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Abstract
The Zernike system provides orthogonal polynomial solution bases on the unit disk that separate
in coordinates that are generically elliptic. This is a superintegrable system whose optical
realization is a scalar wavefield on the plane of a circular pupil. Here we describe the solution set
in the trigonometric form of elliptic coordinates expressed in terms of special functions, and
examine closely the two limits where the explicit form of the wavefunctions in elliptic
coordinates reduce to wavefunctions in polar coordinates.

Keywords: Zernike system, separation of variables, elliptic trigonometric coordinates, limits to
polar spherical coordinates

1. Introduction

The two-dimensional differential equation proposed by Frits
Zernike in 1934 [1] and its solutions with boundary condi-
tions to be seen below, has been of interest both for their
relevance and applications in optics [2–4] for circular pupils,
as well as for their mathematical properties [5–8]. We have
dedicated recent research to examine the Zernike system from
the points of view of its classical and quantum (or scalar-
wave) realizations [9–12]. The model is defined by Zernike’s
differential equation, which is written as a Schrödinger
equation with the ‘Zernike’ Hamiltonian Z given by

Y  -  -  Y = - Y ( ) ≔ ( ( · ) · ) ( ) ( ) ( )Z Er r r r r2 12 2

on the two-dimensional plane = ( )x yr , restricted to the unit
disk  ≔ {∣ ∣ }r 1 , whose square-integrable solutions

 Y Î( ) ( )r 2 have free but finite boundary conditions [1]

Y < ¥=( )∣ ( )∣ ∣r . 2r 12

Because the disk has a closed boundary, the condition (2)
determines only a pre-Hilbert space of solutions. The eigen-
functions of (1) have ‘energy’ eigenvalues E given by

= + Î ¼
+ -

+( ) { } ≕
( ) ( )

E n n n
n

2 , for 0, 1, 2, ,
and 1 fold degenerate, 3

0

as if it were a two-dimensional open oscillator system—which it
is definitely not.

It will be noticed that (1) is a linear combination of the
axially-symmetric quadratic operators ∇2 and ·r , plus a
square of the latter. The commutator of the former two yields
~∣ ∣r 2, which completes the generators of the symplectic
sp(2,R) Lie algebra. The addition of that square, ( · )r 2,
turns this [9, 10] into a superintegrable cubic Higgs algebra
[13]. In that sense it can be seen to have a structure similar to
the quartic oscillator, which adds a =(∣ ∣ ) ∣ ∣r r2 2 4 term, and to
the Kerr medium, which adds - +( ∣ ∣ )r2 2 2 to the quantum
oscillator Hamiltonian, although the ranges of r are different.

We recall that in [9–12] a key step to find solutions to the
two-dimensional equation (1) that separate in a pair of
simultaneous one-dimensional equations, was to project the
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disk vertically on the upper half of a two-dimensional sphere
2, that we indicate as

 x x x x x x

x x x

= =

= - -

+

 
≔ {∣ ∣ } ( )

≔ ≔ ( )x y x y

1, 0 with , , ,

, , 1 . 4

2
3 1 2 3

1 2 3
2 2

The orthogonal coordinate systems on the two-dimensional
surface of the sphere 2 are generically elliptic [14–16] deter-
mined by two pairs of antipodal foci and, modulo rotations, the
systems are characterized by the angle  k p0 between a
pair of foci on the same hemisphere. To qualify for the half-
sphere we must add the proviso that the common boundary
between  and +

2 correspond to the constant value of ξ3=0.
When a system has solutions which separate in more than one
system of coordinates, it is indicative that an associate higher
symmetry or a superintegrable algebra exists [17–20].

In figure 1 we show a subset of the generic elliptic case,
modulo rotations around the vertical axis, that is determined
by the single parameter k Î≔ [ ]k sin 0, 11

2
, with κ the angle

between the foci. The value k=0 determines System I,
which served to separate Zernike’s original solution [1] in
polar coordinates, the only orthogonal ones on the disk, as
shown in figure 2. On the other hand, when k=1, the
coordinates are again polar and orthogonal on the sphere but
non-orthogonal on the disk; they were called System II and
the corresponding separated solutions were given in [10, 11].
The generic solution in elliptic coordinates was broached in
[21] using Jacobi elliptic coordinates and parameters [15].

The solutions separated in Systems I and II are products of
hypergeometric polynomials: Legendre, Gegenbauer and Jacobi
[22–24], while those separated in the generic elliptic case

0<k<1are products of Heun polynomials [25, 26]. The pur-
pose of this paper is to provide solutions to the Zernike system
separated in a continuous one-parameter family of elliptic coor-
dinates that interpolate between systems I and II, called trigo-
nometric elliptic coordinates, which depend on the single
parameter 0�k�1. They appear to be better suited than Jacobi
ones to establish the k→0 and k→1 limits, keeping track of
the ‘radial’ and ‘angular’ parts of the separated solutions.

In section 2 we write (1) in elliptic trigonometric coor-
dinates and in section 3 solve the separated solutions.
Sections 4 and 5 derive the k→0 and k→1 limits respec-
tively, for the Frobenius recurrence relations and the solution
wavefunctions. Finally, in section 6 we present some con-
clusions regarding the new results that have been obtained,
within the context of previous investigations [9, 10] into the
algebraic properties of the Zernike system, stressing that some
features, particularly those pertaining interbasis expansions
may benefit from further research into the relation between
symmetry and supersymmetry. This is relevant because the
Zernike system is both used in optical applications and pro-
vides a physical realization of the Higgs cubic algebra.

2. Elliptic coordinate systems

The two-dimensional surface of the sphere 2 can be para-
metrized using elliptic coordinate systems (ϑ, j), all of which
are orthogonal. These systems can be best related to the three
Cartesian coordinates (4), written as in [9, section 4.5],
classified by the parameter k Î≔ [ ]k sin 0, 11

2
where, as

Figure 1. Elliptic coordinate systems on the upper half-sphere +
2 , with the angles k1

2
between each focus and the +z direction and the

ellipticity parameter k=k sin 1
2

. The upper-left figure has k = 0 and shows System I (k= 0); the lower-right figure shows k p=1
2

1
2

for

System II (k= 1). The illustrated angles are k = 0, p1
8

, p1
4

, p1
2

, p3
4

, and π.

2
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mentioned above, k pÎ [ ]0, . They are given by

x J j
x J j

x J j

= - ¢
=

= - ( )

k

k

1 cos cos ,

sin sin ,

cos 1 cos , 5

1
2 2

2

3
2 2

where we introduced for brevity k¢ - = Î≔k k1 cos2 1

2
[ ]0, 1 . Any other elliptic coordinate system can be obtained
from (5) through rotation of the sphere. The half-sphere where
x 03 that we consider in this article, +

2 , is covered by the
parameter ranges

J p j p pÎ Î -[ ] ( ] ( )0, , , . 61

2

In figure 1, the line J j=( )0, is twice the half-circle at the
intersection of +

2 with the ξ2=0 plane, while J p j=( ),1

2
is the ground circle on the ξ3=0 plane; the ξ1=0 plane
contains the quarter-circles (ϑ,0) and (ϑ, π). When one
coordinate is constant, the other defines lines whose points
sum constant distances over the surface of the sphere to the
two foci, (ϑ, j)=(0, 0) and (0, π) with the metric (11) given
below. These foci, in Cartesian coordinates of +

2 , fall at

x =  ¢


( )k k, 0, , as can be seen in figure 1.

To bind the Zernike solutions given in terms of the
elliptic trigonometric coordinates at the end of section 3 to
functions on the disk, where x=ξ1 and y=ξ2, the relations
inverse to (5) can be written as

¢ ¢ ¢

J
x

x x x x x
=

- - + - - +
( )

( )
7

k

k k k k k k

sin
2

4
,

2

2
2
2

2
1
2 2

2
2 2

1
2 2

2
2 2 2 2

2
2

j
x

J

x x x x x

=

=
- - ¢ + - - ¢ + ¢( )

( )

k k k k k k

k

sin
sin

4

2
.

8

2 2
2

2

2
1
2 2

2
2 2

1
2 2

2
2 2 2 2

2
2

2

Two pairs of foci on 2 coincide in poles on the x 3 axis
when k=0 and thus ¢ =k 1; they define the usual polar
coordinates of


x J j

x J j x J
=

= = ( )
System I: sin cos ,

sin sin , cos 0, 9
1

2 3

in the range (6) for +
2 . On the other hand, when the pairs of

foci coalesce into poles on the x 1 axis, k=1 and ¢ =k 0, the
system of coordinates is again polar, and defines


x j

x J j x J j
=

= = ∣ ∣ ( )
System II: cos ,

sin sin , cos sin 0, 10
1

2 3

with the same range (6).
The separability afforded by elliptic coordinates requires

that three maximal circles on 2 do not depend on k, namely
the ground circle J p= 1

2
, the half-circle through the two foci

at ϑ=0, and the half-circle orthogonal to the other two, at
ϑ=0 and p1

2
. These circles lie in the planes ξ3=0, ξ2=0

and ξ1=0 respectively, where parity under reflection across
the later two will be present in our considerations. It is
instructive to follow in figure 2 the lines drawn out by the ϑ

and j variables. In System I (upper left in figure 2) when ϑ is
kept constant, j draws out circles so we can call it the
‘angular’ coordinate for all following < k0 1 cases, up to
System II (lower right in figure 2). Meanwhile, ϑ qualifies as

Figure 2. Elliptic coordinate systems on disk for the same values of the angles κ and parameters k=k sin 1
2

as in figure 1. The upper-left is

the polar coordinate system that was used in the original work of Zernike [1] and was the only one considered before our work.

3
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the ‘radial’ coordinate, evident in System I, but degenerating
into vertical parallel lines in System II. The solutions will be
shown below to separate into functions JQ( ) and Φ(j).

We now vertically lift the Zernike differential
equation (1) from the disk to the half-sphere, and change its
coordinates from ≔ ( )x yr , , via x


, to elliptic coordinates

w J j≔ ( ), . The distance element on  is = +s x yd d d2 2 2,
while on the the sphere it is

x x x J j

J
J

j
j

= + + = ¢ +

´
- ¢

+
-

⎛
⎝⎜

⎞
⎠⎟

( )

( )

s k k

k k

d d d d sin sin

d

1 cos

d

1 cos
, 11

2
1
2

2
2

3
2 2 2 2 2

2

2 2

2

2 2

showing that their metric tensors are diagonal (recall that
¢ = -k k12 2). The surface element on the disk is

= x yrd d d2 , while on the half-sphere +
2 it is

x x
x

J j

J j
J j= =

¢ +

- ¢ -

=
-

( )( )

∣ ∣ ( )

S
k k

k k

x y

r

d
d d sin sin

1 cos 1 cos
d d

d d

1 12

2 1 2

3

2 2 2 2

2 2 2 2

2

Finally, the Laplace–Beltrami operator in these coordi-
nates, with x x¶ - ¶x x ≔Li j kk j

, is

D = + +   ( )L L L 13LB 1
2

2
2

3
2

J j
J j=

¢ +
¢ + ( ( ) ( )) ( )

k k
D k D k

1

sin sin
; ; , 14

2 2 2 2

where, writing (κ; ψ) for J¢( )k ; or j( )k; ,

k y k y
y

k y
y

-
¶
¶

-
¶
¶

 ( ) ≔

( )

D ; 1 cos 1 cos .

15

2 2 2 2

When we set

w
w

w

w
J j x

¡ = Y

-
= =

-

( )
( )

( ( ))

( ) ≔
∣ ∣

( )

w

w
k

r

r

1
,

1

cos 1 cos

1 1

1
, 16

i i

2 2
3

2

functions Y ( )ri on the disk are unitarily related to functions
w¡( )i on the half-sphere under their natural products

*

*

*







ò
ò

ò ò

w w w

J j
J j

j J

J j J j

Y Y Y Y

= ¡ ¡ ¡ ¡

=
¢ +

- - ¢

´ ¡ ¡

p

p

p

-

+
+

( ) ≔ ( ) ( )

( ) ( ) ( ) ≕ ( )

( )( )

( ) ( )
( )

S

k k

k k

r r r, d

d ,

d d
sin sin

1 cos 1 cos

, , .

17

1 2
2

1 2

2
1 2 1 2

0

2 2 2 2

2 2 2 2

1 2

2
2

1
2

The Zernike operator Z in (1), which is Hermitian in 
under (17), will be correspondingly mapped onto another
operator w w- ≔ ( ) ( )W w Z w1 2 1 2, which is Hermitian under
the inner product in +

2 and is given by

x x

x

J j

= D +
+

+

= D +
-

+



( )
( )

W

k

4
1

1

4 cos 1 cos

3

4
. 18

LB
1
2

2
2

3
2

LB 2 2 2

The Zernike differential equation (1) thus becomes

J j J j¡ = - ¡ ( ) ( ) ( )W E, , , 19

where the value of the eccentricity k is present. It may be
interesting to note that if, due to (18), this is understood as a
Schrödinger two-dimensional Hamiltonian - D + V1

2 LB W, it
allows the interpretation of the second summands as two-
dimensional potentials on the disk and sphere

x x

x J j
-

+
- = -

-
-

= -
-

-

≔
( )

( ∣ ∣ )
( )

V
k

r

8

1

2

1

8 cos 1 cos

3

8

1

8 1

3

8
,

20

W
1
2

2
2

3
2 2 2 2

2

which is radially repulsive and drops inverse-quadratically to
-¥ at the -+

2 boundary. The new two-dimensional diff-
erential equation to solve now is (19), and the boundary
condition on the solutions, stemming from (2), is

w x
x

J j
J

¡
=

¡
< ¥x

J p
=

=
¹


( ( )) ( ) ( ),

cos
. 21

k
3

0
2

1

3

3. Separation and solution of Zernike’s equation

Now we propose that the solutions to (19) separate as the
product of two functions, each depending on the eccentricity
parameter and coordinate as

J j J j¡ = Q ¢ F( ) ( ) ( ) ( )k k, ; ; , 22

so we are led to two separate simultaneous equations with a
separation constant λ(k),

J J
J

J

l J

¢ - + ¢ - Q ¢

= + Q ¢


⎡
⎣⎢

⎛
⎝⎜
⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

⎤
⎦⎥( ) ( )

( )
( )

D k E k k

k

; cos
1

4 cos
;

; ,

23

3

4
2 2

2

¢
j j

j

j l j

+ + - -
-

´ F = - F


⎡
⎣
⎢⎢

⎛
⎝⎜
⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

⎤
⎦
⎥⎥

( )

( ) ( )
( )

( ) ( )
24

D k E k
k

k

k k

; 1 cos
4 1 cos

; ; .

3

4
2 2

2

2 2

If we ascribe to these two k y ( )D ; ʼs the role of one-dimensional
kinetic terms, clearly equations (23) and (24) contain distinct
potential terms, so their solutions will be distinct functions.
These differential equations belong to the class of those with

4
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periodic coefficients: from (5) it follows that the invariances
under J J p + 2 and j→j+2π imply the uniqueness
of the solutions, J p JQ ¢ + = Q ¢( ) ( )k k; 2 ; and jF +(k,
p j= F) ( )k2 , . Also, Zernike’s equation (1) is invariant under
the two reflections, « -x x and « -y y, which correspond to
J J« - andj j p« + ; we thus expect that due to parity the
solutions will split into four classes, even and odd under
each reflection of  and +

2 . Moreover these inversions also
entail the p‐periodicity of the solutions under J J p +
and j j p + .

Equation (23) has a singularity at the +
2 boundary

J p= 1

2
, while (24) has two complex singularities at

j = kcos 1 1. To find square-integrable solutions we
first take out these singular points with the substitution

J J J

j j j

Q ¢ = Q ¢

F = - F

~


( ) ( )
( ) ( ) ( ) ( )
k k

k k k

; cos , ,

; 1 cos , . 252 2 1
4

Then the differential equations (23) and (24) become

J
J

J J J
J

J

- ¢
Q

+ ¢ -
Q

+ ¢ + ¢ - L - Q =

~ ~

~

( ) ( )

( )
( )

k k

Ek k

1 cos
d

d
2 cos sin tan

d

d

sin 0,

26

2 2
2

2
2

2 2 1

4
2 1

4

j
j

j j
j

j

-
F

+
F

+ + + L F =

 



( )

( ) ( )

k k

k Ek

1 cos
d

d
2 cos sin

d

d

sin 0, 27

2 2
2

2
2

1

4
2 2 2

where we introduced a new separation constant lL +≔
¢ +( )k E2 1

2
.

To solve these differential equations we finally make the
substitutions of variables

J j≔ ≔ ( )u vsin , sin , 282 2

to rewrite (26) and (27) as

Q
+ +

-
+

+ ¢
Q

+
¢ - - L

- + ¢
Q =

~ ~

~

⎛
⎝⎜

⎞
⎠⎟

( )( )
( )

u u u u k k u

k Eu k

u u k k u

d

d

1 2 1

1

1 2 d

d

4 1
0, 29

2

2 2 2

2 1

4
2

2 2

F
+ +

-
+

+ ¢
F

+
+ + L

- ¢ +
F =

 



⎛
⎝⎜

⎞
⎠⎟

( )( )
( )

v v v v k k v

k Ek v

v v k k v

d

d

1 2 1 2

1

1 d

d

4 1
0. 30

2

2 2 2

1

4
2 2

2 2

For finite u, equation (29) has three real singular points at
u=0, 1, and - ¢k k2 2, while equation (30), has them real at
v=0, 1 and - ¢k k2 2. Now we take out the singularities at
the points u=0, 1 and at = - ¢v k k0, 2 2, because of (25),
and consider the series expansions around the points u=0
and v=0. We can thus write the two series with the same
coefficients ¥{ }bs 0 as

åQ ¢ = + ¢ ¢
~ a a a a

=

¥

( ) ( ) ( ) ( )( )
k u k k u u b k u; , 31

s
s

s, 2 2

0

21 2 1
2 1

1
2 2

åF = - -a a a a

=

¥
 ( ) ( ) ( ) ( )( ) k v v v b k v; 1 , 32

s
s

s,

0

21 2 1
2 1

1
2 2

where the exponents αi, i = 1, 2, must satisfy a a - =( )1i i

0, i.e. αi=0 or 1. The series coefficients bs are those given
by the three-term recurrence relations (depending on α1, α2),

¢ + - L + =

= =
+ -

-

( )
( )

k k A b B b C b

b b

0,

with 0, 1, 33

s s s s s s
2 2

1
1

4 1

1 0

a= + + +a ⎛
⎝⎜

⎞
⎠⎟( ) ( )( )A s sand 1 , 34s 2

1

2
2

a a a= ¢ + + - + +a a ( ) ( )( )

( )

( )B k s k s ,

35

s
, 2 1

2 1 2
2 2 1

2 2
1

4

2
1 2

a a a a= - + + + + -a a ( ( )( ))
( )

( )C E s s2 2 2 .

36
s

, 1

4 1 2 1 2
1 2

The coefficients =
¥{ }bs s 0 can be then obtained from an

infinite system of homogeneous algebraic equations, asking
for nontrivial solutions to the determinant equation

L

- L ¢

- L ¢

- L ¢

=

a a







    

( )

≔

( )

( )D

B k k A

C B k k A

C B k k A

0 0

0

0

0. 37

,

0
1

4
2 2

0

1 1
1

4
2 2

1

2 2
1

4
2 2

2

1 2

Since it is evident that at the point ϑ=0 the wave

function Q ¢
~ a a ( )( )

k u;
,1 2 in (31) is a constant, let us now con-

sider the asymptotic behavior of the solution (31) at the sin-
gular point J p= ;1

2
the convergence of the power series is

determined by the behavior of quotient +b bs s1 for large s.
Dividing the recurrence relations (33) by -bs 1, we have

= -
¢

- L
-

¢
+

- -
( )b

b

b

b k k

B

A

b

b k k

C

A

1 1
. 38s

s

s

s

s

s

s

s

s

s

1

1
2 2

1

4

1
2 2

Now suppose that for the large s the behavior of their ratio is

» + + » +
-

+
-

» + +
+

+

- ( )

( )

b

b
c

c

s

c

s

b

b
c

c

s

c

s

c
c

s

c c

s

,
1 1

,

39

s

s

s

s

1
0

1 2
2

1
0

1 2
2

0
1 1 2

2

then putting this assumption into the three-term recurrence
relation (33), and taking into account that the coefficients As

and Bs behave asymptotically as

a a

a

- L
» - + - - -

»- +
-

⎛
⎝⎜
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟( )

( )

B

A
k

s
k

C

A s

1 2
1

,

1 ,

40

s

s

s

s

1

4 2
1

3

2
2

1
5

2

5

2 1

we can write the coefficients for s2 and s, finding the
equations for coefficients c0 and c1 as

5
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¢ + - - =( ) ( )k k c k c1 2 1 0, 412 2
0
2 2

0

¢ a a

a

+ - = - - +

+ -

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

( )

( )

42

k k c c k c c k2 1 2

,

2 2
0 1

2
1 0

2
1

5

2 1
3

2

1
5

2

so we obtain two cases for coefficients c0 and c1:

a= - = - -
⎛
⎝⎜

⎞
⎠⎟( ) ( )( ) ( )c

k
c

k
a

1
,

1
430

1
2 1

1
2 1

3

2

=
¢

= -
¢

( ) ( )( ) ( )c
k

c
k

b
1

,
1

440
2

2 1
2

2

We now consider the expansion of Q ¢
~ a a ( )( )

k u;
,1 2 in (31)

letting ¢ >k k2 2, because then >∣ ∣ ∣ ∣( ) ( )c c0
1

0
2 . This is the case

(b), which presents a so-called ‘minimal solution’—while the
case (a) is a ‘maximal’ solution. For the minimal solution (b) in
(44) we have

 s

»
¢

-

»
¢

- =
¢s

+

=

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠
⎛
⎝

⎞
⎠( ) ( )

( )

b

b k s

b
k s k

1
1

1
so that

1
1

1 1 1
. 45

s

s

s s

s

s

1
2

2
2

2

Therefore, at the point J p= 1

2
,

åJQ ¢ » »
~ a a

J p
=

¥

( ) ( )( )
k

s
s;

1
ln , 46

s

,

1

1 2
1
2

which diverges logarithmically, and thus by (25) also the
functions JQ ¢a a ( )( ) k ;,1 2 diverge logarithmically. Analyzed in
the same way, the ‘maximal’ case (a) gives an even more
divergent solution.

Therefore, to obtain a regular solution of (23) for the any
value of the parameter k, the series (31) has to be truncated to
some member N, as = = =+ + b b 0N N1 2 . So we let the
coefficients of the three-term recurrence relation (33) start
from b0=1. Then, after the substitution s=N+1, we have

¢ + - L + =+ + + + +( ) ( )k k A b B b C b 0. 47N N N N N N
2 2

1 2 1
1

4 1 1

Taking into account that ¹b 0N , we find that
CN+1=0, or:

a a a a= + + + + + = + ( )( )( ) ( ) 48E N N n n2 2 2 2 ,1 2 1 2

where a a+ +≔n N2 1 2 is the principal quantum number.
Hence, instead of (33), the coefficients bs will obey following
three-term recurrence relations

a

a a

¢ + + + + - L

+ - + + + + =

+

-

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟( )

( )( ) ( )

k k s s b B b

N s N s b

1

1 0. 49

s s s

s

2 2
2

1

2 1
1

4

1 2 1

Therefore the expansion of Q ¢
~ a a ( )( )

k u;
,1 2 in (31), and

also the expansion of F a a ( )( ) k u;,1 2 in (32), which has the
same coefficients bs, will be truncated to a polynomial.
Returning through (28) to the variables trigonometric elliptic
coordinates ϑ and j, we rewrite the wave functions

JQ ¢a a ( )( ) k ;,1 2 and jF a a ( )( ) k;,1 2 in polynomial form as

å

J J J

J J

Q = -

´

a a a

a

¢ ¢

=

¢

( ) ( )

( ) ( ) ( )
( )

( ) k k

b k

; cos 1 cos

sin sin ,
50

s

N

s
s s

, 2 2

0

2 2

1 2
1
2 1

2

å

j j j

j j

F = -

´ -

a a a

a

=

( ) ( ) ( )

( ) ( ) ( )
( )

( ) k k

b k

; 1 cos cos

sin sin .
51

s

N

s
s s

, 2 2

0

2 2

1 2
1
4 1

2

Now we can solve the problem of the eigenvalues of the
separation constant Λ: we rewrite the three-term recurrence
relations (49) as a system of N+1 homogeneous algebraic
equations,

¢

¢

a

a a

a

a a

- L + + =

+ + + + - L

+ + =

+ + + - L =-

 

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ ( )

( )

( ) 52

B b k k b

N N b B b

k k b

N b B b

0,

1

2 0,

2 0.N N N

0
1

4 0
2 2

2
1

2 1

1 2 0 1
1

4 1

2 2
2

3

2 2

1 2 1
1

4

This system has nontrivial solutions when the corresp-
onding tridiagonal (N+1)×(N+1) determinant vanishes,

L =

- L ¢

- L ¢

- L ¢

- L ¢

- L

=a a

- - -







   



( ) ( )( )D

B k k A

C B k k A

C B k k A

C B k k A

C B

0 0 0

0 0

0 0

0 0 0 0

0. 53N

N N N

N N

,

0
1

4
2 2

0

1 1
1

4
2 2

1

2 2
1

4
2 2

2

1 1
1

4
2 2

1

1

4

1 2
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Such determinants are known to have real and distinct
roots [27], which means that the eigenvalues Λ can be
enumerated by an integer index q, as L ( )kN q,

2 , with
Î ¼{ }q N0, 1, 2, , , the degeneracy for a fixed N being equal

to N+1. Since the coefficients a( )As
2 , a a( )Bs

,1 2 and a a( )Cs
,1 2 in

(34)–(36) depend on (α1, α2), which can be (0, 0), (0, 1), (1,
0), or (1, 1), the separation constants L a a( )

N q,
,1 2 are determined

by four determinants (53). Each one of these will provide a
‘radial’ JQ ¢a a ( )( ) k ;N q,

,1 2 and ‘angular’ jF a a ( )( ) k,N q,
,1 2 solution to

(50) and (51). In the trigonometric form of elliptic coordinates
the total number of zeros for the ‘angular’ function

jF a a ( )( ) k;N q,
,1 2 in jsin is a a+ +≔t q2 1 2, while = +n N2

a a+1 2 and, in all cases,  q N0 . In the appendix we
write explicitly the 6 expressions for the one n=0, two
n=1, and three n=2 lowest-‘energy’ states given by (50),
(51) for arbitrary  k0 1 with their normalizations con-
stants. Integrals that are useful to find the normalization
constants of the generic J j¡ a a ( )( ) ,N q,

,1 2 in (22) are also
provided.

The corresponding functions Y a a ( )( ) k r;N q,
,1 2 on the Zernike

disk Îr can be recovered now by inverting (16) and
multiplying as in (22) the radial and angular solutions

J j J j J j

J j J j x

Y = Q ¢ F

- = = -

a a a a a a

( )

( ( )) ( ) ( ) ( )

( ) ≔ ∣ ∣

( ) ( ) ( )

/

54

k w k k

w k

r

r

; , , ; ; ,

1 , cos 1 cos 1 ,

N q N q N q,
,

,
,

,
,

2 2
3

2

1 2 1 2 1 2

and recalling the inverse coordinate transformations in (7) and
(8) for the factor functions in (50) and (51). In figure 3 we
show the state (54) of even–even parity (α1, α2)=(0, 0) with

indices N=1 and q=0 on the disk, for various values of the
eccentricity parameter 0<k<1. Clearly, this appears to be
a smooth homotopic transformation depending on the para-
meter k. Yet we note that at the endpoints k=0 and k=1 of
this interval, the upper diagonal of the tri-diagonal determi-
nant (53) vanishes. This implies that the recurrence relations
for the coefficients { }bn in (50), (51) for the solutions of
Systems I and II in (9), (10) will change radically, although
the functions themselves present a smooth limit to the pre-
viously known solutions of Systems I and II. Finally, in the
generic elliptic case the sub-indices N, q follow their enu-
meration in the determinant equation (53). Their relation with
the indices n, m of the System I solutions [10], and the indices
n1, n2 of the System II solutions [12] will be made explicit in
the following two sections.

4. Limit k→0 to the spherical basis of System I

In this section we examine the limit relations when the
ellipticity parameter k→0, reproducing the formulas
corresponding to System I of polar coordinates for the
Zernike system.

4.1. Limit of the recurrence relations

In the limit k→0, all terms ¢k k As
2 2 , = ¼ -s N0, 1, 2, , 1

in determinant (53) on the diagonal above the main one can
be neglected. The determinant thus reduces to a lower-
triangular form, and is equal to the product of its diagonal

Figure 3. Homotopy of the Zernike solution Y ( )( ) x y,1,0
0,0 , in elliptic trigonometric coordinates characterized by the eccentricity parameter

 k0 1. The angle between the foci is  k p0 and k=k sin 1
2

. As in the previous figures 1 and 2, we show in the first row: System I

k » 0 ( »k 0), k p= 1
8

(k=0.1951), k p= 1
4

(k=0.3827); in the second row: k p= 1
2

(k=0.7071), k p= 3
4

(k=0.9239), and System II

k p» ( »k 1). The numerical computation becomes unstable at the limits k=0, 1 so we used k=0.01 and 0.99 instead.
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elements, namely

L = - L =
 =

( )( ) ( ) ( )D Blim 0 0. 55
k

N
s

N

s
0 0

1

4

Let us assume that this product is zero due to one particular
factor s=q, i.e. - L =a a( ) ( )B 0 0q N q

1

4 ,
,1 2 . This means that

a aL = + +a a ( ) ( ) ( )( ) q0 2 , 56N q,
,

1 2
21 2

and consequently

a a- L = - + + +a a





( )( ) ( ) ( )( )

≕
( )

( )B k k s q s q

B

lim

.

57

k
s N q

s

0

2 1

4 ,
, 2

1 2
1 2

Writing now the three-term recurrence relation (33)
successively for s=0, 1, 2, K, and taking into account that
b−1=0, we conclude that, as k2→0, this becomes

 + = -+  ( )k A b B b s q0 for 0 1. 58s s s s
2

1

Repeating a similar procedure starting from bN+1=0
down, one arrives at the conclusion that the expression
formula (33) reduces in the limit k→0 to

 + = +- ( )B b C b q s N0 for 1 . 59s s s s 1

In the case when s=q, we have =B 0q and it becomes
necessary to consider the next approximation term for small k2,

a a

L = L +
L

+

= + + +
L

+

a a a a
a a

a a

=

=

= ( )

( )∣ ( )
( )

( )

( )
( )

( )

( ) ( )
( )

( )

60

k k
k

k
O k

q k
k

k
O k

0
d

d

2
d

d
.

N q k N q
N q

k

N q

k

,
, 2

0 ,
, 2 ,

, 2

2

0

4

1 2
2 2 ,

, 2

2

0

4

1 2 2 1 2

1 2

2

1 2

2

Taking into account this relation and (35) for the coefficients Bs,
one obtains

- L ~a a( ) ( ) ( )( )B k k k , 61q N q q
2 1

4 ,
, 2 21 2

where the smallness parameter is



a a a

=-
L

- + + - + +

a a

=

( )

( )
∣

( ) ( )

( ) k

k

q q

1

4

d

d

2 2 . 62

q
N q

k
,
, 2

2 0

1

4 1 2
2 1

4 2
1

2

2

1 2

2

Hence for s=q the three-term recurrence relation (33)
takes the form

+ + =+ - ( )k A b k b C b 0. 63q q q q q q
2

1
2

1

Since in accordance with equations (58) and (59)

= - = -- - - + + + 

( )
b b k A B b b C B, ,

64
q q q q q q q q1

2
1 1 1 1 1

substituting these relations into (63), one finds

 = ++

+

-

-  ( )
A C

B

A C

B
, 65q

q q

q

q q

q

1

1

1

1

and since equation (62) defines the value of the derivative of
L a a ( )( ) kN q,

, 21 2 at k→0, (65) represents the restriction under which

the cutoff conditions at s=−1 and s=N+1 are consistent
with each other.

4.2. Limit of the wavefunctions

From the two-term recurrence relations (58) and (59) we
obtain directly

a a

a

-

=
- + +

+

-


-

-




  

( )

⟶ ( )
( )

( ) ( )
!

( )
( )

( )

b
B B B

A A A k
q q

s k

1

1
, 66

s
k

s

s

s

s

s s

s

s

s

0

0 1 1

0 1 1
2

1 2

2
1

2

2

for  s q0 , and

a a
a a

-

=
- + + + + +

+ + +

+


+ + +

+ + +


  ⟶ ( )

( ) ( )
( ) !

( )

b
C C C

B B B
b

N q N q

q s
b

1

1

2 1
, 67

q s
k

s q q q s

q q q s
q

s s

s
q

0

1 2

1 2

1 2

1 2

for   -s N q1 , where we use the Pochhammer symbol
+ + - = G + G( ) ≔ ( ) ( ) ( ) ( )a a a a m a m a1 1m . The

coefficients bq for the functions Q ¢( )k u; and F( )k v; in (50)
and (51) can be now calculated from (64), and they are

a a

a

+ +

+
-

( )⟶ ( )
( )

( )b k
q

. 68q
k

q q

q

0

2 1 2

2
1

2

For the ‘radial’ functions JQ ¢a a ( )( ) k ;N q,
,1 2 (50), with

¢ = -k k1 2 , and enumerated by the integer index Îq
¼{ }N0, 1, 2, , , we obtain

J

a a

a a a

J J J J

Q ¢

=
+ + -

+ + + +

´

a a

a a a a



-

+
-
+ +

( )

( )

( )
( ) ( )!

( )

∣ ∣ ( ) ∣ ∣ ( )
( )

( )

( )

k

k

q N q

q

P

lim ;

1

2 1

sin sin cos cos 2 .

69

k
N q

q

q

q
N q

q
N q

q

0
,
,

2

1 2

2
1

2 1 2

2 2 ,0

1 2

1 2
1
2 1 2

We eliminated the first sum in this formula because in the
limit k→0 ( ¢ k 1) the largest coefficient among the
bsʼs, according to (66), is bq. We can thus list the four
radial functions JQ ¢a a ( )( ) k ;N q,

,1 2 , indicating their principal
quantum number a a+ +≔n N2 1 2, and the index

a a+ +≔m q2 1 2 that counts the number of zeros of the
angular function that we introduced above, in terms of
Legendre polynomials

for α1=α2=0, =n N2 , =m q2 ,

J

J J J

Q
-

+

´

¢


-

-

( ) ⟶ ( )!( )!
( )!

( ) ∣ ∣ ( )
( )

( )

( )

k
k

q N q

N q

P

;
2 2

sin cos cos 2 ;

70
N q

k

q

q

q
N q

q

,
0,0

0

2 1

2

2 2 ,01
2

for α1=0, α2=1, = +n N2 1, = +m q2 1,

J

J J J

Q
-

+ +

´

¢


+
-
+

( ) ⟶ ( )!( )!
( )!

( ) ∣ ∣ ( )
( )

( )

( )

k
k

q N q

N q

P

;
2 2
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sin cos cos 2 ;

71
N q
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q

q

q
N q

q

,
0,1

0

2

2

2 1 2 1,01
2
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for α1=1, α2=0, = +n N2 1, = +m q2 1,

J J

J J J

Q
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+ +

´

¢


-
+

( ) ⟶ ( )!( )!
( )!

∣ ∣
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sin cos cos 2 ;
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2 2 1,01
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for α1=α2=1, = +n N2 2, = +m q2 2,

J J
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Correspondingly, for the ‘angular’ functions F a a( )
N q,

,1 2

j( )k; in (51) we obtain

j j j

a a a j

F =

´ - + + +

a a a a


( ) ( ) ( )

( )
( )

( ) k

F q q

lim ; cos sin

, ; ; sin .
74k
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0

,
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2
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Using the relations between trigonometric and hyper-
geometric functions given by
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= - +
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⎞
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2
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2
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and recalling that Î ¼{ }q N0, 1, 2, , and as above,
a a= + +n N2 1 2 and a a= + +m q2 1 2, we obtain in all

cases a a( ),1 2 :

j j

j j

j j

j j

= F

= + F

= + F

= + F
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( )
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( )
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m q k m

m q k m
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for 0, 0 , 2 , ; cos ;

for 0, 1 , 2 1, ; sin ;

for 1, 0 , 2 1, ; cos ;

for 1, 1 , 2 2, ; sin .
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N q
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N q
k

N q
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0

,
0,1

0

,
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0
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1,1

0

We thus have the complete wave functions on +
2 in (22)

given in the limit k→0, for (0, 0), =n N2 ,

j J

J J J j
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sin cos cos 2 cos 2 ; 76
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for (0, 1), = +n N2 1,

j J

J J J j
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sin cos cos 2 sin 2 1 ;
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for (1, 0), = +n N2 1,

j J
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sin cos cos 2 cos 2 1 ;
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for (1,1), = +n N2 2,

j J
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sin cos cos 2 sin 2 2 ;
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N q N q
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q
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q

,
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,
1,1 2 1
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2

where a a( )CN q,
,1 2 are the appropriate normalization constants mul-

tiplied by the factor k2q. The four cases (76)–(79) can be written
as a single expression using (75), recalling that = -(N n1

2

a a- )1 2 and a a= - -( )q m1

2 1 2 , and introducing an integer
‘radial’ quantum number - = -≔ ( )n N q n m 2 0r . The
four expressions (76)–(79) can be written as

j J J J J

j
j

¡ =

´

a a a a

⎧⎨⎩

( ) ( ) ∣ ∣ ( )

( ) ( )
( ) ( ) ( )

( ) ( ) (∣ ∣ )C P

m
m

, sin cos cos 2

cos for 0, 0 and 1, 0 ,
sin for 0, 1 and 1, 1 , 80

N q N q
m

n
m

,
,

,
, ,0

r
1 2 1 2 1

2

for n m, both even or both odd. In the literature we find the
Zernike solutions in System I classified by the radial quantum
number nr and trigonometric or complex exponential functions
with the ‘angular momentum’ label Î - - + ¼{ }m n n n, 2, , ,
so that = -( ∣ ∣)n n mr

1

2
remains integer. With complex linear

combinations we thus regain the familiar expression [1, 10] in
polar coordinates f( )r, with the normalization constant and
standard phase given by

f
p

Y = -
+

- f( ) ( ) ( )

( )

∣ ∣ (∣ ∣ )r
n

r P r, 1
1

1 2 e .

81

n m
n m

n
m m

,
I ,0 2 ir

r

5. Limit k ′-0 to the Cartesian basis of System II

In this section we follow the limit relations when the char-
acteristic ellipticity parameter approaches k=1, i.e. ¢ k 0,
that reproduce the corresponding expressions for the Zernike
system in the ‘Cartesian’ coordinates that defined System II
in [12].

5.1. Limit of recurrence relations

We follow the same path as in the previous section, elim-
inating the elements on the upper diagonal in the determinant

La a ( )( )DN
,1 2 in (53), which are proportional to ¢k 2. Thus

L = - L =a a a a

¢ =
( )( ) ( ) ( )( ) ( )D Blim 0 0. 82

k
N

s

N

s N s
0

,

0

1

4 ,
,1 2 1 2
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Let us assume now that the vanishing factor here occurs for
some particular term s=p, i.e. - L =a a( ) ( )B 0 0p N p

1

4 ,
,1 2 and

depending on ¢k . Then

aL ¢ = - + +a a

¢
( )( ) ( )( ) k plim 2 , 83

k
N p

0
,
, 2

2
1

2

2
1 2

and consequently

a

¢ - L ¢

= - + + +

a a

¢



( )( ) ( )

( )( ) ≕ ( )

( )B k k

p s p s B

lim

. 84

k
s N p

s

0

2 1

4 ,
, 2

2
1

2

1 2

As in the previous section, in the limit ¢ k 0 the three-
term recurrence relation (33) splits into two two-term recur-
rence relations,

 ¢ + = -+  ( )k A b B b s p0, for 0 1, 85s s s s
2

1

 + = +- ( )B b C b p s N0, for 1 . 86s s s s 1

In the case s=p,

a

L ¢ = L

+ ¢
L ¢

¢
+ ¢

= - + +

+ ¢
L ¢

¢
+ ¢

¢

¢

¢

a a a a

a a

a a

=

=

=

( )

( )∣ ( )

( )
∣ ( )

( )
∣ ( ) ( )

( ) ( )

( )

( )

k

k
k

k
O k

p

k
k

k
O k

0

d

d

2

d

d
. 87

N p k N p

N p
k

N p
k

,
, 2

0 ,
,

2 ,
, 2

2 0
4

2
1

2

2

2 ,
, 2

2 0
4

1 2 2 1 2

1 2

2

1 2

2

With this formula, one gets

¢ - L ¢ ~ ¢a a( ) ( ) ( )( )B k k k , 88p N p p
2 1

4 ,
, 2 21 2

where now the smallness parameter is



a a a

= -
L ¢

¢

+ + + + + +

¢

a a

=

( )

( )
∣

( ) ( )

( ) k

k

p p

1

4

d

d

2 2 . 89

p
N p

k
,
, 2

2 0

1

4 1 2
2 1

4 2
1

2

2

1 2

2

The three-term recurrence relation (33) for s=p takes the
form

¢ + ¢ + =+ - ( )k A b k b C b 0. 90p p p p p p
2

1
2

1

But according to the formulas (85) and (86), we obtain,
corresponding to (64)

=-

=- ¢
+ + +

- - -


 ( )

b b C B

b b k A B

,

. 91

p p p p

p p p p

1 1 1

1
2

1 1

Putting now equations (91) into (90), one arrives at

 = ++

+

-

-  ( )
A C

B

A C

B
, 92p

p p

p

p p

p

1

1

1

1

and from (89) one can then evaluate L ¢ ¢ ¢
a a

=( ) ∣( ) k kd dN p k,
, 2 2

0
1 2 2 .

5.2. Limit of the wavefunctions

As previously in (66), from two-term recurrence relations (85)
and (86) we obtain for   -s p0 1,

a

a

-
¢

=
- + +

+ ¢

¢

-

-




  

( )
( )

⟶ ( )
( )

( )

! ( )
( )

b
B B B

A A A k

p p

s k

1

1
, 93

s
k

s

s

s

s

s
s

s

s

0

0 1 1

0 1 1
2

2
1

2

2
1

2

2

while for   -s N p1 ,

a a

a

-

=
- + + + + +

- + +

+
¢

+ + +

+ + +


  

( )

⟶ ( )

( ) ( )
( ) !

( )

b
C C C

B B B
b

N p N p

p s
b

1

1

1 2
, 94

p s
k

s p p s p

p p s p
p

s s

s

s

p

0

1 2

1 2

1 2

2
3

2

For bp, the calculation yields

a

a
=

+ +

- ¢ +

( )
( )( )

( )b
p

k
. 95p

p

p

p

2
1

2

2
2

1

2

Proceeding as before, from (31) we obtain the limit
¢ k 0 for the ‘radial’ functions

J J J

a a J

Q ¢ ~

- + + +

a a

¢
( ) ( ) ∣ ∣

( ) ( )

( ) k

F p p

lim ; sin cos

, ; ; sin , 96

k
N p

0
,

2 1 2
1

2 2
1

2
2

2 2
1
2

which for ¢ k 0 do not depend on the parity α1. Let us
introduce the quantum number a+≔n p21 2 having the
same parity as a2, so that a= -( )p n1

2 1 2 is integer; then we
only need to list the two cases, which involve Legendre
polynomials: for a = 02 , =n p21 ,

J J J

J J

Q ¢ - +

= -

¢

⎛
⎝⎜

⎞
⎠⎟( ) ⟶ ∣ ∣

( ) ( !)
( )!

∣ ∣ ( )
( )

( ) k F p p

p

p
P

; cos , ; ; sin

1
2

2
cos sin ;

97

N p
k

p
p

p

,
0

0
2 1

1

2

1

2
2

2 2

2

1
2

1
2

for a = 12 , = +n p2 11 ,

J J J J

J J

Q ¢ - +

= -
+

¢

+

⎛
⎝⎜

⎞
⎠⎟( ) ⟶ ∣ ∣

( ) ( !)
( )!

∣ ∣ ( )
( )

( ) k F p p

p

p
P

; sin cos , ; ; sin

1
2

2 1
cos sin .

98

N p
k

p
p

p

,
1

0
2 1

3

2

3

2
2

2 2

2 1

1
2

1
2

These two expressions can be subsumed in a single form for
the radial function

J J J

a

Q ¢ -

= +

a

¢
( ) ⟶ ( ) ( !)

!
∣ ∣ ( )

( )

( ) k
p

n
P

n p

; 1
2

cos sin

2 . 99

N p
k

p
p

n,
0

2 2

1

1 2

2 1
2

1

Next, for the angular function jF a a ( )( ) k;N p,
,1 2 , from (32) and

taking into account (93) and (94) we have that in the ¢ k 0
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limit

j j j j

a a

a j

F ~

´

´ - + + + + +

+ +

¢

a a a a

a

a

+

+ +

+

( )
( )

( ) ( ) ∣ ∣ ( )

(
) ( )

( )

( )

k

F N p N p

p

; sin sin cos

, 1;

2 ; sin , 100

N p
p

p

k

,
, 2

2 1 1 2

2
3

2
2

p

p

p

1 2 2
1
2 1

2
1
2

2
2

1
2

where the first summation is eliminated because it is one order
more in ¢k 2. Because of the parities a a,1 2, this contains four
cases, and now the hypergeometric functions are Gegenbauer
polynomials a ( )C xn . For the case of ( )0, 0 parities, we have

j j j

j

j j

F
+

k¢

´ - + + + +

=
+

k¢

- G +
G + + -

´

k¢

+
-
+

( )
( )

( )
( )

( ) ⟶
( )

( ) ∣ ∣

( )

( )
( )! ( ( ))

( ( ) ( ))

( ) ( )

( )

( )
⟶

k
p

F N p N p p

p
N p p

p N p

C

; sin sin

, 1; 2 ; sin

2 2 2 2 1

2 2 1 2

sin cos ,

101

N p
p

p

p

p

p

p

p

p
N p
p

,
0,0

0

1

2

2 1

2

2

2 1
3

2
2

1

2

2 1

2

2
2 2
2 1

1
2

1
2

and the three other cases follow similarly. As for the radial
function, the angular functions can be subsumed by a single
expression with appropriate indices

j
a

a

j j j

F
G + G + G +

k¢ G + + G + +

´

a a

k¢

+

( )

( )

( ) ⟶
! ( ) ( ) ( )

( ) ( )

( ) ∣ ∣ ( )

( )
⟶

102

k
n n n

p n n

C

;
2 2

2 2

sin sin cos .

N p
p

n
n
n

,
,

0

2 2
1

2 1
1

2 1

2
2

1

2

2
1 2

1

1 2

1
1
2

2
1

a a a a= + + = + +
- = -≔

n N n p
n n n N p

With 2 , 2 ,
2 2 .

1 2 1 1 2

2 1

Finally, the complete wave functions (22) built from both
the radial and angular parts are in the limit ¢ k 0, the
solutions reported for System II in [12], with the exchange of
coordinates J j p« + 1

2
and given by

J j j J

J J j j

¡ = ¡

=
~

a a

a a + +

( ) ( )

∣ ∣ ( )∣ ∣ ( )
( )

( )

( )
C P C

, ,

cos sin sin cos ,

103

N p n n

n n n
n

n
n

,
,

,
II

,
, 1

1 2
1 2

1 2

1 2 1
2

1
1

1
2

2
1

where
~ a a( )
Cn n,

,

1 2

1 2
is an appropriate normalization constant mul-

tiplied by ¢( )k p2 . This exchange of radial and angular coor-
dinates and the corresponding rotation « -( ) ( )x y y x, , on
the unit disk [10] J j( )r , in (54) yields, for k=1 the Zernike
solutions on the disk in System II

J j J j

p

Y = ¡ -

=
+ + +

+ +
-

´
-

+
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( )

( ) ( )

! ( )( ) !
( )!

( )

( )

/

104

k

n
n n n n

n n
y

P
x

y
C y

r , cos 1 cos

2
2 1 1

2 1
1

1
.

n n n n

n n

n n
n

,
II

,
II 2 2

1
1 1 2 2

1 2

2

2

1

1 2 1 2

1
1
2 1

1 2
1

6. Conclusions

We have constructed the explicitly separated solutions to the
Zernike system in elliptic trigonometric coordinates. We thus
verified the consistency of our results with those previously
obtained in [12] by addressing their limits k 0 and k 1
to the polar coordinates of Systems I and II.

The importance of integrable and superintegrable systems
in two or more dimensions, is that their differential equations
and solutions separate in more than one system of coordinates.
In the particular case of the Zernike system, the generic coor-
dinate system is elliptic and its separation is ruled by the Heun
differential equation, which has four regular singular points,
while in the two limits examined here these reduce to hyper-
geometric differential equations with three such points. As
figure 3 shows, there is a continuous homotopy between the two
extremes k=0 and 1 as we vary the eccentricity parameter.

A defining characteristic of superintegrable dynamical
systems is that their governing Hamiltonians—in this case
equation (1)—can be written as a nonlinear combination of the
operators that correspond to the extra constants of the motion.
This connection was provided explicitly for the polar coordi-
nates of System I in (10, equation (78)), but we consider that
repeating this analysis for the generic elliptic coordinates would
take us beyond the stated purpose of the present paper.

The existence of more than one system of separating coor-
dinates and thus of separated solutions, also raises the question of
interbasis expansion coefficients [28–30]. In [11, 12] we found
the overlap coefficients between systems I, II, and its p1

2
-rotated

version called III, to be given by special Hahn and Racah
polynomials—the former also given as special Clebsch–Gordan
coefficients. Having here a continuum of elliptic coordinate
systems raises the question of their interbasis expansions between
generic rotated elliptic coordinates. These considerations suggest
that orthogonal sets of other special functions of higher order can
be expected in further research on the Zernike system.
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Appendix

Here we write out the Zernike eigenfunctions separated in
elliptic coordinates, in their form

J j J j¡ = Q ¢ Fa a a a a a a a( ) ( ) ( )( ) ( ) ( ) ( )C k k, ; ; ,N q N q N q N q,
,

,
,

,
,

,
,1 2 1 2 1 2 1 2

where a a( )CN q,
,1 2 is a normalization constant, for the six lowest-

lying values of the ‘energy’ that correspond to =n 0, 1, and
2 (see (53) et seq.) which (recalling that a a= + +n N2 1 2,
and choosing =b 10 ) involves the first (uppermost) three
eigenvalues L a a( )

N q,
,1 2 . We also give below two integrals that are

useful to compute the normalization constants a a( )CN q,
,1 2

n=0, q=0, α1=α2=0, so N=0, and
L = -( ) k0,0

0,0 1

4
2:

j J
p

J j
p
x¡ = - =( ) ( ) ( )( ) k,

1
cos 1 cos

1
.0,0

0,0 1 2 2 2 1 4
3
1 2

In this case, and in the following two n=1 cases, the nor-
malization constants can be found directly by integration over
the unit disk

n=1, q=0, α1=0, α2=1, so N=0 and
L = -( ) k10,0

0,1 13

4
2:

j J
p

J J j j

p
x x

¡ =


-

=


( ) ( ) ( )( ) k,
2

cos sin sin 1 cos

2
.

0,0
0,1 1 2 2 2 1 4

2 3
1 2

n=1, q=0, α1=1, α2=0, so N=0 and
L = -( ) k10,0

1,0 5

4
2:

j J
p

J J

j j
p

x x

¡ = - ¢

´ - =

( ) ( ) ( )

( )

( ) / /

/ /

k

k

,
2

cos 1 cos

cos 1 cos
2

.

0,0
1,0 1 2 2 2 1 2

2 2 1 4
1 3

1 2

n=2, q=0, α1=α2=0, so N=1
and L = ¢ - - ¢ +( ) k k k k2 4 91,0

0,0 2 13

4
2 2 4 :

n=2, q=1, α1=α2=0, so N=1

and L = ¢ - + ¢ +( ) k k k k2 4 91,1
0,0 2 13

4
2 2 4 ,

n=2, q=0, α1=α2=1, so N=0 and
L = ¢ -( ) k k40,0

1,1 2 9

4
2,

j J
p

J J

J j j j

¡ =

- ¢ -

( ) ( )

( ) ( )

( )

k k

, 2
6

cos sin

1 cos 1 cos sin cos .

0,0
1,1 1 2

2 2 1 2 2 2 1 4

Regarding the normalization constants a a( )CN q,
,1 2 , although we

cannot give their general expression, we can fragment their
computation into separate one-dimension integrals. This
involves factorizing

ò ò

ò

ò

ò

ò

J j j J

J j

J j

j
j

j

J
J J

J

j
j j

j

J
J

J
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= F
-

´ Q ¢
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+ F
-

´ Q ¢
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a a
p p

a a

a a
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( )

( )

I

k k
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C k
k

k
k
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k
k

k

k
k

d d ,

sin sin

1 cos 1 cos

;
d

1 cos

;
sin d

1 cos

;
sin d

1 cos

;
d

1 cos
,

N q N q

N q N q

N q

N q

N q

,
,

0

2

0

2

,
, 2

2 2 2 2

2 2 2 2

,
, 2

0

2

,
, 2

2 2

0

2

,
, 2

2 2

2 2

0

2

,
, 2

2 2

2 2

0

2

,
, 2

2 2

1 2 1 2

1 2 1 2

1 2

1 2

1 2

and setting =a a( )I 1N q,
,1 2 , thereby obtaining a a( )CN q,

,1 2 up to a
phase.

Now, observing the forms of JQ ¢a a ( )( ) k ;N q,
,1 2 in (50) and of

jF a a ( )( ) k;N q,
,1 2 in (51) and, having found the coefficients

={ }bs s
N

1 from (53), we have polynomials in trigonometric
functions of ϑ whose integrals range in J pÎ [ ]0, 1

2
, and

functions of j pÎ [ ]0, 2 , thus yielding four distinct inte-
grands for the four parity cases a a( ),1 2 .

Let us consider here only the case a a =( ) ( ), 0, 01 2 ,
where the integrals over j are solved using [31, equation

j J J j j

J

p

¡ =
¢

- ¢ - ¢ - - ¢ +

´ + ¢ - - ¢ +

=
¢
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2
2 2 9

4
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4 4
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j J J j j
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´ + ¢ - + ¢ +
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⎠

( ) ( ) ( )
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2.5.12(32)]

ò j j j = + -

´ G + G + G + +

p

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( [ ] )

( [ ]) [ ] [ ]/m n m n

sin cos d 1 1

1 1 1 ,

m n n
0

2

1

2

1

2

1

2

for m+n even and zero otherwise. For the integral in
J= Î [ ]x cos 0, 1 and = ¢z k k , we can use the expression

obtained from [31, equation (1.2.43(6)],

ò

å

+
=

+

´ +
- - - -

- - -
-

+ -
-

=

- 


⎡
⎣⎢

⎤
⎦⎥

( )( ) ( )
( )( ) ( )

( )

( ) ( )!!
( )!!

x x

z x

z

p

p p p ℓ

p p p ℓ
z

z
p

p z

d 1

2

1
2 1 2 3 2 2 1

2 1 2

2 1

2
arcsinh

1
,

p

ℓ

p

ℓ
ℓ

p

0

1 2

2 2

2

1

1
2

2

which is valid for = ¼p 2, 3, ; for p=0 the first summand
is absent, while for p=1 the summation over ℓ is excluded.
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