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Abstract: The finite oscillator based on the Lie group of spl(2) provides a model for finite one-dimensional (1D) array$Nof

2j +1 pixels, forj integer or half-integer which, as— o, deforms to the continuous 1D model of geometric opticsn3litions,
linear transformations and aberrations in the latter anei@al and have theM x N unitary counterparts in the former. Sincel(N)

there are onl\N? independent transformations, we identify the finite corpaets of translations, linear transformations and akiera
within the finite model, applicable to the correction of abhézd images or signals dfipixel linear arrays.
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1 Introduction: The finite optical model For the classical model, thescillator Lie algebraoscy
has four generatorg, g, h, and 1; under Poisson brackets

Starting from the 1D geometric optical model where thethey close as

coordinates of the phase space of rays are their posjtion

and momentunp at a line screen of sensors or leds, the {Mat=—p, {hp}=q {qp}=1 {lo}=0

finite oscillator model 1,2] is built as a Lie-algebraic i , ) ()
deformation of these observables to twdN x N Their corresponding matrices 1)¢(4) close under
(non-commuting) matrice® = ||Qm || andP = [Py, ~ COMMutation as,

with their commutatoK = —i[Q, P], acting onN-vectors

f = {fm}ﬁrpj that represent theN-point signals or K, Q=-iP, [K.P[=IQ, [Q.FI=IK, [1’0]:(%)

pixellated images of that discrete model based on theryg set of commutators defines a basis for the Lie algebra
59(2) group of quantum angular m.omentliﬁ],[go that  of phase and spimy(2) = u(1) @ su(2), in anN x N matrix
N :=2j+1, for any fixed value off € {0,5,1,3,...}.  representatioryl = 2] + 1, determined by the value of the

The elements of these matrices are su(2) Casimir invariant4, 5]
— =m , mme{—j,—j+1,...,j}, (1 o
d— Qmm 5r1'nnjf f J_J i it, (1) Ci= Q2+ P2+ K2= j(j+1)L 7
P Pt 3= 12 Cinne g+ 15 m At @ f finit tization has b lled th
N 1 is process of finite quantization has been called the
h= Ky = 3Cm Ome 1.t + 2C2m Om-1.m- (3) discrete-quantization proce$6] from geometric to finite
where optics, roughly parallel to that from classical to quantum

Ch = V(j—m)(j+m+1), (4)  angular momentum.
Translations of position and momentum of phase

space in the geometriparaxial optical model are
The three matrices are traceless and self-adjoint: thgenerated by the exponentiated Poisson operators
position matrix Q in (1) is diagonal, themomentum expu{p,o}) and exp—v{qg,o}). The corresponding
matrix P is skew-symmetric and pure imaginary, while matrices in the finite model, exjpP) and exg—ivQ), are
the symmetric reamodematrix K can be associated to N x N unitarymatrices that act on the finite image vectors
the classical oscillator Hamiltoniai = 3(p? + %)  f as analogues to those translations; (éx) produces
shifted by(j+%)1. The N = 2j + 1 eigenvalues of each fractional Fourier-Kravchuk transformations (rotations
are equally spaced—j,—j+1,...,j}. between the position and momentum axe3)7], and
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expipl impresses phases. They close into theMypm,:= p“tMgk—M in the phase space coordinates, whose
four-parameter Ligroup U(2) of 2 x 2 unitary matrices. Poisson operators are

This is a subgroup within the manifold of alN?

independent unitary transformation&N) that can be N 1= {p<F g™ o} — OMgm 9 OMm 9 ®)
inflicted on the linear vector space of images <™ P er = dq dp dp Iq’

f= {fm}ﬁrﬁfj. In Sect.2 we recall the classification of

canonical transformations in the classical model and their with

corresponding unitary matrix maps in the finite-arra 11 3

modelsp. 9 y P y ra.nk ke {0,5,1,3,...}, )
In Sect.3 we examine the characteristic sighature of weight  me {k k-1,...,—k}.

phase space ‘translations’ on finite pixellated images, )

while in Sect.4 we address the maps that correspond toThis provides, for the operators that generate phase space
classical linear canonical transformations, generated bynaps through their exponentials €% m 0k mMkm), the
Poisson operators of the thrgaadraticfunctionsg?, qp, ~ Classification (k,m) by rank and weight for 1D
and p?, expliciting the action of their corresponding aberrations10,11], [9, Chap. 13]. The Lie exponentials
N x N matrices on the pixellated images. Classically, of the generators8] act on beam density functions
translations and linear canonical transformationsp(d,p) or, for phase space display purposes on the
constitute the inhomogeneous symplectic Lie group2-vector ({}), generatingcanonicaltransformations that
ISp(2,R). Higher powers"p¥ generataberrationsin the  preserve its symplectic structurd][ in particular the
classical model; we consider also their finite counterpartdasic Poisson brackét, p} = 1.

asU(N) matrices that doot belong to the previous subset For rankk = 0 the classical map is the identity since
of translations§], but can be assumed to be ‘close’ to the Mo,o = 1 yields a null Poisson bracket. Whén= % we
classical linear subgroup, so that power expansions can bigave phase spatenslationsby a € R,

usefully made in the finite model for small values of the

departure parameters as a requisite fpr their correction. A exp(al\ﬁ; 1) (q) — (q—a) 7

closing Sect5 presents some conclusions on the scope of 227 \P p (10)
this correction and the issue of the parametrizations of the . q q

N2-dimensional manifold of the group(N). explaM; 1) (p) = (p+a) v

and with rankk = 1 we generaténear transformations,
2 Classical canonical and finite unitary maps

of phase space explalyy) (8) = (V2°7).

We transit the Royal Road by first formalizing the exp(aNiy o) (q) — (e;a"q)’ (11)
classical geometric model in phase space with its linear TP P

and aberration transformations, to determine their finite ~ q q

counterparts asN x N self-adjoint matrices that explaMy,-1) (p) = (p+20{q)'

exponentiate to the unitary transformations in the finite

model that will thus conserve information. These maps close into the 5-parameter inhomogeneous

In geometric optics with 1D screens, the observable ofSymplectic group of linear canonical transformations of
position g € R marks the intersection of a ray with a Phase spackSp(2,R), which is a distinguished subgroup
standardz = 0 screen and ranges over the full real line. Of all canonical transformations of the phase space plane.
Optical momentum is related to ray inclinatiéhto the For ranksk > 1 the transformations are nonlinear in
screen normal by = nsin@, with n the refractive index. (0, p) and generally referred to aberrations that yield
To enter the metaxial régime, the rangepois extended the closed expression
to the full real line so thatq, p) € R? is the phase space

—a) __
plane whose symplectic structure is contained in the basic q q (1+ She1 %Ck,m;n Mn(k—l),nm)

Poisson brackef{q, p} = 1, which is skew-symmetric, exp(a Mk,m)(p) = (1 o (@ ) ;
bilinear, and follows the Leibnitz rule for products, sottha P{3+ 2n=1 " CmnMnk-1).nm
series expansions can be uséf [ (12)

wherec?, . = 27 (k+ o(2s-1)m). Letting w stand
) ) _ for p and/org, the action oMy m ~ W2 in Eq. (12) on the
2.1 Classical canonical transformations and phase space coordinates has the leading terms

factored-product expansions w+cawX-14... soone calls the exponeAt= 2k — 1
the aberrationorder of the generatorMym, in the

Canonical transformations of the classical phase spacgeometric model of optics. All these transformations are
plane (q,p) € R? are generated by the monomials canonical, i.e.{qg, p} = {€?™Mq,e?™p}; they conserve the
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volume and structure of phase space; no light is lost nor The natural analogue of rark- geometric

gained. transformations ¥2) is thus the sum of self-adjoint
The linear and aberration performance of optical matrices with coefficientey = {a? .},

instruments  comprising several elements with '

individually known coefficient vectorsy = {akm}‘;n:_k K k-1

can be concatenated as elements of an infinite-parameter My(ax) = 3 Al ME i+ > at Mt (17)

aberrationgroup using thefactored product expansion m=k C me—k+ ’ 7

[10,17]

~ . ~ while the analogue of the factored-product expansiah (

Ala) = - xexpiak - My) x ~ ~ 13)  that providesN x N complex unitary matrices with
e X exp(ia% -M%) x exp(iog - My). parameters = {ay}, is

For reasons of mathematical simplicity, the translation A(a)=expiMj(j)) xexp(iMj_%wj_%)) X

e : , , : 18
factor exia; - M;) is normally excluded from the right - x expliM1(@) x exp(iM 1 (a1 )) €980, (18)
of (14), and instead one refers to aberration expansions 22

about adesign raycurtailed to some upper rank as  where we note that the product is not open-ended s (
transformations that are canoniced toorderA=2k—1.  pyt has 2 + 1 factors, with the rightmost being an overall
These operators can be concatenatedphase. The natural inner product in the vector space of

~ ~ o~

A(az)A(az) = A(as(a1, az)), whose product coefficients - signalsf = {f}},__;, where the matrices of the basis
a3(ay, az) have been tabulated to aberration order Bin[ (14, (15) are self-adjoint and their i-exponentials are
Chap. 14]. In the finite model however, translations arepjtaryis, of course,

naturally included within the unitary groug(N) as we

proceed to recall below. (f.g) = i fgn = (f,Mg) = (MTf,qg),
) T m
i (Awf,Aw@)g) = (f,9).

m=-—]

- : : (19)
2.2 Finite unitary transfo_rmanons and Thus one has the Lie grou(N) of all N? transformations
factored-product expansions of 2j +1= N-pixel 1D images, that are reversible (by—

o o ~ —a) and thus conserve information.
The Royal Road tdinite quantization of the monomial

functions pqP to matrices, leads to the consideration of

monomials with powers of théareegenerators ob(2) in 3 Finite phase space ‘translation’ maps
theirN := (2j+1)-dimensional representatior, P, and

of the modematrix K. (The unit matrixl is also present To evince the action of the exponentiated matrices
but need not be addressed jointly). These matrices ar’éxp(iaMg ) on anN-point signalf = {fm}j et us
related by the Casimir mvananf)( S0 we only negd to consider 7{?16 translation and linear map]sn(;]);(_a{nd (K}
countK —the generator of Fourier-Kravchuk rotations of that belong to the linear (paraxial) subgroup in the
phase space8[— with exponents 0 or 1. Hence, to the geometric r%odel seen abovep group
pyramid of generator®y n, in (8), we will associatewo '
pyramids of matrix generators in the finite model,

MQm(Q,P) := {P" QK M} ey, m¢,, (14) 3.1 Linear phase generated Ry

k_l
Micm(Q.P.K) i= {KM{ 1 (Q.P)bues,  m_,2

10 (15) We note first that the@ositionmatrix M | = Q in (1)
—K+3 273
’ acts aqg Qf)m = mfy, so the exponential action is

where{AYBYC"} ., is theWeyl orderingof the symbols  fy,— (% = (&99f),
within the braces, i.e., the sum of all permutations of the _ : 142((2

u+v+w objects divided byu-+v+w)!; when the forming = fm+|a(Qf)m 5 0°(QF)m+

matrices are self-adjoint, so is the Weyl ordering of their =€ My, (20)
powers. The range of ranksclassically unbounded i),

is restricted in in théN = 2j + 1 finite model to . . : . L
impressing a linear phase on the pixeld,ads originating

ke {0 143 il in MO© from an inclined plane wave on the screen. This action
etz km> mf,, (16)  corresponds with 10) as a translation in momentum
ke{0,3,1,3,.... -3} inM{ space that here is cyclic ia with period 2t when j is
integer, or modulo # when half-integer. However, if we
S0 1= (2j+1)7 regarda in (20) as asmall parameter, we should regard
(,%m only the first term after the unity, name(@f)m = mfin.
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Fig. 1: Transformation of a 65-point real signtﬁ?) := &,m consisting of a single-pixel of value 1 on a background of Oieder the
maps generated by the exponentiated matrice§ @R (top), and expiaK) (botton). The real, imaginary and absolute values of the
transformed signal are shown for parameters 0, 0.1, 0.3 and 0.5. The gray scale adjusts to the minimal (black) andrmra (white)
values of the pixels with gray remaining zero.

3.2 The ‘translation’ map generated By by alternating signs that form an oscillatory wake. This is

the finite analogue of th&ranslation of pixel positions
Next, consider thenomentumM?9 , = P in (2), whose  (10). The ‘center of mass’ of the signal moves to the left
gnd leaves a real oscillating tail of alternate signs to its
right, which in thej — o limit is zero. The absolute
values are symmetric imthough.

exponentiated action classicall)z/ztranslates positions a:
eP%f(x) = f(x+B) in (10. In the finite model, the
matrix exgi3P) acts on signal§through the well-known
Wigner SU(2) little-d functions drln,rﬂ(B) [5]. The
exponential series 8 acting on the pixel values is the

map 3.3 The Fourier-Kravchuk map generatedky
fm = fn(B) = (€PPf)m
= fn+iB(PHm— % 2(P?Hm -+ Also shown in Figl (bottom), is the exponentiated action
j o _ of the mode generator matriX in (3), which is
= > (-1 _mernm(B) foy . (21)  symmetric and real. Its exponential éikpK ) rotates the
nm=-j between the plane ofQ and P, the position and

momentum matrices. Thu¥ is the generator of the
The action of exifP) is unitary and real, i.e., fractional Fourier-Kravchuktransforms 8] that will act
orthogonal. It is shown in Figl (top), where the object on the 1D signal$ as,
signal is the one-point unit sign&inmo) = onpe,m at the
central pixelm® = 0; the result of the transformation is f,— fr%V) = (eiVKf)m
the spot s™) = {Sg]nf)/} on the 1D screen. This is the = fn+iY(Kf)m— %yz(Kzf)er___
analogue of th@oint-transfer functiobetweenm® andm _
in discrete mechanical systems. And agairg ih (21) is _ ! dl i f 23)
small we only have to regard the first term in the series - mz_‘ mu (V) T -
after the unity, -

i(Pf)m = 3Ch fm1— 3CL 1 o1, (22)  For smally, the term after the unity shows thiétacts as a

o o o _ position-dependent averager,
This is a centered, two-point discrete derivative (thattbm

to dx asj — ); the coefficient<l, in (4) are minimal at

_1c6i 1]
the extremes and maximal at the center ofriposition (K)m = 3Cm fms1 4+ 5C%m fn-1. (24)
range.
Form < 0 the first coefficient inZ2) is larger than the Had we realized thesu(2) algebra 1)—(3) as

second, so the series of €kpP) yields same-sign generators of rotations on a 2-sphere in an ambient 3D
decreasing values that multiply the original spot sigral; t (q, p, k)-space, their exponentiated action would be that
its right m > O the second coefficient is larger than the of rigid rotations of the sphere —the counterpart of

first, so the exponential series multiplies the spot signatranslations and rotations of classical phase space.
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Fig. 2: Transformation of a 65-point signal consisting of five spaéfs of value 1 on a background of 0's, under the maps geeeiat
the exponentiated matrices Qi«pPZ) (top) and exgia {QP}we,) (botton). As in the previous figure, the real, imaginary and absolute
values of the transformed signal are shown in the same gedg;dtere the parameters are= 0, 0.001, 0.003 and 0.005.

3.4 On ‘correction’ of translations itJ(N) wheresy, = 1 for unit test signals and, when= =, the
maps correspondings’iml) are obviated becaus@jEj = 0.

(The fact that 26) excludes them = O value can be
We can probe a finite optical systemA € U(N) supplemented bMS,ozlthat generates an overall phase
represented by aN x N unitary matrix, by recording its  gag0) 5o a(0) = §,/sp.) Thus, when we test the
actijon onN one-point signalss™ := ||anm ||, for all  yransformation system with unit signals§™))m = &e.m
nf|Z;. Each one will  transform to aspot gt g pixels nr|);, we obtain the fourU(2) lowest,
As(™) — sAT) — | S™))| encompassing neighbouring ‘linear’ parameters of the system.
pixels m|'_j. Since the set of alN one-point signals Only when the system matri&A(a) in (18) is an
exponential exiM®a,b,c)) of the sum 25), will the
parameters, b, ¢ have values independent of In this
case, theU(2) phase and linear transformations due to
translation can beeversedfor any and all pixellated

{SW)},‘-W}J- form an orthonormal basis under the inner
product @9), so do their unitarily transformed spots
sAn) " In principle, if we know all of the latter, we can
f‘fnStr“Ct _the(mg\l Ax(m’\)l trhagnrs]fprmathn MalrX  imagesf’ on the finite array to recuperate the original
= [Anm |l = (s J0s )| which is aumtzzry matrix  f _“exp(—iM®)f'. Yet, if the parameters arenot
(18) with the set ofN“ cyclic parametersr = {a}. mrindependent, we may choose theiverage values
Consider first transformations generated by a linearg j ¢ overm|'_j to build anM® (@, b,c) to eliminatethe
complnauo(r)] of the tPreeSU(Z) C U(N) generator  , rightmost factors in the factored produdisy (i.e.,
matricesM; , and Mg, at the top of the pyramids |ineqr transformation and overall phase). The remaining

(14-(15), e 2j — 1 factors to the left in 18) will then contain the
departures of46)—(28) from constancy as aberrations of
M@ (a,b,c) = aQ +bP +cK (25)  the corrected first-order system. Thus, we continue with

the action of higher-rank transformations.
acting ons™ . Since this matrix is tri-diagonal, one-pixel
object signals am will be diffused to three pixelss), ;,
Sn ands,,, ;. Using Q0), (22) and @4), we can recover
the parameters ir2g) of the first-order approximation of 4 Correction of quadratic and higher
expiaM¥)s~ s+iaM¥s =: 5. Introducing the rank transformations
and weight indices, they can be expressed as

i
am=a? ;m=— (1— %), (m##0) (26)  The finite analogue of the classical linear transformations
a2 m (12) is generated by the fivll x N ‘quadratic’ matrices
o 174, s Q?, P2, {QP}weyt, {QK }weyt and {KP }yey Of rankk =1,
bm=aj,m = — (-f— -5 )7 (27)  which can be analysed in terms similar to the linear ones
2z Snilma G above
i - Again, exgiaQ?) impresses a phase on the
C(m) = Ago(M) = s (é?%l + jﬁ“ill)v (28)  components of a signalf; this is the quadratic

approximation to a multiplication by a circular wavefront
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train. Regarding squared momentum, principle on the positiom of the object unit test function,
(P*f)m =~ 2ChCrrea fmez + 3(CHCln s +ClnClma) I ) = 2i( ot sz ), (32)
1Cj Cj f 29 ’ Cn2Cm1 ClmoCima
T i~—m~—m—1 'm-2, ( )
0 _ Sm-1 _ Sm+1
910 = 2((2m71)CrJn71 (2m+1)cim,1)’ (33)

it is represented by a real symmetric matrix with positive 0’8—1 = —jm=1 *";mzfmfl m( Jsmff + 5 Sm+§ )
diagonal terms, zeroes on the second diagonals ~ Cn2Clm1 CmoCima
m = m 4+ 1, and smaller negative terms on the third +i1—WSm, (34)
diagonalsm = m' + 2. The action of the i-exponential
exp(iaP?) on a signalf will thus produce a symmetric al | = _2( Sm2  _ __ Sme2 ) (35)
diffusive oscillatory pattern, as a quantum mechanical 22 ChoCha CoClna/’

free potential on peaked wavefunctions. In FRy.we

show the action ofP? on five test one-point signals 0}71 = 2i( S‘“*lj + 3“*11 ), (36)
distributed on the pixel array, and their corresponding * 2 (@m-1)Cy (2MHLC gy

spots for various values of the parameter

As to the matrix K? = —Q? — P2 — j(j+1)1, , _
comparing 24) with (22), its action will be that of 29) wher.e.m # 0 In .(34)' When we. determine these
with all plus signs: symmetric and diffusive but not coefficients, or their average values if they dependmn

oscillatory. The matrix{QP ey = 2(QP + PQ) will we can implement the quadratic correction by applymg
generateytranslations in%dilaﬁed %)(yQ positic?r?, so thafXP(—1aM®@) after that performed with the linear
according to the parameter sign it compresses or expand@rrection.
the pixellated 1D image, as can be seen in Fig. Next we can address transformations of ra;nk%
corresponding in the continuous classical limit with and aberration order 3, generated by linear combinations
squeezing or expanding the positions of the spots on thef Ms (as ) in (17). The matrix is now 7-diagonal
pixel array. with elements

For the quadratic elements generating transformations

of rankk = 1 and aberrations order 2, the general form of . o 1\ 1A i
their generator is M = (2"7%% —01 1) 76CmCiny 1Cmi 20mi 3.

0 p2, A0 0 A2 B (a(%),%+ia110 (M+1) CHChny 1O 2.
M(Z)(a> = a]_’lp —|—017O{QP}Wey|—|—al7_1Q - 1 e J J
1 1 h ((|a3 3_6“1171) §Cm(Cm+1C,m,2
+a%’%{KP}WeyI‘Fa%’i%{KQ}WeyL (30) 55

+ancj— m—1+CrJn— 1CJ7 m)
+(ad_y—at_y)(mP+m+3) 3Ch) Sy

This matrix has five nonzero  diagonals, _ o
m € {mm+1,+2}, and its elements are + (%a;% ((m+%)c%clmfl+(m—%)CLmC,Jn 1)
Mr('r?n'( = (a5 + ia;%) %Qjﬁcrjﬁl%z,m * ag’gm3> O (37)
—(iafo— a3 1) 7(2M+1)Chdme1r + ((iad s +dady) §C miChCl
+ (ag cidl o +cl el o+ ag_lmz) - +cl o clo4ch el
+(iafo+ a;f%) L2m-1)CL 1w + (ia%%Jrall,,l)(mz—mﬂL%) %Clm) Om-1nv
—(a?; - |a;%+) %Cimcim+15m—2,m- (31) - (a%%—iaio)(m—l) %Cj_mcj_m+15m—2,m

.0 1\1pn j
- (2"7%%4'“1,1) 16CmC 1 i 20m-3m

As previously, the action on the one-point test functions
(™) = dmm that yield the aberrated datg, allows By applying this transformation on one-point signsig),
the inversion for the coefficients? . —all dependingin  we can obtain an approximation of the values of the
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aberration coefficients present in the signal. This is

0o _ Sm-3 _ Sm+3
P o it nor: ey M
0 _ o Sm-2 Smi2
G 2'(<m—1>c' ot <m+1>cim,2cim,l)’ (39)
ao — 1 Sm-3
33 @\ cl ol el
X (Z(m2 +m+3)c . .cl,
+@m+m+1)c c+clch
+(mP—m+ %)ijm72crjlﬂ+l)
— (3m? 4 3m+ 1)%“,;1+(3w12—3m+ 1) gnet
m-1 —m-1
__%L_ el i
+ C o lcl m 2c] 3 ((rnz+ m+ 3)C—m+1cm—2
+@m-m+1)(C! o +cl.ch
o my %)clmzcgm)) . (40)
0 - 1 Sm-2 Sm+-2
as-3 TPT((m nel el meacd L cT 1)
x ((8m=1)Ch 1€+ B+ 1)C 1, (Chr)
|SmW1 (41)
Sm+3
4I( 3CJ 2 CJ—m—3CJ—m—2CJ—m—1)’ (42)
1 _ Sm-2 _ Sm+2
9i0= 2((m_1)crjn—2crjn—l (m+1)C{m72C‘7m71)’
al - _ i Sm-3
1-1 @m-m?+3) \ ¢ _,cl cl .

X (—(mz—m+1) e 2CJ

+(mP+3m+ 3l el +c!ch
+2(mz+m+l)C7 Ch2)
+ (3mP 4-3m+ 1) + (3m? —3m+ 1)
m —m 1
+ I Sm+3 ( m2 m+ 72CJ

m3

(mz—3m+§)(CJ lc'_m+c o 1Ch)

—(m+m+$)cl _2)). (43)

Except for the diagonal exjprQ"), the exponential of
the matrices1)—(3) will be generally fullN x N matrices.

Since the central elements of the matrid&sand K%Y

grow as~ (% j)VW, the values of the parametemmust be
reduced by the inverse factor to keep the aberrations

within a visually comparable scale, as done in Figss

2. This motivates us to look at the first term of the

exponential series, after the unity, to characterize the fa
of the aberrations assuming that they are indeed small.

5 Concluding remarks

The finite quantization scheme applied to images on 1D
pixel arrays allows the classification of linear, quadratic
and higher-order aberrations in correspondence with their
continuous geometric optical counterparts. It also allows
an iterative method to determine the coefficients that
generate these transformations, rank by rank. Whether
one decides to remove the lower ranks in the
factored-product decompositiod8) and inquire on the
aberrations in the remainder of that product, or use the
extraction algorithm in Z6)—-(28) and @2)—(36), to
determine a ‘corrected’ linear transformation, the
factored-product expansion provides a well-defined
parametrization of the unitary grolg(N) based on small
departures from the ‘lineald(2) subgroup.

This should be considered as an as-yet unexplored
parametrization of théN?-dimensional manifold of the
unitary groupU(N), whose best-known parametrization
follows that of Euler angles in theN-dimensional
orthogonal subgroup of matrices of unit determinant,
SO(N) D SO(N-1) D --- D SO(3) D SO(2), inserting
phase transformations after each factor in that group
chain [L2]. The factored-product expansion coordinates
{a¢,} however, do not compose simply under the
concatenation of group elements, nor has the Haar
measure over the group been written in terms of them.
Further afield, sinc&J(N) properly contains the discrete
permutation group M(N) of N! elements; a
parametrization based on the permutation of pixel values,
with small departures due to ‘aberrations’ seems possible
but, to our knowledge, has not yet been attempted.
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