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The differential equation that defines the Zernike system, originally proposed to clas-
sify wavefront aberrations of the wavefields in the disk of a circular pupil, had been
shown to separate in three distinct coordinate systems obtained from polar coordi-
nates on a half-sphere. Here we find and examine the separation in the generic elliptic
coordinate system on the half-sphere and its projected disk, where the solutions, sepa-
rated in Jacobi coordinates, contain Heun polynomials. Published by AIP Publishing.
https://doi.org/10.1063/1.5030759

I. INTRODUCTION

The system that stems from the differential equation set forth by Zernike in 1934,1 which led to
the design of phase-contrast microscopy, was examined in Refs. 2–4 for its symmetry properties and
the separability of its solutions. On the two-dimensional plane r = (x, y), this equation is

ẐΨ(r)B
(
∇2 − (r · ∇)2 − 2 r · ∇

)
Ψ(r)=−E Ψ(r), (1)

restricted to the disk DB { |r | ≤ 1} and to the space of square-integrable solutions Ψ(r) ∈L2(D) with
free but finite boundary conditions,

Ψ(r)
���|r|2=1

<∞, (2)

which are explicitly found in terms of separated polynomial solutions in the coordinates. These
solutions are eigenfunctions of (1) with “energy” eigenvalues E that are quantized as

En = n(n + 2), for n ∈ {0, 1, 2, . . .} =:Z+
0 ,

and (n+1)-fold degenerate,
(3)

as shown in detail in Ref. 3. Of course, these eigenvalues and degeneracies will be the same in any
coordinate system. The spectrum (3) is also that of the two-dimensional harmonic oscillator, although
the underlying dynamic is clearly different.5

In Refs. 2 and 3, we also found that both the classical and quantum Zernike systems pos-
sess the remarkable property of leading to a superintegrable cubic Higgs algebra.6,7 In this article,
we concentrate on finding further polynomial solutions separated in sets of non-orthogonal coor-
dinates over the unit disk, which project from the standard elliptic coordinate systems of the
sphere.

The key to find new coordinate systems where (1) separates is to project the disk vertically on a
half-sphere

H+B {|~ξ | = 1, ξ3 ≥ 0} for ~ξ = (ξ1, ξ2, ξ3),

ξ1B x, ξ2B y, ξ3 =

√
1 − x2 − y2,

(4)
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whose orthogonal coordinate systems are known and where the constant value of one of the
coordinates, ξ3 = 0, matches the common boundary between the disk and the half-sphere. Polar
coordinates on the two-sphere, with the pole on the z B ξ3 > 0 axis, conform the solutions found by
Zernike, involving Jacobi polynomials in the radius |r| and trigonometric angular functions, which
were named solutions in coordinate System I. In Ref. 3, we set the pole of the coordinates on
the x = ξ1 > 0 and y = ξ2 > 0 axes, whose solutions separated into Legendre and Gegenbauer
polynomials, and were referred to as belonging to coordinate System II. The two sets of solu-
tions were related in Ref. 4 through interbasis coefficients that turned out to be Hahn and Racah
polynomials.

The generic class of orthogonal coordinate systems on the sphere is elliptic, with two pairs of
antipodal foci. When a pair coincides, the coordinates become the polar coordinates of the previously
studied Systems I and II on the half-sphere and on the disk. In Fig. 1, we show them together with the
elliptic system where the foci are 1

2π apart; Systems I and II correspond to 0 and π. We may expect
that the solutions separated in these coordinates will be of interest in the field of orthogonal function
bases on two-dimensional compact manifolds.

In this paper, we examine separated polynomial solutions of the Zernike system projected from
the generic orthogonal elliptic coordinate system on H+, and their projection on the unit disk D, as
non-orthogonal coordinates that will be also referred to as “elliptic.” This coordinate system was
used for the classical Zernike case in Ref. 2, but not further developed in the quantum/wave case;3

this we do here.
In Sec. II, we write Zernike’s differential equation (1) in Jacobi elliptic coordinates (ρ1, ρ2),8

where it separates into a simultaneous pair of differential equations that are of the Heun type.9 In
Sec. III, we find that the solutions of (1) are in fact products of Heun polynomials in ρ1 and in ρ2,
with the spectrum and degeneracies (3). Section IV brings us back to the forms of the solutions on
the Zernike disk and Sec. V presents some conclusions and directions of further inquiry. Although
in Sec. III we seem to search only for polynomials solutions, the problem of assuring that there
are no other L2(D) solutions is rather subtle, so we reserve Appendix A for a fuller discussion on
the existence only of Heun-type polynomials related to the solution set. Appendix B contains a list

FIG. 1. Left: System I of polar coordinates on the upper half-sphere. Middle: Elliptic system of coordinates (for angles between
foci 1

2 π and eccentricity constant k = 1/
√

2). Right: System II of 1
2 π-rotated polar coordinates. The elliptic coordinate system

interpolates between Systems I and II and provides the separating coordinates for solutions of the Zernike system on the
disk.
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of the lowest elliptic Zernike solutions that separate into Heun polynomials of coordinates on the
disk.

II. SEPARATION IN JACOBI ELLIPTIC COORDINATES

Elliptic coordinate systems can be defined on the sphere where a pair of points and their antipodes
are chosen as foci for ellipses whose points sum constant distances over the surface of the sphere:
There are several parametrizations for generic coordinates on the sphere,10 the trigonometric elliptic
coordinates used in Ref. 2 and the class Jacobi coordinates8 that we use here, which depend on two
parameters that specify the orientation and eccentricity of the ellipses.

A. Coordinates on the half-sphere

Zernike’s equation (1) presents the operator Ẑ as a Hamiltonian which is self-adjoint on the space
L2(D) of square-integrable functions on the disk,23 whose surface element is dx dy. When projecting
on H+ parameterized by ~ξ, we replace this by the measure on the (half-) sphere,

d2S =
dx dy√
1 − |r |2

=
dξ1 dξ2

ξ3
. (5)

The weight function,
w(r)B 1

/√
(1 − |r |2)= 1/ξ3, (6)

is then used for a similarity transformation on operators and wave functions, leading us to re-write
Zernike’s equation in the form

Ŵ Υ(~ξ ) =
(
∆LB +

ξ2
1 + ξ2

2

4ξ2
3

+ 1
)
Υ(~ξ )=−E Υ(~ξ ), (7)

Ŵ B w(r)
−1/2Ẑ w(r)

1/2, Υ(~ξ )B w(r)
−1/2
Ψ(r), (8)

where ∆LB is the Laplace-Beltrami operator on the sphere,

∆LB = L̂2
1 + L̂2

2 + L̂2
3 , L̂i = ξj∂ξk − ξk∂ξj , i, j, k cyclic, (9)

and where the free boundary condition (2) translates to

Υ(~ξ )/
√
ξ3

���ξ3=0
<∞. (10)

Written in the Schrödinger form (− 1
2∆LB + VW)Υ= 1

2 EΥ, Eq. (7) allows us to interpret the second
summand as a potential,

VW(~ξ )B−
ξ2

1+ξ2
2

8ξ2
3

−
1
2
=−

1
8

( 1

ξ2
3

+ 3
)
=−

4 − 3 |r |2

8(1− |r |2)
=−

1

8(1− |r |2)
−

3
8

, (11)

that describes a two-dimensional radial repulsive oscillator contained in the disk.

B. Jacobi elliptic coordinates

The Zernike operator (7) in the coordinates (ξ1, ξ2) does not separate, so we introduce the Jacobi
coordinates (ρ1, ρ2), a class determined by two independent parameters contained in the multi-index
a ≡ {a1, a2, a3} modulo a common scale, which is defined by

ξ2
1 =

(ρ1−a1)(ρ2−a1)
(a2−a1)(a3−a1)

, ξ2
2 =

(a2−ρ1)(ρ2−a2)
(a2−a1)(a3−a2)

, ξ2
3 =

(a3−ρ1)(a3−ρ2)
(a3−a1)(a3−a2)

. (12)

The range of the Jacobi coordinates (ρ1, ρ2) is determined by

a1 ≤ ρ1 ≤ a2 ≤ ρ2 ≤ a3, (13)

which is an (a2 � a1) × (a3 � a2) rectangle and where the boundary circle of D is the ρ2 = a3 edge,
since there ξ3 = 0.
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The relation inverse to (12) requires solving simultaneous quadratic algebraic relations that can
be shortened somewhat by defining ai ,j B (ai � aj) to write

ρ1(a; ξ2
1 , ξ2

2)= 1
2 (S + T ), ρ2(a; ξ2

1 , ξ2
2)= 1

2 (S − T ), (14)

S(a; ξ2
1 , ξ2

2)B a3,1ξ
2
1+a3,2ξ

2
2 + a1+a2, (15)

T (a; ξ2
1 , ξ2

2)B
√

(a3,1ξ
2
1+a3,2ξ

2
2)2 − 2a2,1(a3,1ξ

2
1 − a3,2ξ

2
2) + a2

2,1, (16)

noting that four distinct points on the sphere, {±ξ1, ±ξ2}, correspond to a single point (ρ1, ρ2) on
the Jacobi rectangular manifold. It follows that we shall have four distinct functions in the Jacobi
manifold that will correspond to different quadrants in the half-sphere and disk manifolds, which will
be characterized below by two parity indices.

Now, defining
r(a; ρi)B

√
(ρi−a1)(ρi−a2)(ρi−a3), (17)

the Laplace-Beltrami operator (9) can be written as

∆
J
LB(a; ρ1, ρ2)=

4
ρ2 − ρ1

(
D̂J(a; ρ1) − D̂J(a; ρ2)

)
, (18)

with the two operators given by

D̂J(a; ρi)B r(a; ρi)
∂

∂ρi
r(a; ρi)

∂

∂ρi
= r(a; ρi)

2
(
∂2

∂ρ2
i

+
1

r(a; ρi)
∂r(a; ρi)
∂ρi

∂

∂ρi

)
(19)

for ρ1 and ρ2. With this, (7) becomes the differential equation for elliptic Zernike solutions
Υ(a; ρ1, ρ2)≡Υ(a; ~ξ(ρ1, ρ2)) in Jacobi coordinates,

ŴΥ(a; ρ1, ρ2)=
(
∆

J
LB +

1
4

(a3−a1)(a3−a2)
(a3−ρ1)(a3−ρ2)

+
3
4

)
Υ(a; ρ1, ρ2)

=−E Υ(a; ρ1, ρ2),

(20)

where the second term represents a Cartesian Kepler potential that is singular at the rectangle
boundaries ρ1 = a3 and at ρ2 = a3, the latter being the edge of the disk D.

The differential equation (20) has a manifest symmetry in the plane (ρ1, ρ2) that leads us to
propose solutions that separate the these two coordinates as

Υ(a; ρ1, ρ2)=P1(a; ρ1) P2(a; ρ2). (21)

Equation (20) then separates into two differential equations of identical form, bound by a separation
constant Λ, that we write as(

D̂J(a; ρ1) +
(a1−a3)(a2−a3)

16(ρ1 − a3)
− (E + 3

4 )
ρ1

4

)
P1(a; ρ1)= 1

4ΛP1(a; ρ1), (22)(
D̂J(a; ρ2) +

(a1−a3)(a2−a3)
16(ρ2 − a3)

− (E + 3
4 )
ρ2

4

)
P2(a; ρ2)= 1

4ΛP2(a; ρ2). (23)

We can thus set out to solve a common differential equation for a function P(a; ρ) (suppressing the
subindex 1 or 2) that will serve to build the Zernike separated solutions in Jacobi coordinates.

III. HEUN POLYNOMIAL ZERNIKE SOLUTIONS

The Jacobi coordinates separate the Zernike equation (1) in the manifestly symmetric form (22)
and (23); each depends both on the “energy” E, whose values, known from previous papers1,3 are
En = n(n + 2), and on a separation constant Λ. We should stress at this point that the Zernike system is
two dimensional, where the separation constant binds the differential equations in the two coordinates;
as a physical system, it has three singularities in (ρ1, ρ2) at a1, a2, and a3. Below we shall solve
a one-dimensional system that will stand for ρ1 ∈ (a1, a2) or for ρ2 ∈ (a2, a3), each one having
only two singularities at their endpoints.13 The solutions to the one-dimensional problem below
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can involve polynomial as well as non-polynomial functions, but from the outset, we reserve for
Appendix A the proof that when the analysis involves the two equations [(22) and (23)] and the two
quantum numbers E and Λ, only Heun-type polynomial solutions exist that conform to the three said
singularities.

A. Separation of solutions

Using the differential operator D̂J(a; ρ) in (19) and the factor r(a; ρ) in (17), we can bring both
these equations to the common form

d2P(a; ρ)

dρ2
+

1
r(a; ρ)

dr(a; ρ)
dρ

dP(a; ρ)
dρ

+
1

4r(a; ρ)2

( 1
4 (a1−a3)(a2−a3)

ρ − a3
− (E + 3

4 ) ρ − Λ
)
P(a; ρ)= 0.

(24)

We also note that
1

r(a; ρ)
∂r(a; ρ)
∂ρ

=
1
2

( 1
ρ − a1

+
1

ρ − a2
+

1
ρ − a3

)
, (25)

so (24) becomes

d2P(a; ρ)

dρ2
+

1
2

( 1
ρ−a1

+
1

ρ−a2
+

1
ρ−a3

) dP(a; ρ)
dρ

+
1

4(ρ−a1)(ρ−a2)(ρ−a3)

( 1
4 (a1−a3)(a2−a3)

ρ−a3
− (E+ 3

4 ) ρ − Λ
)
P(a; ρ)= 0,

(26)

within the range ρ ∈ (a1, a2) for ρ = ρ1 in (22), or the range ρ ∈ (a2, a3) for ρ = ρ2 in (23), where
the condition of square-integrability (10) is now supplemented by

P(a; ρ)
/
(ρ − a3)1/4���ρ=a3

<∞. (27)

The differential equation (26) has two regular singular points at ρ = a1, a2, one at infinity and a
regular inverse-quadratic singularity at ρ = a3. To single out the singularities at a1, a2 and ensure the
boundary condition (27) for polynomial solutions, we define the new function Q(a; ρ) through

Q(a; ρ)B (ρ − a1)−
1
2α1 (ρ − a2)−

1
2α2 (ρ − a3)−

1
4 P(a; ρ). (28)

The exponents of the singularities at a1, a2 are the same (see Appendix A), and it is required that
αi(αi � 1) = 0, i.e., they are parity numbers αi ∈ {0, 1}, and α2

i = αi. This brings (26) to the form

d2Q(a; ρ)

dρ2
+

(α1 + 1
2

ρ − a1
+
α2 + 1

2

ρ − a2
+

1
ρ − a3

) dQ(a; ρ)
dρ

−
1

4(ρ−a1)(ρ−a2)(ρ−a3)

((
E − (α1+α2)(α1+α2+2)

)
ρ

+ (2α2+ 1
4 )a1 + (2α1+ 1

4 )a2 +
(
(α1+α2)2 + 1

4

)
a3 + Λ

)
Q(a; ρ)= 0,

(29)

where we note the invariance under the exchange (a1, α1)↔ (a2, α2). The differential equation (26)
is Fuchsian with four regular singularities at ρ = a1, a2, a3, and infinity. Such equations are said to
be of Heun type11 (see Appendix A); their Erdélyi standard form12 places these four singularities at
τ = 0, 1, t,∞ and contains seven parameters.

B. The Frobenius series expansion

In the following, we shall find the particular Heun polynomials that satisfy the differential equa-
tion (29). We consider solutions expanded in a Frobenius power series around the middle singularity
a2 so that it serves for both equations as ρ1 � a2 and ρ2 � a2. This is

Q(a; ρ)=
∞∑

m=0

Cm

( ρ − a2

a3 − a1

)m
, (30)
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whereupon we obtain from (29) the following three-term recursion relation for the series coefficients
Cm:

UmCm+1 + (Vm−λ)Cm + WmCm−1 = 0, C−1 = 0, C0 = 1. (31)

To obtain polynomial solutions of degree N in the Frobenius series (30), we must have WN +1 = 0. This
implies that the “energy” E in the Zernike system is quantized as previously announced, depending
on the principal quantum number n ∈ {0, 1, 2, . . .} and on the parities (α1, α2),

En = n(n + 2), nB 2N + α1 + α2 =




2N for (0, 0),

2N + 1 for (0, 1) and (1, 0),

2N + 2 for (1, 1).

(32)

Replacing the recursion relation (31) in (29) yields the coefficients Um, Vm, and Wm that depend on
N, the parities (α1, α2), and the eccentricity parameter k of the elliptic coordinates

k2B (a2 − a1)
/
(a3 − a1), (33)

which on H+ relates to the angle φ between their two foci as k = sin 1
2φ. The replacement yields their

expressions
U (α2)

N ,m = k2 (1 − k2) (m + 1)(m + α2 + 1
2 ),

V (α1,α2)
N ,m = 1

4 (1 − k2)(α1+α2+2m)2 − 1
4 k2(α2+2m+ 1

2 )2,

W (α1,α2)
N ,m = 1

4 En −
1
4 (α1+α2+2m)(α1+α2+2m−2).

(34)

The coefficients {Cm}
N
m=0 in (31) can then obtained from a tridiagonal matrix eigen-equation

M Cµ = λµCµ as N + 1 eigenvectors of dimension N + 1 with eigenvalues λµ numbered by µ ∈{0,
1, . . ., N},

*...............
,

V (α1,α2)
N ;0 U (α2)

N ;0 0 · · · 0

W (α1,α2)
N ;1 V (α1,α2)

N ;1 U (α2)
N ;1 · · · 0

0 W (α1,α2)
N ;2 V (α1,α2)

N ;2

. . .
...

...
...

. . . V (α1,α2)
N ;N−1 U (α2)

N ;N−1

0 0 · · · W (α1,α2)
N ;N V (α1,α2)

N ;N

+///////////////
-

*..............
,

CN ;α1,α2
µ,0

CN ;α1,α2
µ,1

...

CN ;α1,α2
µ,N−1

CN ;α1,α2
µ,N

+//////////////
-

= λµCN ;α1,α2
µ . (35)

It has been proven that the N + 1 eigenvalues λµ of these tridiagonal matrices are real and distinct.14

With the coefficients CN ;α1,α2
µ,m obtained from (35), we determine the polynomials QN ;α1,α2

µ (a; ρ) in
(30), now endowed with the indices N, µ and the parities α1, α2, as

Q(α1,α2)
N ,µ (a; ρ)B

N∑
m=0

CN ;α1,α2
µ,m

( ρ − a2

a3 − a1

)m
, (36)

up to a common factor, which we set choosing CN ;α1,α2
µ,m=0 = 1.

C. Four polynomial forms

The solutions P(a; ρ) of the original differential equation (26), expressed through the polynomials
Q(a; ρ) of degree N in (28) with the series expansion (30), can be now labeled as Heun functions
Hp(α1,α2)

N ,µ (a; ρ). There are four cases determined by the parities α1, α2 that we list as follows:

Hp(0,0)
n=2N ,µ(a; ρ)= (ρ − a3)

1
4 Q(0,0)

N ,µ (a; ρ), (37)

Hp(0,1)
n=2N+1,µ(a; ρ)= (ρ − a2)

1
2 (ρ − a3)

1
4 Q(0,1)

N ,µ (a; ρ), (38)

Hp(1,0)
n=2N+1,µ(a; ρ)= (ρ − a1)

1
2 (ρ − a3)

1
4 Q(1,0)

N ,µ (a; ρ), (39)

Hp(1,1)
n=2N+2,µ(a; ρ)= (ρ − a1)

1
2 (ρ − a2)

1
2 (ρ − a3)

1
4 Q(1,1)

N ,µ (a; ρ). (40)
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These functions are of Heun type related, except for normalization under the L2(D) norm, to the
Heun polynomials of degree N (of which there are eight classes11). The number of functions
dN = N + 1 for each value of the principal quantum number n are the following:

n= 2N → (α1, α2)= (0, 0) → dN =
1
2 n + 1,

n= 2N + 1 → (α1, α2)= (0, 1), (1, 0) → dN =
1
2 (n + 1),

n= 2N + 2 → (α1, α2)= (1, 1) → dN =
1
2 n.

(41)

Hence, when n is even, the sum of the first and last cases is n + 1, and when n is odd we have twice
the middle case; thus we obtain the n + 1 solutions for all integer values of the principal quantum
number n.

Putting together the two separate one-variable solutions, Hp(α1,α2)
n,µ (a; ρ1) and Hp(α1,α2)

n,µ (a; ρ2), the
four cases in (41) yield the Zernike elliptic solutions on the half-sphere H+,

n= 2N : Υ(0,0)
N ,µ (a; ~ξ)B c(0,0)

N ,µ Hp(0,0)
2N ,µ(a; ρ1) Hp(0,0)

2N ,µ(a; ρ2), (42)

n= 2N + 1 : Υ(0,1)
N ,µ (a; ~ξ)B c(0,1)

N ,µ Hp(0,1)
2N+1,µ(a; ρ1) Hp(0,1)

2N+1,µ(a; ρ2), (43)

n= 2N + 1 : Υ(1,0)
N ,µ (a; ~ξ)B c(1,0)

N ,µ Hp(1,0)
2N+1,µ(a; ρ1) Hp(1,0)

2N+1,µ(a; ρ2), (44)

n= 2N + 2 : Υ(1,1)
N ,µ (a; ~ξ)B c(1,1)

N ,µ Hp(1,1)
2N+2,µ(a; ρ1) Hp(1,1)

2N+2,µ(a; ρ2), (45)

where ρi = ρi(~ξ) are the expressions (14)–(16) of the Jacobi coordinates ρi in terms of the coordinates
(ξ1, ξ2) = (x, y) on the half-sphere and disk and the c(α1,α2)

N ,µ are normalization constants that absorb

the common denominators (a2 � a1)(a3 � a1) in (12). The parity indices of Υ(α1,α2)
N ,µ characterize the

sign under inversions of the disk with (1−2αi)= (−1)αi ∈ {1,−1},

Π(ξ1) :Υ(α1,α2)
N ,µ (a; ξ1, ξ2)=Υ(α1,α2)

N ,µ (a;−ξ1, ξ2)

= (1−2α1)Υ(α1,α2)
N ,µ (a; ξ1, ξ2), (46)

Π(ξ2) :Υ(α1,α2)
N ,µ (a; ξ1, ξ2)=Υ(α1,α2)

N ,µ (a; ξ1,−ξ2)

= (1−2α2)Υ(α1,α2)
N ,µ (a; ξ1, ξ2). (47)

The normalization constants c(α1,α2)
N ,µ in (42)–(45) should be such that the Zernike solutions on

the disk Ψ(r) ∈L2(D), on the half-sphere Υ(~ξ) ∈L2(H+), and in the Jacobi coordinates (a; ρ1, ρ2),
be unity. The inner products in these spaces are

(Ψ1,Ψ2)D =
∫
D

drΨ1(r)∗ Ψ2(r)=
∫
H+

dξ1 dξ2

ξ3
Υ1(ξ1, ξ2)∗ Υ2(ξ1, ξ2) (48)

=

∫ a2

a1

dρ1

∫ a3

a2

dρ2
ρ2 − ρ1

4r(a; ρ1)r(a; ρ2)
Υ1(a; ρ1, ρ2)∗ Υ2(a; ρ1, ρ2). (49)

The Zernike solutions in Jacobi coordinates, Υ(α1,α2)
N ,µ (a; ρ1, ρ2), being eigenfunctions of the self-

adjoint Hamiltonian Ŵ in (20), are thus orthogonal in their “energy” eigenvalues E and, due to (46)
and (47) in their parities (α1, α2), hence in N and in the principal quantum number n, so

(Υ(α1,α2)
N ,µ (a; ·, ·),Υ

(α′1,α′2)
N′,µ (a; ·, ·))D = 0 when

{
(α1, α2), (α′1, α′2), or

N ,N ′ i.e., n, n′.
(50)

Setting out from the separation of functions by Jacobi coordinates in (21), we find that there are
two additional orthogonality relations which are related with the resolution of the degeneracy in the
“energy” spectrum through the label µ that in (35) enumerates the eigenvalues of the separation con-
stant {ΛN

µ }
N
µ=0 in (22) and (23). Dividing the operator (19) by r(a; ρ1, ·), applying it toΥ(α1,α2)

N ,µ′ (a; ρ1, ·)
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in (50), multiplying this by another Υ(α1,α2)
N ,µ (a; ρ1, ·)∗, and subtracting a similar term exchanging

µ↔ µ′, as is usual when proving orthogonality of eigenfunctions, one obtains that

(Λµ − Λµ′)
∫ a2

a1

dρ1

4r(a; ρ1)
ΥN ,µ(ρ1, ·)∗ΥN ,µ′(ρ1, ·)

= r(a; ρ1)
(
ΥN ,µ′

dΥN ,µ

dρ1
− ΥN ,µ

dΥN ,µ′

dρ1

) ����
a2

a1

= 0, when Λµ , Λµ′ ,

(51)

and one similarly proves orthogonality for the factor in ρ2. We thus have the second orthogonality
relation for Zernike solutions with the same “energy” E as resolved by the label µ ∈ {0, 1, . . ., N}.

IV. ELLIPTIC ZERNIKE SOLUTIONS ON THE DISK

To organize the solutions (42)–(45) into the pyramid-shaped pattern common to the original
System I solutions (with n growing down and angular momentum across) and System II (with n = n1

+ n2 down and n1 � n2 across),3 we should first consider the solutions on H+, Υ(α1,α2)
N ,µ , as primarily

classified by their “energy” En = n(n + 2), i.e., through their principal quantum number n = 2N + α1

+ α2, into the dn B n + 1 multiplets guaranteed by (41).
The solutions Υ(α1,α2)

N ,µ are labeled by N ∈ {0, 1, . . .}, but further classified by µ ∈ {0, 1, . . ., N},
whose meaning is not yet clear. The n-levels of this pyramid are composed of two subsets of distinct
parities (α1, α2) that alternate: (−1)α1+α2 = (−1)n. Thus, for even n, (0, 0), and (1, 1), while for odd
n, (0, 1), and (1, 0),

n= 0, Υ
(0,0)
0,0 , d0 = 1,

n= 1, Υ
(1,0)
0,0 , Υ

(0,1)
0,0 d1 = 2,

n= 2, Υ
(0,0)
1,µ=0,1, Υ

(1,1)
0,0 , d2 = 3,

n= 3, Υ
(1,0)
1,µ=0,1, Υ

(0,1)
1,µ=0,1, d3 = 4,

n= 4, Υ
(0,0)
2,µ=0,1,2, Υ

(1,1)
1,µ=0,1, d4 = 5,

n= 5, Υ
(1,0)
2,µ=0,1,2, Υ

(0,1)
2,µ=0,1,2, d5 = 6,

· · · · · · · · · · · ·

n even, Υ
(0,0)
N= 1

2 n,µ |N0
, Υ

(1,1)
N= 1

2 n−1,µ |N0
, dn = n + 1,

n odd, Υ(1,0)
N= 1

2 (n−1),µ |N0
, Υ(0,1)

N= 1
2 (n−1),µ |N0

, dn = n + 1.

(52)

So let us now go back to the solutions to the Zernike equation (1) on the disk (x, y) ∈D, which
are now characterized by the same set of quantum labels borne by the functions in (42)–(45) and
were related through (8),

Ψ
(α1,α2)
n,µ (x, y) ≡ c(α1,α2)

N ,µ ξ
− 1

2
3 Υ

(α1,α2)
N ,µ (a; ξ1, ξ2), µ|N0 ,

n = 2N + α1 + α2,
(53)

with ξ2
3 B 1 − x2 − y2. Yet note that the Heun functions Hp(α1,α2)

n,µ (a; ρ) in (37)–(40) also contain
non-polynomial pre-factors in ρ. These are easily expressed in the coordinates on the disk, r = (x, y)
in (12), because (

(a3 − ρ1)(a3 − ρ2)
)1/4
= (1−x2−y2)1/4

(
(a3 − a1)(a3 − a2)

)1/4
,(

(a2 − ρ1)(ρ2 − a2)
)1/2
= y

(
(a2 − a1)(a3 − a2)

)1/2
,(

(ρ1 − a1)(ρ2 − a1)
)1/2
= x

(
(a2 − a1)(a3 − a1)

)1/2

(54)

and translates into a factor of 1, x, y, or xy according to the parities. We can thus express the elliptic-
separated Zernike solutions on the disk (53) using the polynomials defined in (36) as

Ψ
(α1,α2)
n,µ (a; x, y)= c(α1,α2)

N ,µ xα1 yα2 Q(α1,α2)
N ,µ (a; ρ1) Q(α1,α2)

N ,µ (a; ρ2), (55)

with ρi(a; x, y) given by (14)–(16) and a normalization constant c(α1,α2)
N ,µ .
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FIG. 2. Pyramid of elliptic Zernike solutions Ψ(α1 ,α2)
n,µ for 0 ≤ n ≤ 5, arranged as in (57). On each row n, the states are

arranged by alternate parities (0, 0) and (1, 1) for n even or (1, 0) and (0, 1) for n odd. The values of µ number the solutions
obtained from the order of the eigenvectors (35) afforded by the diagonalization algorithm.

The four lowest N = 0 Zernike solutions on the disk D that constitute the top rhombus in
the pyramid scheme can be built easily since Q(α1,α2)

N=0,µ = 1, and their square-normalization can be
determined directly. These are placed as

n= 0 : Ψ
(0,0)
0,0 (x, y)= 1/

√
π

n= 1 : Ψ(1,0)
1,0 (x, y)= 2x/

√
π Ψ

(0,1)
1,0 (x, y)= 2y/

√
π

n= 2 : · · · Ψ
(1,1)
2,0 (x, y)= xy

√
24/π · · ·

. (56)

These solutions are independent of the eccentricity parameter k in (33) and are common to all
coordinate systems, I and II, in particular. Following this lead, we propose the following interdigitation
of the two solution subsets in (52):

n= 0 : Ψ
(0,0)
0,0

n= 1 : Ψ
(1,0)
1,0 Ψ

(0,1)
1,0

n= 2 : Ψ
(0,0)
2,1 Ψ

(1,1)
2,0 Ψ

(0,0)
2,0

n= 3 : Ψ
(1,0)
3,1 Ψ

(0,1)
3,1 Ψ

(1,0)
3,0 Ψ

(0,1)
3,0

n= 4 : Ψ
(0,0)
4,2 Ψ

(1,1)
4,1 Ψ

(0,0)
4,1 Ψ

(1,1)
4,0 Ψ

(0,0)
4,0

n= 5 : Ψ(1,0)
5,2 Ψ

(0,1)
5,2 Ψ

(1,0)
5,1 Ψ

(0,1)
5,1 Ψ

(1,0)
5,0 Ψ

(0,1)
5,0

. (57)

In Fig. 2, we plot these functions on the disk, and in Appendix B we give their explicit expressions
obtained from the matrix eigen-solutions in (35). The normalization constants in Appendix B were
obtained numerically integrating the solutions over the disk.

V. CONCLUSIONS

The study of the Zernike system, defined by the differential equation (1) on the disk and realized
by wavefronts on a circular pupil whose aberrations one seeks to minimize,1 has yielded a host of
polynomial and special function properties and relations. This is due to the superintegrability of this
remarkable system, which provides closed elliptical orbits in the classical model,2 and in the quan-
tum/wave model,3 its separation in a manifold of the now seen generally elliptic coordinate systems,
which are orthogonal on the half-sphere. Whereas previous papers3,4 dealt with polar coordinates and
hypergeometric polynomials,18 the generic elliptic case involves the higher Heun functions that solve
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equations with four regular singular points.11 We thank the reviewer who brought to our attention
that the separation of variables on the complex half-sphere occurs in four coordinate systems, as
shown in Ref. 22, Table B.2 and labeled as S3. However, for the real half-sphere, the horospheric and
degenerate elliptic-1 coordinate systems defined there do not apply. These may be useful to describe
separation of variables of a different generalized Zernike system defined outside the disk D, which
we may cover in a future paper.

The generic elliptic coordinate separation that we have examined here can reliably be seen to
lead to further relations of interest such as interbasis expansions, the validation of the limits k → 0
and 1 to polar coordinates, and the explicit realization of the separating operators in the Higgs
algebra that are expected to lead to recursion relations among its solutions. These are topics to cover
in following papers.

As we stressed in Sec. III, the Zernike system is two-dimensional, and in this respect it falls
under the same caveata as the two dimensional hydrogen atom and oscillator in two-dimensional
elliptic coordinates,10,19–21 where both the energy and the separation constants are present in both
the equations that separate for each of the two coordinates.15 An elementary analog applies when we
consider two simultaneous linear algebraic equations in x and y that yield their two values; if one of
these equations is erased, we remain with a single two-variable equation whose solutions are a line
in the x–y plane, which is qualitatively different from the original system. In the same vein, when
the solution of the defining equation pair (22) and (23) is simply replaced by the single Heun-type
equation (26), the solution of the latter will not be rich enough to describe the two-dimensional
system. As stressed for other such two-dimensional systems (hydrogen atom and harmonic oscillator
in elliptic coordinates in Ref. 17), the L2(D) solutions are necessarily of polynomial type.
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APPENDIX A: NECESSITY OF POLYNOMIAL SOLUTIONS

In this appendix, we shall give a detailed discussion of the explicit form for the solutions of (26).
We first separate the factor containing (ρ − a3)−

1
4 and introduce a new function

F(a; ρ)B (ρ − a3)−
1
4 P(a; ρ), (A1)

which, according to the Zernike condition (27), satisfies at the boundary

lim
ρ→a3

F(a; ρ)= const, 0. (A2)

Inserting F(a; ρ) in Eq. (26), we get

d2F(a; ρ)

dρ2
+

1
2

( 1
ρ−a1

+
1

ρ−a2
+

2
ρ−a3

) dF(a; ρ)
dρ

−
1

4(ρ−a1)(ρ−a2)(ρ−a3)

(
Eρ + 1

4 (a1+a2+a3) + Λ
)
F(a; ρ)= 0.

(A3)

After a change of the independent variable ρ = a1 + (a2 � a1)x, the equation (A3) transforms into the
canonical form of Heun’s equation for the function

G(a; x)BF(a; a1 + (a2−a1) x ), (A4)

namely,
d2G(a; x)

dx2
+

1
2

(1
x

+
1

x−1
+

2
x−t

) dG(a; x)
dx

−
1

4x(x−1)(x−t)

(
Ex +

1
4 (a1+a2+a3) + Λ + Ea1

a2 − a1

)
G(a; x)= 0,

(A5)

where t = (a3 � a1)/(a2 � a1) > 1, so the singularities in x will now be at the points (0, 1, t,∞). Also,
for ρ = ρ1, the “physical region” is x ∈ [0, 1], while for ρ = ρ2, it is x ∈ [1, t].
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Recall that the canonical form of the Heun’s differential equation12 is

d2W (x)

dx2
+

(
γ

x
+

δ

x − 1
+

ε

x − t

) dW (x)
dx

+
αβx − q

x(x − 1)(x − t)
W (x)= 0, (A6)

where the coefficients α, β, γ, δ, ε are subject to the constraint α + β + 1 = γ + δ + ε. This equation
is of Fuchsian type, with regular singularities at x = 0, 1, t, ∞; the exponents of these singularities
are, respectively, {0, 1 � γ}, {0, 1 � δ}, {0, 1 �ε}, and {α, β}. The parameters in (A6) play different
roles: t is a singular parameter, (α, β, γ, δ, ε) are exponent parameters, and q is called the accessory
parameter. Thus the substitution (A1) transforms (26) to the canonical form of Heun’s differential
equation (A6) with the exponent parameters γ = δ = 1

2 , ε = 1, and

α = 1
2 (1 −

√
E + 1), β = 1

2 (1 +
√

E + 1). (A7)

The accessory parameter q is connected to the elliptic separation constant by the relation

q=
1

4(a2 − a1)

(
Λ + Ea1 + 1

4 (a1 + a2 + a3)
)
. (A8)

Note that since each singularity at x = 0, 1, t, and ∞ is regular, by the usual theory of Heun’s
equation, in the neighbourhood of any one of these singularities there exist two linearly independent
solutions of (A5), one associated with each of its two exponents. In particular, there are the four classes
of local (Frobenius) solutions around the two singularities at x = 0 and x = 1 which correspond to
exponent pairs: (0, 0), (0, 1

2 ), ( 1
2 , 0), and ( 1

2 , 1
2 ). So, if we write the function G(a; x) in (A4) as

G(a; x)= x
1
2α1 (x − 1)

1
2α2 Z (α1,α2)(x), (A9)

then the function Z (α1,α2)(a; x), αi ∈ {0, 1}, will satisfy Eq. (29) which, in terms of the variable x, is

d2Z

dx2
+

1
2

(2α1+1
x

+
2α2+1

x−1
+

2
x−t

) dZ
dx
−

Ẽx + q̃
4x(x−1)(x−t)

Z = 0, (A10)

with

Ẽ =E − (α1 + α2)(α1 + α2 + 2), (A11)

q̃= 2α1 + (α1 + α2)2t +
Λ + Ea1 + 1

4 (a1 + a2 + a3)

a2 − a1
. (A12)

Let us now expand the wave function Z (α1,α2)(a; x) around the singular point x = 0,

Z (α1,α2)(a; x)=
∞∑

s=0

bsx
s. (A13)

Inserting this power series into the differential equation (A10) leads to the three-term recurrence
relation

bs+1 =Asbs + Bsbs−1, b−1 = 0, b0 = 1, s ∈ {0, 1, . . .}, (A14)

with

As =
s
(
2(t + 1)s + 2t(α1 + α2) + 2α1 + 1

)
+ 1

2 q̃

t(s + 1)(2s + 2α1 + 1)
, (A15)

Bs =−
2(s − 1)(s + α1 + α2) − 1

2 Ẽ

t(s + 1)(2s + 2α1 + 1)
. (A16)

To find the convergence of the power series (A13), we note that the coefficients As and Bs for
s→∞ behave asymptotically as

As ∼
t + 1

t
−

2 + t(3 − 2α2)
2ts

, Bs ∼−
1
t

+
5
2 − α2

ts
. (A17)

The convergence of the infinite series (A13) is determined by the behavior of the quotient bs+1/bs for
large s. From (A17), it follows, by the Poincaré-Perron theorem, that the limit

c0B lim
s→∞

bs+1

bs
(A18)
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exists Ref. 16, p. 182. Let us now study the asymptotic behavior of the series (A13) for large s, as in
Ref. 14. Dividing the recurrence relations (A14) by bs�1,(bs+1

bs

) ( bs

bs−1

)
=As

( bs

bs−1

)
+ Bs, (A19)

we may assume that for large s, the following approximations hold:

bs+1

bs
≈ c0+

c1

s
+

c2

s2
,

bs

bs−1
≈ c0+

c1

s−1
+

c2

(s−1)2
≈ c0+

c1

s
+

c1+c2

s2
. (A20)

Putting these expressions into the three-term recurrence relation (A14) and writing the coefficients
at s2 and s, we find equations for the coefficients c0 and c1,

tc2
0 − (t + 1)c0 + 1= 0,

4tc0c1 − 2(t + 1)c1 = 5 − 2α2 − c0

(
2 + t(3 − 2α2)

) (A21)

and obtain two solutions

case (a) : c(1)
0 = 1, c(1)

1 =−
3
2 + α2, (A22)

case (b) : c(2)
0 = 1/t, c(2)

1 =−1/t. (A23)

Because t > 1, the case (b) presents the so-called “minimal” solution, while case (a) is the “maximal”
one.

Let us consider first the maximal solution (a), where we have

bs+1

bs
≈ 1 − ( 3

2 − α2)
1
s

(A24)

and consequently

bs ≈

s∏
`=1

(
1 −

3
2 − α2

`

)
(A25)

=
1
s!

(− 1
2 +α2)(− 1

2 +α2+1) · · · (− 1
2 +α2+s−1)=

(− 1
2 +α2)s

s!
,

with the Pochhammer symbol (z)s B Γ(z + s)/Γ(z). Thus we get

Z (α1,α2)(x)≈
∞∑

s=0

(− 1
2 + α2)s

s!
xs = (1 − x)

1
2−α2 , (A26)

which means that the function G(a; x) in (A9) converges to a finite limit at the singular point x = 1.
Therefore the points x = 0 and x = 1 are regular; for ρ = a1 + (a2 � a1)x, these points correspond to
ρ = a1 and ρ = a2 and the solutions of the equation (A3) in the interval ρ ≡ ρ1 ∈ [a1, a2] are square
integrable. Thus, we have no need to assume that the equation (A10) has polynomial solutions for
ρ = ρ1 as the only useful ones: there are no other.

Consider now the function G(a; x) in (A9) for the interval x ∈ [1, t] (or ρ ≡ ρ2 ∈ [a2, a3]). The
minimal solution (b) in (A23) leads to

bs+1

bs
≈

1
t

(
1 −

1
s

)
, hence bs ≈

1
ts

s∏
k=2

(
1 −

1
k

)
=

1
s

1
ts . (A27)

When x→ t (or ρ→ a3),

Z (α1,α2)(x)
����x→t
=

∞∑
s=0

bsx
s����x→t

≈

∞∑
s=1

1
s,

, (A28)

which logarithmically diverges at the singular point x = t (or ρ ≡ ρ2 = a3). Thus according to
the condition (A9), the function in (A9), G(a; x)= x

1
2α1 (x − 1)

1
2α2 Z (α1,α2)(x), also diverges at the

singular point x = t, which contradicts Zernike’s condition (A2). The case (a) gives a more divergent
solution. Therefore, to obtain a regular solution of (A5), the series (A13) must terminate. This explicit
example thus explains why all of the four solutions (37)–(40) of Eqs. (22) and (23) are only Heun-type
polynomials, expressed in terms of terminating series.
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APPENDIX B: HEUN ZERNIKE SOLUTIONS

The first four N = 0 states Ψ(α1,α2)
0,0 were given in (56), with Frobenius series (37)–(40) that have

single terms C0;α1,α2
0,0 B 1—but with undetermined normalization coefficients c(α1,α2)

0,0 . For higher-n
states, let us fix the Jacobi parameters to the simple values ā B {a1 = 1, a2 = 2, a3 = 3}, which
correspond to the eccentricity k2 = 1

2 in (33), so the angle between the ellipse foci on the sphere is
1
2π, as in Fig. 1. Keeping k as a generic parameter lengthens the formulas needlessly. The argument
of the Heun polynomials in (37)–(40) is then (ρ − a2)/(a3 − a1)= 1

2 ρ − 1, and the Zernike solutions
on the disk (x, y) ∈D are separated polynomials in (ρ1, ρ2), where

ρ1(ā; x, y)= 1
2 (S̄ + T̄ ), S̄(x, y)= 2x2 + y2 + 3,

ρ2(ā; x, y)= 1
2 (S̄ − T̄ ), T̄ (x, y)=

√
(2x2 + y2)2 − 2(2x2 − y2) + 1.

(B1)

There are eight solutions for N = 1, corresponding on the pyramid (57) to n = 2N + α1 + α2 in the
rungs n = 2, 3, and 4. The matrices in (35) are 2 × 2, thus having two two-dimensional eigenvectors
CN ;α1,α2
µ whose scale we have set by setting the first Frobenius coefficient to be CN ;α1,α2

µ, m=0 = 1. The

Heun functions Hp(α1,α2)
N=1,µ (ā; ρ) are N = 1 degree polynomials with pre-factors of (ρ−ai)νi in (55) that

yield the elliptic basis of N = 1 Zernike solutions

Ψ
(0,0)
2,0 (x, y)= c(0,0)

2,0

(
1 + 16

1−
√

17 ( 1
2 ρ1 − 1)

) (
1 + 16

1−
√

17 ( 1
2 ρ2 − 1)

)
, (B2)

c(0,0)
2,0 = 0.102 91,

Ψ
(0,0)
2,1 (x, y)= c(0,0)

2,1

(
1 + 16

1+
√

17 ( 1
2 ρ1 − 1)

) (
1 + 16

1+
√

17 ( 1
2 ρ2 − 1)

)
, (B3)

c(0,0)
2,1 = 0.541 23;

Ψ
(0,1)
3,0 (x, y)= c(0,1)

3,0 y
(
1 + 24

1−
√

73 ( 1
2 ρ1 − 1)

) (
1 + 24

1−
√

73 ( 1
2 ρ2 − 1)

)
, (B4)

c(0,1)
3,0 = 0.654 53,

Ψ
(0,1)
3,1 (x, y)= c(0,1)

3,1 y
(
1 + 24

1+
√

73 ( 1
2 ρ1 − 1)

) (
1 + 24

1+
√

73 ( 1
2 ρ2 − 1)

)
, (B5)

c(0,1)
3,1 = 1.013 86;

Ψ
(1,0)
3,0 (x, y)= c(1,0)

3,0 x
(
1 + 6( 1

2 ρ1 − 1)
) (

1 + 6( 1
2 ρ2 − 1)

)
, (B6)

c(1,0)
3,0 = 0.317 50,

Ψ
(1,0)
3,1 (x, y)= c(1,0)

3,1 x
(
1 − 4( 1

2 ρ1 − 1)
) (

1 − 4( 1
2 ρ2 − 1)

)
, (B7)

c(1,0)
3,1 = 0.211 95;

Ψ
(1,1)
4,0 (x, y)= c(1,1)

4,0 xy
(
1 − 32

1−
√

97 ( 1
2 ρ1 − 1)

) (
1 − 32

1−
√

97 ( 1
2 ρ2 − 1)

)
, (B8)

c(1,1)
4,0 = 2.403 27,

Ψ
(1,1)
4,1 (x, y)= c(1,1)

4,1 xy
(
1 − 32

1+
√

97 ( 1
2 ρ1 − 1)

) (
1 − 32

1+
√

97 ( 1
2 ρ2 − 1)

)
, (B9)

c(1,1)
4,1 = 1.130 54.

The normalization constants c(α1,α2)
n, u were computed through numerical integration. The placement

of these eight solutions in the Zernike pyramid (57) shows that they complete the n = 2 level, cover
the n = 3 level, and provide two of the five solutions at the n = 4 level.

The following twelve N = 2 states involve the diagonalization of 3 × 3 matrices which can best
be handled numerically to find its 3 eigenvectors labeled by µ = 0, 1, 2, with coefficients C2;α1,α2

µ,m
whose first m = 0 component in (35) is set to unity. They provide solutions in the pyramid rungs of
principal quantum numbers n = 4, 5, 6; these yield 3, 6, and 3 functions, respectively,
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Ψ
(0,0)
4,0 (x, y)= c(0,0)

4,0

(
1 − 18.1802( 1

2 ρ1−1) + 41.0267( 1
2 ρ1−1)2

)
×
(
1 − 18.1802( 1

2 ρ2−1) + 41.0267( 1
2 ρ2−1)2

)
, (B10)

c(0,0)
4,0 = 0.014 280,

Ψ
(0,0)
4,1 (x, y)= c(0,0)

4,1

(
1 + 12.9930( 1

2 ρ1−1) + 24.4675( 1
2 ρ1−1)2

)
×

(
1 + 12.9930( 1

2 ρ2−1) + 24.4675( 1
2 ρ2−1)2

)
, (B11)

c(0,0)
4,1 = 0.040 73,

Ψ
(0,0)
4,2 (x, y)= c(0,0)

4,2

(
1 − 0.8128( 1

2 ρ1−1) − 8.1608( 1
2 ρ1−1)2

)
×

(
1 − 0.8128( 1

2 ρ2−1) − 8.1608( 1
2 ρ2−1)2

)
, (B12)

c(0,0)
4,2 = 0.244 19;

Ψ
(0,1)
5,0 (x, y)= c(0,1)

5,0 y
(
1 − 8.9183( 1

2 ρ1−1) + 15.6772( 1
2 ρ1−1)2

)
×

(
1 − 8.9183( 1

2 ρ2−1) + 15.6772( 1
2 ρ2−1)2

)
, (B13)

c(0,1)
5,0 = 0.256 72,

Ψ
(0,1)
5,1 (x, y)= c(0,1)

5,1 y
(
1 + 7.3521( 1

2 ρ1−1) + 11.2865( 1
2 ρ1−1)2

)
×

(
1 + 7.3521( 1

2 ρ2−1) + 11.2865( 1
2 ρ2−1)2

)
, (B14)

c(0,1)
5,1 = 0.513 94,

Ψ
(0,1)
5,2 (x, y)= c(0,1)

5,2 y
(
1 − 0.4338( 1

2 ρ1−1) − 6.4303( 1
2 ρ1−1)2

)
×

(
1 − 0.4338( 1

2 ρ2−1) − 6.4303( 1
2 ρ2−1)2

)
, (B15)

c(0,1)
5,2 = 1.084 34, (B16)

Ψ
(1,0)
5,0 (x, y)= (1,0)

5,0 x
(
1 + 20.0956( 1

2 ρ1−1) + 49.9406( 1
2 ρ1−1)2

)
×

(
1 + 20.0956( 1

2 ρ2−1) + 49.9406( 1
2 ρ2−1)2

)
, (B17)

c(1,0)
5,0 = 0.018 09,

Ψ
(1,0)
5,1 (x, y)= c(1,0)

5,1 x
(
1 − 14.9479( 1

2 ρ1−1) + 31.5558( 1
2 ρ1−1)2

)
×

(
1 − 14.9479( 1

2 ρ2−1) + 31.5558( 1
2 ρ2−1)2

)
, (B18)

c(1,0)
5,1 = 0.266 05,

Ψ
(1,0)
5,2 (x, y)= c(1,0)

5,2 x
(
1 + 0.8522( 1

2 ρ1−1) − 10.8297( 1
2 ρ1−1)2

)
×

(
1 + 0.8522( 1

2 ρ2−1) − 10.8297( 1
2 ρ2−1)2

)
, (B19)

c(1,0)
5,2 = 0.533 46;

Ψ
(1,1)
6,0 (x, y)= c(1,1)

6,0 xy
(
1 + 9.7443( 1

2 ρ1−1) + 18.5364( 1
2 ρ1−1)2

)
×

(
1 + 9.7443( 1

2 ρ2−1) + 18.5364( 1
2 ρ2−1)2

)
, (B20)

Ψ
(1,1)
6,1 (x, y)= c(1,1)

6,1 xy
(
1 − 8.1898( 1

2 ρ1−1) + 13.7598( 1
2 ρ1−1)2

)
×

(
1 − 8.1898( 1

2 ρ2−1) + 13.7598( 1
2 ρ2−1)2

)
, (B21)

Ψ
(1,1)
6,2 (x, y)= c(1,1)

6,2 xy
(
1 + 0.4455( 1

2 ρ1−1) − 8.0296( 1
2 ρ1−1)2

)
×

(
1 + 0.4455( 1

2 ρ2−1) − 8.0296( 1
2 ρ2−1)2

)
. (B22)
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In Fig. 2, we have plotted these functions down to n = 5 in the pyramid scheme (57); the normalization
constants for the three n = 6 states outside that figure are omitted.
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23 We thank Professor Metin Arık (Boğaziçı University) for the remark that this is only a pre-Hilbert space, since the disk D

has a closed boundary.

https://doi.org/10.1016/s0031-8914(34)80259-5
https://doi.org/10.1063/1.4990793
https://doi.org/10.1063/1.4990794
https://doi.org/10.1063/1.5000915
https://doi.org/10.1063/1.5000915
https://doi.org/10.1063/1.2840463
https://doi.org/10.1088/0305-4470/12/3/006
https://doi.org/10.1088/1751-8113/46/42/423001
https://doi.org/10.1088/1751-8113/46/42/423001
https://doi.org/10.1070/rd2005v010n04abeh000327
https://doi.org/10.1002/prop.2190430602
https://doi.org/10.1088/0370-1328/71/5/312
https://doi.org/10.1063/1.2174237
https://doi.org/10.1002/prop.2190430603
https://doi.org/10.1088/0305-4470/34/22/311

