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The differential equation with free boundary conditions on the unit disk that was
proposed by Frits Zernike in 1934 to find Jacobi polynomial solutions (indicated
as I) serves to define a classical system and a quantum system which have been
found to be superintegrable. We have determined two new orthogonal polynomial
solutions (indicated as II and III) that are separable and involve Legendre and Gegen-
bauer polynomials. Here we report on their three interbasis expansion coefficients:
between the I–II and I–III bases, they are given by 3F2(· · · |1) polynomials that are
also special su(2) Clebsch–Gordan coefficients and Hahn polynomials. Between the
II–III bases, we find an expansion expressed by 4F3(· · · |1)’s and Racah polyno-
mials that are related to the Wigner 6j coefficients. Published by AIP Publishing.
https://doi.org/10.1063/1.5000915

I. INTRODUCTION

The two-dimensional differential equation proposed by Frits Zernike in 1934 to find a basis of
orthogonal functions over the closed unit disk, DB

{
r= (x, y) �� |r| ≤ 1

}
, is26

Ẑ ψ(r)B
(
∇2 − (r · ∇)2 − 2r · ∇

)
ψ(r)=−E ψ(r). (1)

The operator Ẑ is Hermitian under the natural inner product of functions over this region,

(ψ1,ψ2)DB
∫
D

d2r ψ1(r)
∗ ψ2(r), (2)

that defines the space L2(D) of square-integrable functions over D. Therefore, (Ẑψ1,ψ2)D
= (ψ1, Ẑψ2)D and the eigenfunction solutions Ψn,m(r) to (1) will be orthogonal when they belong
to different eigenvalues En = n(n + 2) and/or different eigenvalues under the angular momentum
operator M̂B−i(x∂y − y∂x), which corresponds to the evident rotational symmetry of Zernike’s
equation and the ensuing separation of variables in a polar coordinate system r= (r, φ).

Equation (1) can be seen as a classical Hamiltonian (with momenta p=−i∇ as in Ref. 20) or
a Schrödinger equation with a non-standard quantum Hamiltonian Ĥ =− 1

2 Ẑ , as done in Ref. 19. In
this paper, we shall address the expansions between the original Zernike eigenbasis (labeled I) and
two of the new separated eigenbases reported in Ref. 19 (labeled II and III). All three eigenbases are
solutions of (1) that separate into two polynomial factors: for I, in Jacobi polynomials of the radius
r and trigonometric functions of the angle φ; for II and III, the factors are Legendre and Gegenbauer
polynomials of coordinates that are not orthogonal over the disk.

We consider to be relevant that the Zernike system is one of the very few superintegrable systems
that have been actually used in optics, concretely for phase-contrast microscopy.26 Superintegrability
means that the system has more constants of motion than degrees of freedom, that classically the
system has closed orbits, and that Poisson brackets or commutators of the conserved quantities or
operators will generally yield quadratic or higher elements of known Lie algebras; see Refs. 8–12, 7,
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FIG. 1. Three bases and three interbasis expansions. The original Zernike disk solutions,26 indicated as I, involve Jacobi
polynomials and phases. These are related through interbasis expansions given by 3F2(· · · | 1)’s, which are Hahn polynomials
and special Clebsch–Gordan coefficients, to the new solutions, II and III,19 that involve Legendre and Gegenbauer polynomials.
The relation between the II and III bases are given by 4F3(· · · | 1)’s that are Racah polynomials, which are suggested to be
special 6j coupling coefficients.

and 13–16. As a quantum system, it is novel in the sense of not being restricted in space by potential
barriers but by boundaries where the wave functions can have finite values and normal derivatives.
Also, as a Hamiltonian operator, we note that Ẑ is built as a linear combination of generators of an
sp(2, R) algebra (∼∇2, r · ∇, and |r |2) plus one quadratic term, (r · ∇)2.

It has been pointed out that the generic superintegrable system leads by contraction to the Askey-
Wilson polynomial scheme and that the results reported here can be understood to stem from its
contraction to the Higgs oscillator system.7,11,12

In Sec. II, we succinctly recall the construction and expressions of the three said bases. Then we
proceed to find the interbasis expansions I–II and I-III in Sec. III, which yield special Clebsch–Gordan
coefficients that are Hahn polynomials, and II-III in Sec. IV, which are special 6j coefficients given
by Racah polynomials, as illustrated in Fig. 1. We add conclusions in Sec. V, while necessary but
extensive derivations are collected in the Appendixes A and B.

II. THREE ORTHONORMAL EIGENBASES

The key to find new coordinate systems where the solutions of Zernike’s equation separate is to
perform a vertical map from the disk D to a half-sphere H+B {~r = (x, y, z) | |~r | = 1, z ≥ 0}. Separation
of the solutions occurs when the coordinates are such that one of them is constant on the boundary
of the region, i.e., on the circle |r | = 1 common to both D and H+. As shown in Fig. 2, we can use the
spherical coordinate system (ϑ, ϕ) on the half-sphere, oriented in three distinct directions. When the
line of poles coincides with the z-axis, one obtains the polar separation of coordinates of the Zernike
basis I; when this line coincides with the x- or y-axis, we obtain the II or III bases, respectively.

To find the coordinate ranges for the three spherical coordinate systems, we introduce the unit
3-vector ~ξ of components,

ξ1B x, ξ2B y, ξ3B

√
1 − x2 − y2 ≥ 0. (3)

The three coordinate systems and their ranges on H+ are defined as19,20

System I:

ξ1 = sin ϑ cos ϕ, ξ2 = sin ϑ sin ϕ, ξ3 = cos ϑ, ϑ |π/20 , ϕ|π−π , (4)

System II:

ξ1 = cos ϑ′, ξ2 = sin ϑ′ cos ϕ′, ξ3 = sin ϑ′ sin ϕ′, ϑ′ |π0 , ϕ′ |π0 , (5)

System III:

ξ1 = sin ϑ′′ sin ϕ′′, ξ2 = cos ϑ′′, ξ3 = sin ϑ′′ cos ϕ′′, ϑ′′ |π0 , ϕ′′ |π/2
−π/2 . (6)
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FIG. 2. Top row: the three coordinate systems (4)–(6) on the half-sphere H+. Bottom row: the same three coordinate systems
under projection to the disk D.

The measure on H+ is related to that on D through

d2S(~ξ)=
dξ1 dξ2

ξ3
=

d2r√
1 − |r |2

= sin ϑ dϑ◦ dϕ◦, (7)

where ϑ◦, ϕ◦ stands for any of the three spherical coordinates in (4)–(6), within their corresponding
ranges for the inner product on H+, the upper half-sphere,

(υ1, υ2)H+ =

∫
H+

d2S(~ξ) υ1(~ξ)∗ υ2(~ξ)= (ψ1,ψ2)D. (8)

In accordance with the change of measures, the functions and the Zernike operator on H+ and on D
will then relate through

υ(ϑ◦, ϕ◦)≡ υ(~ξ)B (1 − |r |)1/4ψ(r), Ŵ B (1 − |r |)1/4Ẑ(1 − |r |)−1/4. (9)

On ~ξ ∈H+, the Zernike differential equation —now with Ŵ—has the simpler Schrödinger
structure,

ŴΥ(~ξ)=
(
∆LB +

ξ2
1 + ξ2

2

4ξ2
3

+ 1
)
Υ(~ξ)=−EΥ(~ξ), (10)

where ∆LB =L2
1 + L2

2 + L2
3 is the Laplace-Beltrami operator on the sphere, with the formal so(3)

generators LiB ξj∂ξk − ξk∂ξj (i, j, k cyclic) and a repulsive oscillator-type of potential ∼− r2/(1− r2)
over the disk.

In Ref. 19, we wrote (10) in each of the three coordinate systems (4)–(6), separating each in
successive or simultaneous differential equations in ϑ◦ and ϕ◦, taking care that the solutions be
square-integrable under the inner product (8) and allowing them to have finite values on the boundary
circle.

The normalized eigen-solutions over H+ and D classified by “polar” (n, m) and “Cartesian” (n1,
n2) eigenvalues are as follows:

The original Zernike system I in (4), shown in Fig. 3, is defined as

Υ
I
n,m(ϑ, ϕ)=

√
n+1
π

(sin ϑ)|m|(cos ϑ)1/2P(|m|,0)
1
2 (n−|m|)

(cos 2ϑ) eimϕ , (11)

Ψ
I
n,m(r, φ)= (−1)

1
2 (n−|m|)

√
n+1
π

r |m|P(|m|,0)
1
2 (n−|m|)

(1−r2) eimφ , (12)
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FIG. 3. The original Zernike solutions26 over the disk, ΨI
n,m(r,φ), in (12). The rows are counted from n = 0 down and m

crosswise. Since these functions are complex, ΨI
n,m =Ψ

I ∗
n,−m, we show their real part for m ≥ 0 and their imaginary part for

m< 0.

the x-oriented system II in (5), shown in Fig. 4, is defined as

Υ
II
n1,n2

(ϑ′, ϕ′)=Cn1,n2 (sin ϑ′)n1+ 1
2 Cn1+1

n2
(cos ϑ′)

√
sin ϕ′Pn1 (cos ϕ′), (13)

Ψ
II
n1,n2

(x, y)=Cn1,n2 (1−x2)
1
2 n1 Cn1+1

n2
(x)Pn1

( y
√

1−x2

)
, (14)

and the y-oriented system III in (6), shown in Fig. 5, is defined as

Υ
III
`1,`2

(ϑ′′, ϕ′′)=C`1,`2 (sin ϑ′′)`1+ 1
2 C`1+1

`2
(cos ϑ′′)

√
cos ϕ′′P`1 (sin ϕ′′), (15)

Ψ
III
`1,`2

(x, y)=C`1,`2 P`1

( x√
1−y2

)
(1−y2)

1
2 `1 C`1+1

`2
(y), (16)

where, in (13)–(16), the multiplying constant is

Ck1,k2 B 2k1 k1!

√
(2k1 + 1)(k1 + k2 + 1) k2!

π(2k1 + k2 + 1)!
, (17)

where J (α,β)
ν , Cα

ν , and Pν are the Jacobi, Gegenbauer, and Legendre polynomials of degree ν, respec-
tively, and where ki ∈ {0, 1, 2, . . .} =:Z+

0 stands for ni or `i. The range of these quantum numbers
is

FIG. 4. The new solutions19 of the Zernike equation over the disk, ΨII
n1 ,n2

(x, y), in (14). The rows are counted from n = 0
down, n1 counted down left, and n2 counted down right.
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FIG. 5. The solutions ΨIII
`1 ,`2

(x, y) of the Zernike equation defined in (16) over the disk. The principal quantum number
`B `1 + `2 here has the same interpretation as n = n1 + n2 in Fig. 4.

k1 + k2 = n= 2nr + |m | ∈Z+
0 ,

nr ∈Z+
0 , m ∈ {−n,−n + 2, . . . n}.

(18)

Here n= ` is the principal quantum number that determines the “energy” eigenvalues En = n(n
+ 2) in 1; in system I, nr is the radial quantum number (that counts the radial nodes), m is the
angular quantum number, while (k1, k2) in systems II and III qualify to be called the Cartesian
numbers.

It is important to remark that although the multiplets formed with the quantum numbers (18)
in Figs. 3–5 exhibit the same pattern as that of the two-dimensional quantum harmonic oscillator
in polar and Cartesian coordinates, respectively, this analogy is misleading. There is no Lie algebra
of raising and lowering operators to provide two-term transitions within the multiplet; only three-
term differential and recursion relations have been found and are analyzed in several mathematical
papers.2,3,10,13,17,22,25 The constant of motion operators that one collects when separating the solutions
forms instead a superintegrable cubic Higgs algebra9 as shown in Ref. 19.

III. I-II AND I-III INTERBASIS EXPANSIONS

We first consider the interbasis expansion between the I and II orthonormal basis functions in
(11) and (13) for fixed values of the principal quantum number, n,

Υ
II
n1,n2

(ϑ′, ϕ′)=
n∑

m=−n (2)

Wn,m
n1,n2

Υ
I
n,m(ϑ, ϕ), (19)

where
∑n

m=−n (2) indicates that the sum over m is in the range (18), so the radial quantum number

nr =
1
2 (n − |m |) ∈Z+

0 is an integer. The relation between the primed and unprimed angles is found
equating (4) and (5), as

cos ϑ′ = sin ϑ cos ϕ, cos ϕ′ =
sin ϑ sin ϕ√

1 − sin2 ϑ cos2 ϕ

. (20)

A. I–II interbasis with 3F2’s

To calculate the explicit form of the expansion coefficients Wn,m
n1,n2

, it is sufficient to fix the value
of the coordinate that is constant over the boundary and then use the orthogonality of the wave
functions for the other coordinate in the expansion (19). Thus consider ϑ= 1

2π − ε for vanishing ε;

then cos ϑ=− sin ε ≈−ε and sin ϑ= cos ε ≈ 1, and also Pn1 (1)= 1 and P(|m|,0)
nr

(−1)= (−1)nr . Dividing
by a common vanishing factor, the expansion (19) remains in terms only of functions of ϕ and
reads
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Cn1,n2

√
π

n+1
(sin ϕ)n1 Cn1+1

n2
(cos ϕ)=

n∑
m=−n (2)

(−1)
1
2 (n−|m|)Wn,m

n1,n2
eimϕ . (21)

Thus, using the orthogonality of the functions eimϕ in m, we obtain the following integral
representation for the interbasis expansion coefficients:

Wn,m
n1,n2
=

(−1)
1
2 (n−|m|)Cn1,n2

2
√
π(n + 1)

∫ π

−π

dϕ (sin ϕ)n1 Cn1+1
n2

(cos ϕ) e−imϕ . (22)

This integral does not appear in the standard tables, so we perform its computation by writing the
functions in the integrand as finite series in eiϕ ,

sink ϕ=
eikϕ

(2i)k
(1 − e−2iϕ)k =

1

(2i)k

k∑
l=0

(−1)l k!
l! (k − l)!

ei(k−2l)ϕ , (23)

Cλ
µ(cos ϕ)=

µ∑
j=0

Γ(λ + j)
j! (µ − j)!

Γ(λ + µ − j)

Γ2(λ)
e−i(µ−2j)ϕ . (24)

Substituting these expansions in (22), replacing the constant Cn1,n2 from (17) and using the
orthogonality of the eimϕ functions, we obtain a hypergeometric 3F2 terminating series of unit
argument,

Wn,m
n1,n2
=

in1 (−1)
1
2 (m+|m|) n!(

1
2 (n1 − n2 − m)

)
!
(

1
2 (n + m)

)
!

√
2n1 + 1

n2! (n + n1 + 1)!

× 3F2

(−n2, n1 + 1, − 1
2 (n + m)

−n, 1
2 (n1 − n2 − m) + 1

���� 1
)
, (25)

where we note that of the five parameters in 3F2(· · · |1), only three, e.g., (n1, n2, m), are effectively
present in the interbasis coefficients.

B. I–II interbasis with Clebsch–Gordan coefficients

Perhaps surprisingly, the interbasis coefficients Wn,m
n1,n2

in (25) can be compactly expressed in
terms of su(2) Clebsch–Gordan coefficients Cc,γ

a,α;b,β of a special type. As given by Varshalovich

et al.,23 the generic coefficients that couple angular momentum states |a, α
〉

and |b, β
〉

to form |c, γ
〉
,

after a transformation between two 3F2 forms, are

Cc,γ
a,α;b,β =

√
(2c+1)(b+c−a)!(b−β)!(c+γ)!(c−γ)!

(a+b−c)!(a−b+c)!(a+b+c+1)!(a+α)!(a−α)!(b+β)!

×
δγ,α+β(2a)! (c−b+α)!

(c−b+α)! (c−a−β)! 3F2

(−a−b+c, −a+α, b−a+c+1

−2a, c−a−β+1

���� 1
)
.

(26)

Now, comparing this with (25), we can write the Wn,m
n1,n2

coefficients, with a= b= 1
2 n, α =−β =− 1

2 m,
and γ = 0, in terms of a special type of Clebsch–Gordan coefficients and a phase, as

Wn,m
n1,n2
= in1 (−1)

1
2 (m+|m|) Cn1, 0

1
2 n,− 1

2 m; 1
2 n, 1

2 m
. (27)

Let us note that values of Cn1, 0
1
2 n,− 1

2 m; 1
2 n, 1

2 m
satisfy all necessary conditions [Ref. 23, Sec. 8.1.1] for

valid su(2) Clebsch–Gordan coefficients, namely, the triangle condition because 0 ≤ n1 ≤ n= n1 + n2,
with integer or half-integer non-negative numbers |m | ≤ n and 0 ≤ n. Finally, we note that while the
original Zernike solutions are complex, ΥI

n,m =Υ
I ∗
n,−m, the new ones, ΥII

n1,n2
and ΥIII

`1,`2
, are real. This

property is assured by relation between ±m coefficients,

Cn1, 0
1
2 n, 1

2 m; 1
2 n,− 1

2 m
= (−1)n2 Cn1, 0

1
2 n,− 1

2 m; 1
2 n, 1

2 m
. (28)
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The expansion inverse to (19), namely,

Υ
I
n,m(ϑ, ϕ)=

n∑
n1=0

W̃n1,n2
n,m Υ

II
n1,n2

(ϑ′, ϕ′), (29)

with n1 + n2 = n, follows from the orthogonality property of the su(2) Clebsch–Gordan coefficients.
These II-I interbasis coefficients are thus given by

W̃n1,n2
n,m = (−i)n1 (−1)

1
2 (m+|m|) Cn1, 0

1
2 n,− 1

2 m; 1
2 n, 1

2 m
(30)

and may be written in terms of 3F2 hypergeometric functions through (26).

C. I–II interbasis with Hahn polynomials

The interbasis coefficients Wn,m
n1,n2

can be also expressed in terms of the N Hahn polynomials of
degree p of a discrete variable x,14

Qp(x; α, β, N)B 3F2

(−p, −x, p + α + β + 1

−N , α + 1

���� 1
)
, (31)

for x, p ∈ {0, 1, . . . , N }. Applying the transformation,

3F2

( a, b, c

d, e

���� 1
)
=

(d+1)! (d−a−b+1)!
(d−a+1)! (d−b+1)! 3F2

( a, b, e−c

a+b−d+1, e

���� 1
)

(32)

to the 3F2 hypergeometric polynomial in (25), we can write the interbasis coefficients Wn,m
n1,n2

, with
its three effective parameters, as

Wn,m
n1,n2
=

in1 (−1)

1
2

(m + |m |)
(n!)2(

1
2 (n − m)

)
!
(

1
2 (n + m)

)
!

√
2n1 + 1

n2! (n + n1 + 1)!

× Qn2

(
1
2 (n + m); −n − 1, −n − 1, n

)
.

(33)

The discrete orthogonality relation for the Hahn polynomials is of the form [Ref. 14, Eq. (9.5.2)],

N∑
j=0

ρ(j) Qm(j; α, β, N) Qn(j; α, β, N)= δm,n d2
n , (34)

with the weight function ρ(j) and the norm dn,

ρ(j)=
( N!

j! (N − j)!

)2
, dn =

1
N!

√
n! (2N + 1 − n)!

2N − 2n + 1
. (35)

Thus (33) can be written in a more compact form as

Wn,m
n1,n2
= in1 (−1)

1
2 (m+|m|)

√
ρ( 1

2 (n+m))

dn2

Qn2

(
1
2 (n+m); −(n+1),−(n+1), n

)
. (36)

In fact, the Hahn polynomials present here are particular cases of (31), with α = β =−(n+1)<−N
and N = n and symmetric under m↔−m, which coincide with the dual Hahn polynomials [Ref. 14,
Eq. (9.5.2)],

R 1
2 (n+m)

(
λ(n2); −(n+1),−(n+1), n

)
=Qn2

(
1
2 (n + m); −(n+1),−(n+1), n

)
, (37)

on the quadratic lattice λ(n2)B n2(n2−2n−1) (see remark in Ref. 14, p. 208). The expansion inverse
to (19), namely (29), follows from the orthogonality of Hahn and dual Hahn polynomials given in
Ref. 14, Eq. (9.6.2).



103505-8 Atakishiyev et al. J. Math. Phys. 58, 103505 (2017)

D. The I–III interbasis expansion

The coefficients of the interbasis expansion between the I and III bases can be found with the
same method as for the I-II interbasis coefficients (25), (36), or (27) given above, by realizing that
the spherical coordinates (ϑ′,ϕ′) in (5) and (6) are related through ϑ′ 7→ ϑ′′ and ϕ′ 7→ ϕ′′ + 1

2π and
up to a phase (−1)`1 . The expansion between the solutions defined in (11) and (15) is

Υ
III
`1,`2

(ϑ′′, ϕ′′)=
n∑

m=−n (2)

Ŵn,m
`1,`2

Υ
I
n,m(ϑ, ϕ), (38)

with the relation between the angles being now

cos ϑ′′ = sin ϑ sin ϕ cos ϕ′′ =
cos ϑ√

1 − sin2 ϑ sin2 ϕ

. (39)

To find the coefficients Ŵn,m
`1,`2

, one comes to an integral similar to (22) except for the trigonometric
functions of ϕ, namely,

Ŵn,m
`1,`2
=

(−1)
1
2 (n−|m|)C`1,`2

2
√
π(n + 1)

∫ π

−π

dϕ (cos ϕ)`1 C`1+1
`2

(sin ϕ) e−imϕ , (40)

so with the change of variables ϕ→ ϕ + 1
2π and the same procedure used in (22), we obtain

Ŵn,m
`1,`2
= (−1)`1 exp(−i 1

2πm) Wn,m
`1,`2

, (41)

where the coefficients Wn,m
`1,`2

are those in (19) and (25), with (`1, `2) replacing (n1, n2).

IV. II-III INTERBASIS EXPANSIONS

We consider now the interbasis expansion between the two new spherical wave functions,
ΥII

n1,n2
(ϑ′, ϕ′) defined in (13) and ΥIII

`1,`2
(ϑ′′, ϕ′′) in (15), within the same multiplet characterized

by the principal quantum number n that contains n + 1 functions,

Υ
III
`1,`2

(ϑ′′, ϕ′′)=
n∑

n2=0

Un1,n2
`1,`2

Υ
II
n1,n2

(ϑ′, ϕ′), (42)

where `1 + `2 = n= n1 + n2, `i, ni ∈Z+
0 , and with the relation between the two spherical coordinate

systems (ϑ′′,ϕ′′) and (ϑ′,ϕ′) being now

cos ϑ′′ = sin ϑ′ cos ϕ′, sin ϑ′′ =
√

1 − sin2 ϑ′ cos2 ϕ′,

cos ϕ′′ =
sin ϑ′ sin ϕ′√

1 − sin2 ϑ′ cos2 ϕ′
, sin ϕ′′ =

cos ϑ′√
1 − sin2 ϑ′ cos2 ϕ′

.
(43)

The interbasis expansion coefficients in (42) can be succinctly expressed by passing through
ΥI

n,m(ϑ, ϕ), using the coefficients for the inverse expansion in (38) and the direct one in (29), as

Υ
III
`1,`2

(ϑ′′, ϕ′′)=
n∑

m=−n (2)

Ŵn,m
`1,`2

n∑
n1=0

W̃n1,n2
n,m Υ

II
n1,n2

(ϑ′, ϕ′). (44)

Replacing now the Clebsch–Gordan coefficients from (27) with care of the phases, we find

Un1,n2
`1,`2
= (−1)`1

n∑
m=−n (2)

i`1−n1−mC`1, 0
1
2 n,− 1

2 m; 1
2 n, 1

2 m
Cn1, 0

1
2 n,− 1

2 m; 1
2 n, 1

2 m
, (45)

and changing the summation index m to k = 1
2 (m + n) ∈ {0, 1, . . . , n}, this expression is rewritten as

Un1,n2
`1,`2
= i`1+n2

n∑
k=0

(−1)`1+kC`1, 0
1
2 n, 1

2 n−k; 1
2 n,− 1

2 n+k
Cn1, 0

1
2 n, 1

2 n−k; 1
2 n,− 1

2 n+k
. (46)
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As will be seen in Subsection IV A, when `1 + n2 or `2 + n1 are odd numbers, the coefficients Un1,n2
`1,`2

are zero; the non-zero coefficients are real, as are the two sets of basis functions ΥII
n1,n2

and ΥIII
`1,`2

.
The expansion in (42) holds both for the ΥII,III

k1,k2
(ϑ◦, ϕ◦) functions and for the ΨII,III

k1,k2
(x, y) func-

tions on the disk. Although (45) is an explicit formula for the II–III interbasis expansion coefficients
Un1,n2
`1,`2

, we consider worthwhile to pursue alternative closed expressions that will turn out to involve
the Racah discrete polynomials, which occupy the highest rung in the Askey-Wilson classifica-
tion.14 Also, we will suggest that Wigner 6j recoupling coefficients may express this interbasis
expansion.

A. Considerations on parities

Since both the Legendre and Gegenbauer polynomials have definite parities, so do the new
Zernike solutions ΨII

n1,n2
(x, y) and ΨIII

`1,`2
(x, y) in (14) and (16). These are

Ψ
II
n1,n2

(x, y)= (−1)n2Ψ
II
n1,n2

(−x, y)= (−1)n1Ψ
II
n1,n2

(x,−y), (47)

Ψ
III
`1,`2

(x, y)= (−1)`1Ψ
III
`1,`2

(−x, y) = (−1)`2Ψ
III
`1,`2

(x,−y), (48)

where we notice that the changes of sign in the 1 and 2 quantum numbers are intertwined.
The parity must be the same on both sides of the expansion (42), so with the aid of (43), we

separate the sum into even and odd parts, writing
∑n

n2=0 =
∑

n2 even +
∑

n2 odd. Under the transformation
x 7→−x, (47) and (48) turn (42) into

(−1)`1Υ
III
`1,`2

(ϑ′′, ϕ′′)=
∑

n2 even

Un1,n2
`1,`2

Υ
II
n1,n2

(ϑ′, ϕ′) −
∑

n2 odd

Un1,n2
`1,`2

Υ
II
n1,n2

(ϑ′, ϕ′), (49)

which compared with the original (42) imply that, when `1 is odd or even, the coefficients Un1,n2
`1,`2

of
either the even or the odd part of the sum are zero,

Un1,2p2
2q1+1,`2

= 0, Un1,2p2+1
2q1,`2

= 0, (50)

where we have written odd `1 = 2q1 + 1 and even `1 = 2q1, as well as even n2 = 2p2 and odd n2 = 2p2

+ 1, for integer q1, p2.
The summation over n2 in (42) can be turned into a summation over n1 = n � n2 with the same

division into even and odd terms and considered under the transformation y 7→−y yielding

(−1)`2Υ
III
`1,`2

(ϑ′′, ϕ′′)=
∑

n1 even

Un1,n2
`1,`2

Υ
II
n1,n2

(ϑ′, ϕ′) −
∑

n1 odd

Un1,n2
`1,`2

Υ
II
n1,n2

(ϑ′, ϕ′). (51)

Again comparing with the original (42), we conclude that when `1 is odd or even, then

U2p1,n2
`1,2q2+1 = 0, U2p1+1,n2

`1,2q2
= 0 (52)

for integer p1, q2.
From (50) and (52), we reach the result that the coefficients Ua,b

α,β are non-zero only when (a,
β) have the same parity and also (b, α) have the same parity. This leaves (42) broken up into four
separate cases.

For even n states:

Υ
III
2q1,2q2

(ϑ′′, ϕ′′)=
∑
p1,p2

U2p1,2p2
2q1,2q2

Υ
II
2p1,2p2

(ϑ′, ϕ′), (53)

Υ
III
2q1+1,2q2+1(ϑ′′, ϕ′′)=

∑
p1,p2

U2p1+1,2p2+1
2q1+1,2q2+1 Υ

II
2p1+1,2p2+1(ϑ′, ϕ′). (54)

For odd n states:

Υ
III
2q1+1,2q2

(ϑ′′, ϕ′′)=
∑
p1,p2

U2p1,2p2+1
2q1+1,2q2

Υ
II
2p1,2p2+1(ϑ′, ϕ′), (55)

Υ
III
2q1,2q2+1(ϑ′′, ϕ′′)=

∑
p1,p2

U2p1+1,2p2
2q1,2q2+1 Υ

II
2p1+1,2p2

(ϑ′, ϕ′). (56)
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In every case, the sum of each pair of indices will add to the principal quantum number n, and the
relation (43) between the angles will hold. In Subsections IV B and IV C, we analyze separately the
two cases presented by even n2 in (53) and (56) and by odd n2 in (54) and (55), following routes
parallel to that used in Sec. III for the I–II interbasis coefficients.

B. Interbasis coefficients Un1,n2
`1,`2

for even n2

We consider first the interbasis expansion (42) for even n2. The coefficients Un1,n2
`1,`2

can be
calculated again as we did following (20) for ϑ′ = π/2 � ε on the common rim of the disk and
half-sphere. As before, in the limit ε→ 0 on both sides of (51), with cos ϑ′′ = cos ϕ′, cos ϕ′′ ≈ 1,
and sin ϕ′′ ≈ cos ϑ′/ sin ϕ′ in (5) and (6), where x = ξ1 = 0. Using the expressions for Legendre and
Gegenbauer polynomials in (14) and (16) for even `1 = 2q1 and n2 = 2p2, with q1, p2 non-negative
integers,

P2q1 (0)=
(−1)q1

22q1

(2q1)!

(q1!)2
, Cn1+1

2p2
(0)= (−1)p2

(n1 + p2)!
n1! p2!

, (57)

then multiplying (42) by Pn′1
(x) dx, integrating over the region cos ϕ′ = x ∈ [−1, 1], and taking into

account the orthogonality and square norm of Legendre polynomials, ∫
1
−1 dx [P`(x)]2 = 1/(` + 1

2 ), we
obtain after integration

Un1,2p2
2q1,`2

=An1,p2
q1,`2

∫ 1

−1
dx (1 − x2)q1 C2q1+1

`2
(x) Pn1 (x), (58)

with the coefficient

An1,p2
q1,`2
=

(−1)q1−p2

2n1

[(2q1)!]2 p2!

(q1!)2 (n1 + p2)!

×

√
(2q1 + 1

2 )(n1 + 1
2 )

`2! (2n1 + 2p2 + 1)!
(2p2)! (4q1 + `2 + 1)!

. (59)

To solve the integral (58), we use (A6) and (A7) from Appendix A, for

`1 = 2q1, n1 = 2p1,

`2 = 2q2, n2 = 2p2,
and 2q1 + 2q2 = n = 2p1 + 2p2,

to obtain the even–even coefficients (53) written in terms of 4F3 hypergeometric polynomials as

U2p1,2p2
2q1,2q2

=
(−1)q2

22p1

p2!
p1!

[(2q1)!]2

(4q1 + 1)!

√
(2p1 + 1

2 )(2q1 + 1
2 )

(2p1 + p2)!

×
Γ(p1 + 1

2 )

(q1 − p1)! Γ(q1 + p1 + 3
2 )

√
(4p1 + 2p2 + 1)! (4q1 + 2q2 + 1)!

(2p2)! (2q2)!

× 4F3

(−q2, 2q1 + q2 + 1, q1 + 1, q1 + 1

2q1 + 3
2 , q1 + p1 + 3

2 , q1 − p1 + 1

���� 1
)
. (60)

On the other hand, for

`1 = 2q1, n1 = 2p1 + 1,

`2 = 2q2 + 1, n2 = 2p2,
and 2q1 + 2q2 + 1= n= 2p1 + 2p2 + 1,

we use the same formulas from Appendix A to write (56) as
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U2p1+1,2p2
2q1,2q2+1 =

(−1)q2

22p1+1

p2!
p1!

[(2q1)!]2

(2p1 + p2 + 1)! (4q1 + 1)!

√
(2p1 + 3

2 )(2q1 + 1
2 )

(2p2)! (2q2 + 1)!

×
Γ(p1 + 3

2 )
√

(4p1 + 2p2 + 3)! (4q1 + 2q2 + 2)!

Γ(q1 − p1 + 1) Γ(q1 + p1 + 5
2 )

× 4F3

(−q2, 2q1 + q2 + 2, q1 + 1, q1 + 1

2q1 + 3
2 , q1 + p1 + 5

2 , q1 − p1 + 1

���� 1
)
. (61)

C. Interbasis coefficients Un1,n2
`1,`2

for odd n2

We now consider the interbasis expansion coefficients Un1,n2
`1,`2

in (42) for odd n2 = 2p2 + 1. We

divide both sides of this expansion by cos ϑ′ and again take the limit ϑ′→ 1
2π − ε for ε→ 0. We

require the following limit expressions for Legendre and Gegenbauer polynomials when the quantum
numbers `1 = 2q1 + 1 and n2 = 2p2 + 1 are odd,

P2q1+1(sin ϕ′′)

cos ϑ′
�����ϑ′→ 1

2 π

=
(−1)q1 ( 3

2 )q1

q1! sin ϕ′
, (62)

Cn1+1
2p2+1(cos ϑ′)

cos ϑ′

�������ϑ′→ 1
2 π

= 2(−1)p2
(n1 + p2 + 1)!

n1! p2!
. (63)

Using the orthogonality relation for Legendre polynomials and by analogy with the previous case of
even indices, we obtain

Un1,2p2+1
2q1+1,`2

=Bn1,p2
q1,`2

∫ 1

−1
dx (1 − x2)q1 C2q1+2

`2
(x) Pn1 (x), (64)

with

Bn1,p2
q1,`2
=

(−1)q1−p2

2n1

p2!
(n1 + p2 + 1)!

√
(2p2 + 2n1 + 2)! `2!

(`2 + 4q1 + 3)! (2p2 + 1)!

×

√
(n1 + 1

2 )(2q1 + 3
2 )

(
(2q1 + 1)!

q1!

)2

. (65)

As before, we must consider separately two cases: when `2, n1 are both even or both odd. Using
again formulas (A6) and (A7) from Appendix A, we obtain, for `2 = 2q2 and n1 = 2p1, thus n = 2p1

+ 2p2 + 1 = 2q1 + 2q2 + 1,

U2p1,2p2+1
2q1+1,2q2

=
(−1)q2

22p1

p2! [(2q1 + 1)!]2

p1! (2p1 + p2 + 1)!

√
(2p1 + 1

2 )(2q1 + 3
2 )

(2p2 + 1)! (2q2)!

×
Γ(p1 + 1

2 )

Γ(4q1 + 4)

√
(2p1 + n + 1)! (2q1 + n + 2)!

Γ(q1 + p1 + 3
2 ) Γ(q1 − p1 + 1)

× 4F3

(−q2, q2 + 2q1 + 2, q1 + 1, q1 + 1

2q1 + 5
2 , q1 + p1 + 3

2 , q1 − p1 + 1

���� 1
)
,

(66)

while for `2 = 2q2 + 1, n1 = 2p1 + 1, thus n = 2p1 + 2p2 + 2 = 2q1 + 2q2 + 2,
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U2p1+1,2p2+1
2q1+1,2q2+1 =

(−1)q2

22p1+1

p2! [(2q1 + 1)!]2

p1! (2p1 + p2 + 2)!

√
(2p1 + 3

2 )(2q1 + 3
2 )

(2p2 + 1)! (2q2 + 1)!

×
Γ(p1 + 3

2 )

Γ(4q1 + 4)

√
(2p1 + n + 2)! (2q1 + n + 2)!

Γ(q1 + p1 + 5
2 ) Γ(q1 − p1 + 1)

× 4F3

(−q2, q2 + 2q1 + 3, q1 + 1, q1 + 1,

2q1 + 5
2 , q1 + p1 + 5

2 , q1 − p1 + 1

���� 1
)
.

(67)

The four cases of nonzero II-III interbasis coefficients Un1,n2
`1,`2

that appear in Eqs. (60) and
(61) for even n2, and in Eqs. (66) and (67) for odd n2, have thus been given in terms of
4F3(· · · |1) hypergeometric polynomials. We now proceed to express them in terms of Racah
polynomials.

D. Coefficients Un1,n2
`1,`2

as Racah polynomials

Recall that in the case of the I-II interbasis expansion in Sec. III, the coefficients Wn,m
n1,n2

, depending
on three effective parameters as is evident in their Clebsch–Gordan form (27), were written in terms of
3F2(· · · |1)’s and as Hahn polynomials, the latter two having five available parameters. Now we have
written the four distinct nonzero sets of II-III interbasis coefficients Un1,n2

`1,`2
, which also depend on three

effective parameters, in terms of 4F3(· · · |1)’s that in principle can provide seven available parameters.
These have a special form though: first let us recall that when the parameters in a hypergeometric
series

k+1Fk(a1, a2, . . . , ak+1; b1, . . . , bk ; z)

are such that

a1 + a2 + · · · + ak+1 + 1 = b1 + b2 + · · · + bk , (68)

the series is called balanced or Saalschützian (see Ref. 1, p. 188). It is not difficult to verify that 4F3’s
in (60), (61), (66), and (67) satisfy this condition and could enjoy six free parameters.

Saalschützian hypergeometric polynomials can be expressed in terms of Racah polynomi-
als of degree n in the variable x, also with six effective parameters α, β, γ, δ, plus n and x,
as

Rn(λ(x); α, β, γ, δ)B 4F3

(−n, n+α+β+1, −x, x+γ+δ+1

α+1, β+δ+1, γ+1

���� 1
)

(69)

on the quadratic lattice λ(x)B x(x + γ + δ + 1) of x ∈ {0, 1, . . . , N }. The range of degrees of the
polynomials is n ∈ {0, 1, 2, . . . , N }, where N is a nonnegative integer which can have one of the three
values according to whether [Ref. 14, Eq. (9.2.1)]

α + 1=−N , or β + δ =−N , or γ + 1=−N . (70)

In each of the ranges (70), a set of Racah polynomials is orthogonal over the points in the quadratic
lattice λ(x), with weight functions ρ(x) and norms dn, as was the case of the Hahn polynomials in
(34). Their use will provide more compact formulas below. But first we must transform the 4F3(· · · |1)
hypergeometrics to their canonical form (69); this is done in Appendix B and results in the following
forms for 4F3(· · · |1)’s expressible with Racah polynomials.

1. The coefficients U2p1,2p2
2q1,2q2

Substituting now (B9) into (60), we obtain the interbasis coefficients for the even–even coeffi-
cients U2p1,2p2

2q1,2q2
in (53), where the 4F3 parameters can be readily compared with their “Racah form”
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in (69). Defining here the number N B p1 + p2 = q1 + q2 for all subsequent expressions, we write

U2p1,2p2
2q1,2q2

= (−1)p1+q2 4q1+p1
(q1 + N)! (p1 + N)!

q2! p2!

×

√
(4q1 + 1)(4p1 + 1) (2q2)! (2p2)!
(2q1 + 2N + 1)! (2p1 + 2N + 1)!

(71)

× 4F3

(−p1, p1 + 1
2 , q1 + 1

2 , −q1

N + 1, 1, −N

���� 1
)

= (−1)p1+q2

√
ρ(p1)

dq1

Rq1

(
λ(p1); α, β, γ, δ

)
(72)

= (−1)p1+q2

√
ρ(q1)

dp1

Rp1

(
λ(q1); α, β, γ, δ

)
. (73)

The identification with the parameters in (69) has N = 1
2 n (because here n= n1 + n2 = 2p1 + 2p2 =

`1 + `2 = 2q1 + 2q2), the quadratic lattice λ(x)= x(x + 1
2 ), the parameters α = N, β =−δ =−(N+ 1

2 ), γ
= �(N + 1), and the weight and norm factors

ρ(p1)B 42p1
(2N + 1)(4p1 + 1) (2p2)! [(p1 + N)!]2

(2p1 + 2N + 1)! (p2!)2
,

dq1 B
q2!

4q1 (q1 + N)!

√
(2N + 1)(2k1 + 2N + 1)!

(4q1 + 1)(2q2)!
.

The 4F3 hypergeometric in (71) represents a particular family of self-dual Racah polynomials
Rn(λ(x); α, β, γ, δ) because its parameters are interconnected by α + β = γ + δ, which means that
this 4F3 can be expressed by two equivalent Racah polynomials in the discrete variable,

Rq1

(
λ(p1); α, β, γ, δ

)
=Rp1

(
λ(q1); α, β, γ, δ

)
, (74)

over the same quadratic lattice λ(x)= x(x + 1
2 ) and the same parameters α, β, γ, and δ.

2. The coefficients U2p1+1,2p2
2q1,2q2+1

For the coefficients U2p1+1,2p2
2q1,2q2+1 in (55), the 4F3 hypergeometric in (61) can be again transformed

as in Appendix B to the canonical form (69), which simplifies to

U2p1+1,2p2
2q1,2q2+1 = (−1)p1+q2 22q1+2p1+1 (q1 + N + 1)! (p1 + N + 1)!

(N + 1) q2! p2!

×

√
(4q1 + 1) (4p1 + 3) (2q2 + 1)! (2p2)!

(2q1 + 2N + 2)! (2p1 + 2N + 3)!
(75)

× 4F3

(−p1, p1 + 3
2 , q1 + 1

2 , −q1

N + 2, 1, −N

���� 1
)

= (−1)p1+q2

√
ρ1(q1)

d(1)
p1

Rp1

(
λ(q1); α, β, γ, δ

)
(76)

= (−1)p1+q2

√
ρ2(p1)

d(2)
q1

Rq1

(
µ(p1); α, β − 1, γ, δ + 1

)
. (77)
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Here N B p1 + p2 = q1 + q2 =
1
2 (n − 1), the parameters are α = �γ = N + 1 and β =−δ =−(N + 1

2 ); in
the two last expressions, the quadratic lattices are λ(x)= x(x + 1

2 ) and µ(x)= x(x + 3
2 ), and the weight

and norm factors are

ρ1(q1)= 24q1+1 (4q1 + 1)(2q2 + 1)![(q1 + N + 1)!]2

(N + 1)(2q1 + 2N + 2)!(q2!)2
,

d(1)
p1
=

p2!
4p2 (p1 + N + 1)!

√
(N + 1)(2p1 + 2N + 3)!

2(4p1 + 3)(2p2)!
,

ρ2(p1)= 24p1+1 (2N + 1)(2N + 3)(4p1 + 3)(2p2)![(p1 + N + 1)!]2

3(N + 1)(2p1 + 2N + 3)!(p2!)2
,

d(2)
q1
=

q2!
4q1 (q1 + N + 1)!

√
(N + 1)(2N + 1)(2N + 3)(2k1 + 2N + 2)!

6(4q1 + 1)(2q2 + 1)!
.

3. The coefficients U2p1,2p2+1
2q1+1,2q2

Regarding the interbasis coefficients for odd n2 in (66) and performing the 4F3 transformations
of Appendix B, we obtain

U2p1,2p2+1
2q1+1,2q2

= (−1)q2+p1 22q1+2p1+1 (N + q1 + 1)! (N + p1 + 1)!
(N + 1) q2! p2!

×

√
(4p1 + 1)(4q1 + 3) (2p2 + 1)! (2q2)!

(2N + 2p1 + 2)! (2N + 2q1 + 3)!
(78)

× 4F3

(−p1, p1 + 1
2 , q1 + 3

2 , −q1

N + 2, 1, −N

���� 1
)

= (−1)p1+k2

√
ρ1(p1)

d(1)
q1

Rq1

(
λ(p1); α, β, γ, δ

)
(79)

= (−1)p1+q2

√
ρ2(q1)

d(2)
p1

Rp1

(
µ(q1); α, β − 1, γ, δ + 1

)
. (80)

Here again N B p1 + p2 = q1 + q2 =
1
2 (n − 1), but the parameters are now α = �γ = N + 1 and

β =−δ =−(N+ 1
2 ), the quadratic lattices are λ(x)= x(x + 1

2 ) and µ(x)= x(x + 3
2 ), and the weight and

norm factors are

ρ1(p1)= 24p1+1 (4p1 + 1) (2p2 + 1)! [(p1 + N + 1)!]2

(N + 1) (2p1 + 2N + 2)! (p2!)2
,

d(1)
q1
=

q2!
4q1 (q1 + N + 1)!

√
(N + 1) (2q1 + 2N + 3)!

2(4q1 + 3) (2q2)!
,

ρ2(q1)= 24q1+1 (2N+1)(2N+3)(4q1+3) (2q2)! [(q1+N+1)!]2

3(N+1) (2q1+2N+3)! (q2!)2
,

d(2)
p1
=

p2!
4p1 (p1+N+1)!

√
(N+1)(2N+1)(2N+3) (2p1+2N+2)!

6(4p1+1) (2p2+1)!
.

4. The coefficients U2p1+1,2p2+1
2q1+1,2q2+1

Finally, the odd–odd interbasis coefficients in (67) can be brought in terms of Racah polynomials
as
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U2p1+1,2p2+1
2q1+1,2q2+1 = (−1)q2+p1 22q1+2p1+2 (N + q1 + 2)! (N + p1 + 2)!

(N + 1)(N + 2) q2! p2!

×

√
(4p1 + 3)(4q1 + 3) (2p2 + 1)! (2q2 + 1)!

(2N + 2p1 + 4)! (2N + 2q1 + 4)!
(81)

× 4F3

(−p1, p1 + 3
2 , q1 + 3

2 , −q1

N + 3, 1, −N

���� 1
)

= (−1)p1+q2

√
ρ(p1)

dq1

Rq1

(
µ(p1); α, β, γ, δ

)
(82)

= (−1)p1+q2

√
ρ(q1)

dp1

Rp1

(
µ(q1); α, β, γ, δ

)
. (83)

Here N B p1 + p2 = q1 + q2 =
1
2 n− 1, the parameters are α = 1 � γ = N + 2 and β =−δ =−(N+ 3

2 ), the
lattice is µ(x)= x(x + 3

2 ), and the weight and norm factors are

ρ(q1)= 42q1+1 (2N + 3)(4q1 + 3) (2q2 + 1)! [(q1 + N + 2)!]2

3(N + 1)(N + 2) (2q1 + 2N + 4)! (q2!)2
,

dp1 =
p2!

22p1+1 (p1 + N + 2)!

√
(N + 1)(N + 2)(2N + 3) (2p1 + 2N + 4)!

3(4p1 + 3) (2p2 + 1)!
.

Our final remark is to point out that the expressions for all II-III interbasis coefficients Un1,n2
`1,`2

are
equivalent to the summation formula (46) of the product of two special Clebsch–Gordan coefficients.

E. Relation with the Wigner 6j symbols

The coefficients that bridge two distinct coupling orders between three spins to the same total
spin are known as Wigner 6j symbols. They contain six spin parameters: `1, `2, `3, their couplings to
`12, `23, and the total `, and they have a host of symmetry relations that can be seen in the literature.24

These 6j coefficients can be expressed in terms of balanced 4F3(· · · | 1) functions (see for example
Refs. 23 and 24), so they can be also written in terms of Racah polynomials through (69), having
the same number of parameters, times a lengthy factor containing factorials and Kronecker triangle
functions (1 when they couple properly and 0 if not).

In Subsection III B, we wrote the I-II interbasis coefficients Wn,m
n1,n2

, containing three effective
labels, in terms of proper Clebsch–Gordan coefficients, i.e., whose three spin indices and their
projections are an integer or half-integer, form a triangle and vanish when not. On the other hand, their
expression as Hahn polynomial functions in (33) allows for analytic continuation in all parameters.

Here we find that it is not always the case that the II-III interbasis coefficients Un1,n2
`1,`2

correspond
to proper 6j coefficients. Yet their relation is sufficiently close to merit attention. We thus proceed to
examine the known equivalence between Wigner 6j symbols and balanced 4F3(· · · | 1) hypergeometric
functions, which is (Ref. 24, Sec. 8.4.4)




`1 `2 `12

`3 ` `23




(84)

= c0 4F3

( `1−`2−`12, `3−`2−`23, −`1−`2−`12−1, −`2−`3−`23−1

−2`2, `−`2−`12−`23, −`2−`12−`−`23−1

���� 1
)
.

We shall consider only the case of even–even coefficients U2p1,2p2
2q1,2q2

in (60), which is sufficiently
illustrative for our purpose, concentrate on the 4F3 functions, and avoid long and distracting pre-
factors with the notation ci for those that are not essential to our present endeavour. Comparing the
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components of 4F3 in (60) with those in (84),

`1−`2−`12 = −q2, `3−`2−`23 = 2q1+q2+1,

−`1−`2−`12−1 = q1+1, −`2−`3−`23−1 = q1+1,

−2`2 = q1−p1+1, `−`2−`12−`23 = 2q1+ 3
2 ,

−`2−`12−`−`23−1 = q1+p1+ 3
2 ,

(85)

and solving this system of 6 simultaneous equations, we obtain

U2p1,2p2
2q1,2q2

= c1




`1 `2 `12

`3 ` `23




, (86)

with

`1 =−
1
2 N − 1, `2 =

1
2 (p1 − q1 − 1), `12 =

1
2 (q2 − p1 − 1),

`3 =
1
2 (N − 1), ` = 1

2 (q1 − p1 − 1), `23 =−1 − q1 −
1
2 (p1 + q2),

where N B q1 + q2 = p1 + p2 =
1
2 n is a nonnegative integer in every case, so all parameters of the 6j

symbol in (86) are integers or half-integers.
The fact that some of these parameters appear with negative signs is not a problem because

with the help of “mirror” transformations (Ref. 23, Sec. 9.4) one can invert some `i→−`i−1,
with a sign on the 6j coefficient, and use it, for example, in `1 =−

1
2 N−1→ 1

2 N . What cannot be
ascertained is that all triangle relations (e.g., |`1−`2 | ≤ `12 ≤ `1+`2, etc.) are fulfilled. On the other
hand, the II-III interbasis coefficients are well defined with Racah polynomials, regardless of these
relations.

V. CONCLUSION

The Zernike system (1) in its classical and quantum realizations19,20 is superintegrable and
harbours several remarkable geometric and spectral properties. In this paper, we highlighted its
relevance to special function theory.

In three sets of coordinates on the unit disk, the solutions to Eq. (1) involve Legendre, Gegenbauer,
and Jacobi polynomials (and phases), as illustrated in Fig. 1, each characterized by two quantum
numbers. Between them, the I-II and I-III relations are given by Hahn polynomials and II-III by
Racah polynomials in three discrete parameters. All relations can be expressed also with Clebsch–
Gordan coefficients, whose geometric interpretation still eludes us, while the role of 6j coefficients
has only been suggested.

Finally, we underline the fact that the original Zernike polynomials have a great practical impor-
tance in phase-contrast microscopy and in the correction of wavefronts in circular pupils. Recent
work4–6,18 has extended this technique to pupils of essentially arbitrary shape through diffeomor-
phisms that conserve their basic properties. This has been applied to describe wavefronts in sectorial,
annular, and polygonal-shaped pupils, the latter specifically tailored to the hexagonal components
of large astronomical mirrors. As remarked in Ref. 21, the fact that among the members of each
horizontal-n “multiplet” ΨII

0,n in (14) and ΨIII
0,n in (16) are plane wave-like solutions can be of some

relevance for applications in correcting cylindrical aberrations.
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APPENDIX A: SOLUTIONS TO INTEGRALS (58) AND (64)

To find the expressions (66) and (67), consider the integral

Jµ,λ
n,m B

∫ 1

−1
dx (1 − x2)µ Cλ

n (x)Pm(x). (A1)

Because of the oddness of the integrand, this integral is nonzero only when n and m are both even or
both odd. We use the following expressions for the Gegenbauer and Legendre polynomials:

Cλ
n (x)=




(2λ)2q

(2q)! 2F1

(−q, q + λ

λ + 1
2

���� 1 − x2
)
, n= 2q,

(2λ)2q+1

(2q + 1)!
x 2F1

(−q, q + λ + 1

λ + 1
2

���� 1 − x2
)
, n= 2q + 1,

(A2)

Pm(x)=




(−1)p ( 1
2 )p

p! 2F1

(−p, p + 1
2

1
2

���� x2
)
, m= 2p,

(−1)p ( 3
2 )p

p!
x 2F1

(−p, p + 3
2

3
2

���� x2
)
, m= 2p + 1,

(A3)

where (x)nB Γ(x + n)/Γ(x). Then, using∫ 1

0
dy yγ−1 (1 − y)ρ−1

2F1

(α, β

γ

���� y
)
=
Γ(γ) Γ(ρ) Γ(γ + ρ − α − β)
Γ(γ + ρ − α) Γ(γ + ρ − β)

, (A4)

with Re γ > 0, Re ρ > 0, and Re (γ + ρ−α− β)> 0, we must consider separately the two parity cases:
A.1. When n = 2q and m = 2p are even, we rewrite the integral (A1) in the form

Jµ,λ
2q,2p =

∫ 1

−1
dx (1 − x2)µ Cλ

2q(x)P2p(x)= (−1)p Γ(2λ + 2q)
(2q)! Γ(2λ)

Γ(p + 1
2 )

Γ( 1
2 ) p!

×

q∑
s=0

(−q)s (q + λ)s

(λ + 1
2 )s s!

∫ 1

−1
dx (1 − x2)µ+s

2F1

(−p, p + 1
2

1
2

���� x2
)
.

(A5)

Substituting here x2 = y and using (A4) with α = �p, β = p + 1
2 , γ = 1

2 , and ρ = s + 1 + µ, we obtain

Jµ,λ
2q,2p = (−1)p Γ(2λ + 2q) Γ(p + 1

2 )

Γ(2λ) (2q)! p!
Γ(µ + 1)2

Γ(µ + p + 3
2 ) Γ(µ − p + 1)

× 4F3

( −q, q + λ, µ + 1, µ + 1

λ + 1
2 , µ + p + 3

2 , µ − p + 1

���� 1
)
.

(A6)

A.2. When n = 2q + 1 and m = 2p + 1 are odd, we have the integral (A1) with α = �p, β = p + 3/2,
γ = 3

2 , and ρ = µ + s + 1,

Jµ,λ
2q+1,2p+1 = (−1)p Γ(2λ + 2q + 1) Γ(p + 3

2 )

Γ(2λ) (2q + 1)! p!
Γ(µ + 1)2

Γ(µ + p + 5
2 ) Γ(µ − p + 1)

× 4F3

(−q, q + λ + 1, µ + 1, µ + 1

λ + 1
2 , µ + p + 5

2 , µ − p + 1

����1
)
.

(A7)

APPENDIX B: SAALSCHÜTZIAN HYPERGEOMETRIC AND RACAH POLYNOMIALS

To transform the 4F3(· · · |1) Saalschützian hypergeometric polynomials (60), (61), (66), and
(67) into the canonical form for the Racah polynomials in (69), we use the symmetry properties of
terminating hypergeometric series of the general form 4F3(�n, x, y, z; u,v,w; 1) that preserve their
Saalschützian character.
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Two such transformation formulas come to hand: the first is known in the literature as Whipple’s
formula for terminating balanced 4F3 series [see Ref. 14, Eq. (1.7.6)], namely,

4F3

(
−n, x, y, z

u, v , w

���� 1
)
=

(v − z)n (u − z)n

(v)n (u)n

× 4F3

( −n, w − x, w − y, z

1 − u + z − n, 1 − v + z − n, w

���� 1
)
,

(B1)

where (x)nB Γ(x + n)/Γ(x). The second transformation formula that we use is

4F3

(
−n, x, y, z

u, v , w

���� 1
)
= (−1)n (x)n (y)n (z)n

(u)n (v)n (w)n

× 4F3

(−n, 1 − u − n, 1 − v − n, 1 − w − n

1 − x − n, 1 − y − n, 1 − z − n

���� 1
)
,

(B2)

which can be readily derived by reversing the order of summation in the definition of the series.
We can now write the expressions for the interbasis coefficients U2p1,2p2

2q1,2q2
in (60) and U2p1+1,2p2

2q1,2q2+1
in (61) in terms of Racah polynomials (69) by using three successive transformations, where the first
two are (B1) and (B2). We start with the 4F3 function in (60) and use (B1) with the parameters

n= q2, x = q1 + 1, y= q1 + N + 1, z= q1 + 1,

u= 2q1 + 3
2 , v = q1 + p1 + 3

2 , w = q1 − p1 + 1,
(B3)

where N = 1
2 n= q1 + q2 = p1 + p2. This yields the relation

4F3

(−q2, q1 + N + 1, q1 + 1, q1 + 1

2q1 + 3
2 , q1 + p1 + 3

2 , q1 − p1 + 1

���� 1
)

=
(p1 + 1

2 )q2 (q1 + 1
2 )q2

(q1 + p1 + 3
2 )q2 (2q1 + 3

2 )q2

× 4F3

( −q2, −p1, −(p1 + N), q1 + 1
1
2 − N , 1

2 − p1 − q2, q1 − p1 + 1

���� 1
)
.

(B4)

The second step is to apply the transformation (B2) with the parameters

n = p1, x = −(p1 + N), y= q1 + 1, z = −q2,

u = 1
2 − p1 − q2, v = 1

2 − N , w = q1 − p1 + 1,
(B5)

to find

4F3

( −q2, −p1, −(p1 + N), q1 + 1
1
2 − N , 1

2 − p1 − q2, q1 − p1 + 1

���� 1
)

= (−1)p1
(−p1 − N)p1 (q1 + 1)p1 (−q2)p1

( 1
2 − p1 − q2)p1 ( 1

2 − N)p1 (q1 − p1 + 1)p1

× 4F3

( −p1, k2 + 1
2 , p2 + 1

2 , −k1

N + 1, −(p1 + q1), q2 − p1 + 1

���� 1
)
.

(B6)

The third step applies to 4F3 in (B6) the same transformation (B1) but with the parameters

n = p1, x = q2 + 1
2 , y = p2 + 1

2 , z = −q1,

u = −(q1 + p1), v = q2 − p1 + 1, w = N + 1.
(B7)
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This leads us to the form

4F3

(
−p1, q2 + 1

2 , p2 + 1
2 , −q1

N + 1, −(p1 + q1), q2 − p1 + 1

���� 1
)

=
(p2 + 1)p1 (−p1)p1

(q2 − p1 + 1)p1 (−q1 − p1)p1

× 4F3

(
−p1, p1 + 1

2 , q1 + 1
2 , −q1

N + 1, 1, −N

���� 1
)
.

(B8)

As a result of these three successive transformations, we finally arrive at the canonical form of
the Racah polynomials (69) in terms of the hypergeometric series 4F3 in (60),

4F3

(−q2, q1 + N + 1, q1 + 1, q1 + 1

2q1 + 3
2 , q1 + p1 + 3

2 , q1 − p1 + 1

���� 1
)

= (−1)p1 22q1+4p1+1 Γ(q1 + p1 + 3
2 ) Γ(q1 − p1 + 1)

Γ(p1 + 1
2 )

×
p1! (2q2)! (2p2)! (q1 + N)! [(p1 + N)!]2(4q1 + 1)!

q2! [(p2)!]2 [(2q1)!]2 (2q1 + 2N + 1)! (2p1 + 2N + 1)!

× 4F3

(
−p1, p1 + 1

2 , q1 + 1
2 , −q1

N + 1, 1, −N

���� 1
)
.

(B9)

The parameters of 4F3 hypergeometric functions for the interbasis coefficients U2p1,2p2+1
2q1+1,2q2

in (66)

and U2p1+1,2p2+1
2q1+1,2q2+1 in (67) also enjoy the property (68) and can be transformed into the canonical form

for Racah polynomials (69) by using the three steps (B4)–(B8) mutatis mutandis. This results in

4F3

(−q2, q1 + N + 2, q1 + 1, q1 + 1

2q1 + 5
2 , q1 + p1 + 3

2 , q1 − p1 + 1

���� 1
)

= (−1)p1
4q1+2p1+1 p1! (2q2)! (2p2 + 1)! (q1 + N + 1)!

(N + 1) q2! [(p2)!]2 [(2q1 + 1)!]2

×
[(p1 + N + 1)!]2(4q1 + 3)! Γ(q1 + p1 + 3

2 ) Γ(q1 − p1 + 1)

(2q1 + 2N + 3)! (2p1 + 2N + 2)! Γ(p1 + 1
2 )

× 4F3

(
−p1, p1 + 1

2 , q1 + 3
2 , −q1

N + 2, 1, −N

���� 1
)
,

(B10)

where N = q1 + q2 = p1 + p2 =
1
2 (n − 1), and

4F3

(−q2, q1 + N + 3, q1 + 1, q1 + 1

2q1 + 5
2 , q1 + p1 + 5

2 , q1 − p1 + 1

���� 1
)

= (−1)p1
p1! (2q2 + 1)! (2p2 + 1)! (q1 + N + 1)! (p1 + N + 1)!

(N + 1)(N + 2) q2! [(p2)!]2 [(2q1 + 1)!]2

×
4q1+2p1+1 (p1 + N + 2)! (4q1 + 3)!Γ(q1 + p1 + 5

2 ) Γ(q1 − p1 + 1)

(2q1 + 2N + 3)! (2p1 + 2N + 3)! Γ(p1 + 3
2 )

× 4F3

(
−p1, p1 + 3

2 , q1 + 3
2 , −q1

N + 3, 1, −N

���� 1
)
,

(B11)

where N = q1 + q2 = p1 + p2 =
1
2 n − 1.
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