∣
1
2

n, −
1
2

m⟩
I

∣
1
2

n,
1
2

m⟩
I

= eiαJ(1)
3 ∣

1
2

n, −
1
2

m⟩
I

e−iαJ(2)
3 ∣

1
2

n,
1
2

m⟩
I

= e−iαm
∣
1
2

n, −
1
2

m⟩
I

∣
1
2

n,
1
2

m⟩
I

.
(47)

The expansion of system II(α) solutions in terms of system I basis for the principal quantum number n, analog of (40), is thus

ΨII(α)
n1 ,n2 (x, y) =

n

∑
m=−n (2)

Wn,m (α)
n1 ,n2 ΨI

n,m(x, y), (48)

with the coefficients Wn,m (α)
n1 ,n2 directly related to Wn,m

n1 ,n2 =Wn,m (0)
n1 ,n2 as

Wn,m (α)
n1 ,n2 = e−iαmWn,m (0)

n1 ,n2 = e−iαm in1 (−1)
1
2 (m+∣m∣) Cn1 ,0

1
2 n,− 1

2 m; 1
2 n, 1

2 m. (49)

The inverse transformation (41) from system II(α) to I is now

ΨI
n,m(x, y) =

n

∑
n1=0

W̃n1 ,n2
n,m (α) ΨII(α)

n1 ,n2 (x, y), (50)

with
W̃n1 ,n2

n,m (α) = eimα W̃n1 ,n2
n,m (0) =Wn,m (α)∗

n1 ,n2 . (51)

Clearly, for α = 1
2 π, we are addressing system III as written in Ref. 6, up to a possible overall phase.

We can now formulate the transformation between states in systems II(α) and II(β) by passing through system I,

ΨII(β)
n′1 ,n′2

(x, y) =
n

∑
m=−n (2)

Wn,m (β)
n′1 ,n′2

n

∑
n1=0

W̃n1 ,n2
n,m (α)Ψ

II(α)
n1 ,n2 (x, y)

=
n

∑
n2=0

Un1 ,n2
n′1 ,n′2

(β − α) ΨII(α)
n1 ,n2 (x, y),

(52)

where the compound transformation coefficients are

Un1 ,n2
n′1 ,n′2

(γ) ∶= ei 1
2 π(n′1 − n1) n

∑
m=−n (2)

e−iγmCn′1 ,0
1
2 n,− 1

2 m; 1
2 n, 1

2 m
Cn1 ,0

1
2 n,− 1

2 m; 1
2 n, 1

2 m

= ei(nγ+ 1
2 π(n′1 − n1)) n

∑
k=0

e−2iγkCn′1 ,0
1
2 n, 1

2 n − k; 1
2 n,− 1

2 n + k
Cn1 ,0

1
2 n, 1

2 n − k; 1
2 n,− 1

2 n + k
.

(53)

When the ΨII(β)
n′1 ,n′2

(x, y) are arranged into column vectors with components (n1, n2), the coefficients Un1 ,n2
n′1 ,n′2

(γ) can be fit into matrices which, for
every fixed principal quantum number n, compose as

∑
n′1 ,n′2

Un1 ,n2
n′1 ,n′2

(γ1) Un′1 ,n′2
n″

1 ,n″
2
(γ2) = Un1 ,n2

n″
1 ,n″

2
(γ1 + γ2). (54)
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E. The interbasis expansion II–III
When the angle between the two coordinate systems in Subsection IV D is γ = 1

2 π, the transform kernel (53) takes the form of a special
Racah polynomial6 that relates solutions in systems II and III in Fig. 1. It is of interest to rederive this result using the algebraic properties of
the so(4) generators (2)–(5).

Consider the interbasis expansion between the two functions on S3 sphere, ΦII
J,ℓ,m(χ, θ, ϕ) in (14) and ΦIII

J,ℓ′ ,m(χ′, θ′, ϕ′) in (17),

ΦIII
J,ℓ′ ,m(χ′, θ′, ϕ′) =

J

∑
ℓ=∣m∣

WJ,∣m∣
ℓ′ ,ℓ ΦII

J,ℓ,m(χ, θ, ϕ), (55)

where we shall derive recursion relations for these S3-interbasis coefficients WJ,∣m∣
ℓ′ ,ℓ which form (J − ∣m∣) × (J − ∣m∣) matrices. Below, when

projecting on the S2-interbasis of Zernike solutions, m becomes 0, while the WJ
ℓ′ ,ℓ-matrix will split into four submatrices because of

parity.
The two S3-function sets are common eigenfunctions of the Laplace-Beltrami operator Δ (3) II

LB in (12) and L2
3; they are distinguished by

their intermediate so(3) subgroup link in so(4), as given by (33) and (35),

(L2
1 + L2

2 + L2
3)ΦII

J,ℓ,m(χ, θ, ϕ) = −ℓ(ℓ + 1)ΦII
J,ℓ,m(χ, θ, ϕ), (56)

(M2
1 + M2

2 + L2
3)ΦIII

J,ℓ′ ,m(χ′, θ′, ϕ′) = −ℓ′(ℓ′ + 1)ΦIII
J,ℓ′ ,m(χ′, θ′, ϕ′), (57)

but share a common so(2) subgroup generated by L3 and the eigenvalue m.
To extract the coefficients WJ,∣m∣

ℓ′ ,ℓ in (55), we note that M2
1 + M2

2 = Δ (3)
LB − L2

−M2
3 , so we replace (57) into the expansion (55), multiply by

ΦII
J,ℓ′ ,m(χ, θ, ϕ)∗, and then integrate over the 3-sphere S3 with the measure dω = sin2χ sin θ dχ dθ dϕ. We find

J

∑
ℓ=∣m∣

WJ,∣m∣
ℓ′ ,ℓ ([ℓ

′(ℓ′ + 1) + ℓ(ℓ + 1) − J(J + 2)]δℓ′ ℓ −MJ,m
ℓ,ℓ′) = 0, (58)

where MJ,m
ℓ′ ,ℓ = ∫S3

ΦII∗
J,ℓ′ ,m(χ, θ, ϕ) M2

3 ΦII
J,ℓ,m(χ, θ, ϕ) dω. (59)

Weuse the explicit form of the so(4) generator M3 in 3-spherical coordinates,

M3 = − cos θ
∂

∂χ
+ cot χ sin θ

∂

∂θ
, (60)

to compute its matrix representation M(J,m)
3 ∶= ∥MJ,m

ℓ′ ,ℓ∥ in the basis of functions ΦII
J,ℓ,m, which is bidiagonal, through the integral

MJ,m
ℓ′ ,ℓ ∶= ∫S3

ΦII∗
J,ℓ′ ,m(χ, θ, ϕ) M3 ΦII

J,ℓ,m(χ, θ, ϕ) dω

=

√
(ℓ −m + 1)(ℓ + m + 1)(J + ℓ + 2)(J − ℓ)

(2ℓ + 1)(2ℓ + 3)
δℓ′ ,ℓ+1

−

√
(ℓ −m)(ℓ + m)(J + ℓ + 1)(J − ℓ + 1)

(2ℓ + 1)(2ℓ − 1)
δℓ′ ,ℓ−1.

(61)

Then, we find the tridiagonal matrix of its square, M2
3 in (59), introducing the usual sum over an orthogonal and complete set of states

{ϕk} between a product of two operators A, B as (ϕi, ABϕj) = ∑k(ϕi, Aϕk)(ϕk, Bϕj). Thus, we obtain

MJ,m
ℓ′ ,ℓ =

J

∑
ℓ″=∣m∣

MJ,m
ℓ′ ,ℓ″M

J,m
ℓ″ ,ℓ = C∣m∣ℓ δℓ′ ,ℓ+2 − E∣m∣ℓ δℓ′ ,ℓ + C∣m∣ℓ−2δℓ′ ,ℓ−2, (62)

where
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C∣m∣ℓ =

√
(J − ℓ − 1)(J − ℓ)(J + ℓ + 2)(J + ℓ + 3)

(2ℓ + 1)(2ℓ + 3)2(2ℓ + 5)

×
√

(ℓ − ∣m∣ + 1)(ℓ − ∣m∣ + 2)(ℓ + ∣m∣ + 1)(ℓ + ∣m∣ + 2),
(63)

E∣m∣ℓ =
(J − ℓ + 1)(J + ℓ + 1)(ℓ2

−m2)
(2ℓ − 1)(2ℓ + 1)

+
(J − ℓ)(J + ℓ + 2)(ℓ − ∣m∣ + 1)(ℓ + ∣m∣ + 1)

(2ℓ + 1)(2ℓ + 3)
.

(64)

Finally, introducing this expression in (58), we obtain the following three-term recurrence relation for the II-III interbasis coefficients
WJ,∣m∣

ℓ′ ,ℓ in (55),

C∣m∣ℓ WJ,∣m∣
ℓ′ ,ℓ+2 + (J(J + 2) − ℓ(ℓ + 1) − ℓ′(ℓ′ + 1) − E∣m∣ℓ )WJ,∣m∣

ℓ′ ,ℓ + C∣m∣ℓ−2WJ,∣m∣
ℓ′ ,ℓ−2 = 0. (65)

This recursion relation stems from the integration of (59), where we applied the operator M2
3 on ΦII

J,ℓ,m to its right. However, since this operator
is self-adjoint under integration over the 3-sphere, it can be equally applied on ΦII∗

J,ℓ′ ,m to its left. The result is a recursion relation identical to
(65) with the exchange ℓ↔ ℓ′ for WJ,∣m∣

ℓ′ ,ℓ . In addition, observe that (65) is a 2-step recursion, which can begin for ℓ′ and ℓ from 0, 2, . . . or from
1, 2, . . ., so we have four classes of coefficients for (ℓ′, ℓ) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}, determined by their parity under the reflections θ′ ↔ −θ′
in Eq. (17) and θ↔ −θ in (14), respectively.

To obtain the S2 II-III eigenbases expansion between the Zernike functions, which stem from the above 3-sphere expansion (55),
we integrate over the angle ϕ; this angle is common to both systems because they share the same generator L3. We thus integrate (32)
and (34), resulting in the L3 eigenvalue m = 0. We can compare this projection of the so(4) interbasis expansion with the result in
Ref. 6,

Un1 ,n2
n′1 ,n′2
=WJ,0

n1 ,n′1
, J = n = n1 + n2 = n′1 + n′2. (66)

The recurrence relation (65) for m = 0 simplifies somewhat and leads to a 1-step recurrence between terms p = 1
2 ℓ and p = 1

2 (ℓ + 1) according
to parity and their neighbors p ± 1. This results in four recurrence relations, each of them characterizing Racah polynomials [Ref. 18, Eq.
(9.2.3)], Rp(λ(x); α, β, γ, δ) of degree p, orthogonal on a quadratic lattice λ(x) = x(x + γ + δ + 1), times a factor that includes the orthogonality
measures in x and p, and four effective parameters among the six that are generic. (The explicit values of the parameters and the corresponding
Racah polynomials are given in our previous work.6) In this way, we have explained the II-III interbasis expansion and its coefficients that
overlap between two 1

2 π-rotated so(3) subalgebra chain bases of so(4) that share the same so(2) bottom subalgebra, after the reduction
through integration over the circle of the latter.

V. CONCLUDING REMARKS
In this paper, we have established the link between hyperspherical harmonics on the 3-sphere, which describe a free quantum system on

that manifold, with the polynomial solutions of the Zernike system on the upper-half 2-sphere and thus on the unit disk. The many properties
of the former, such as separation of variables and superintegrability, are thus inherited from the former to the latter.12 The requirement (25)
for the Zernike solutions to be finite on the disk boundary is automatically fulfilled since the hyperspherical harmonics is finite over their
spheres.

Orthogonal coordinate systems on spheres have been a persistent topic of research, credibly introduced by Olevsky19 in 1950; there-
after, the hyperspherical harmonic functions on the 3-sphere were related to special Wigner (Clebsch-Gordan) coefficients through so(4)
Lie-algebraic recurrence relations by Stone20 in 1955. Analytic and algebraic studies of this manifold and group have been pursued by
many other authors for 2-, 3-, and n-spheres.21–23 As we mentioned in the Introduction, there exist six systems of coordinates which allow
separation of variables in Helmholtz equation on the 3-sphere, namely, spherical (canonical), cylindrical, two ellipsocylindrical, sphero-
conical, and ellipsoidal. Four of them, spherical (canonical and noncanonical) cylindrical, and two ellipsocylindrical, conform to Eq. (19).
The latter two, leading to Heun polynomial solutions in the Zernike system,3 have not been examined in this paper, but their so(4)
origin has been applied to separable solutions of the Kepler system, and their expansion coefficients to the two other systems found by
Grosche et al.9

From the side of the physical system, shortly after the Zernike 1934 paper1 appeared, the differential equation and its solutions were
related to the p-dimensional Laplace-Beltrami equation and hyperspherical solutions and products of Gegenbauer polynomials, in a rarely
quoted paper of Zernike and Brinkman.7 For the most part, the Zernike polynomials were analyzed in terms of their recurrence relations
and orthogonality properties,24–29 their efficient computation,30 and mainly on their applications to the real-time correction of flexible and
segmented optical telescopes (see, e.g., Refs. 8 and 31).

By linking the properties of the Zernike system to that of free motion on the 3-sphere through the reduction of so(4) representations to
so(3) ones and their Clebsch-Gordan couplings, we obtain a unifying view of their common or derivable properties. These include separabil-
ity, i.e., superintegrability and interbasis expansions. We note that an expanded analysis of the elliptic coordinate system can follow, as well as
a corresponding analysis on 3-hyperboloids, where the Lorentz algebra so(3, 1) will be at play.
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