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1. INTRODUCTION: THE ZERNIKE SYSTEM

In 1934, Frits Zernike published a paper that gave rise to phase-
contrast microscopy [1]. That paper presented a differential
equation of second degree to provide an orthogonal basis of
polynomial solutions on the unit disk to describe wavefront
aberrations in circular pupils. This basis was also obtained
in Ref. [2] using the Schmidt orthogonalization process, as
its authors noted that the reason to set up Zernike’s differential
equation had not been clearly justified. The two-dimensional
differential equation in r � �x; y� that Zernike solved is

bZΨ�r�≔ �∇2 − �r · ∇�2 − 2r · ∇�Ψ�r� � −EΨ�r�; (1)

on the unit disk D≔ fjrj ≤ 1g and Ψ�r� ∈ L2�D� (once two
parameters had been fixed by the condition of self-adjointness).
The solutions found by Zernike are separable in polar coordi-
nates �r;ϕ�, with Jacobi polynomials of degrees nr in the radius
r≔ jrj times trigonometric functions eimϕ in the angle ϕ. The
solutions are thus classified by �nr ; m�, which add up to non-
negative integers n � 2nr � jmj, providing the quantized
eigenvalues En � n�n� 2� for the operator in Eq. (1).

The spectrum �nr ; m� or �n; m� of the Zernike system is ex-
actly that of the two-dimensional quantum harmonic oscillator.
This evident analogy with the quantum oscillator spectrum has
been misleading, however. Two-term raising and lowering op-
erators do not exist; only three-term recurrence relations have
been found [3–7]. Beyond the rotational symmetry that ex-
plains the multiplets in fmg, no Lie algebra has been shown

to explain the symmetry hidden in the equal spacing of n
familiar from the oscillator model.

In Refs. [8,9] we have interpreted Zernike’s Eq. (1) as defin-
ing a classical and a quantum system with a nonstandard
“Hamiltonian” − 1

2 Ẑ . This turns out to be interesting, because
in the classical system the trajectories turn out to be closed
ellipses, and in the quantum system, this Hamiltonian partakes
in a cubic Higgs superintegrable algebra [10].

The key to solve the system was to perform a “vertical” map
from the disk D in r � �x; y� to a half-sphere in three-space
~r � �x; y; z�, to be indicated as H� ≔ fj~rj � 1; z ≥ 0g. On
H� the issue of separability of solutions becomes clear: the
orthogonal spherical coordinate system �ϑ;φ�, ϑ ∈ �0; 12 π�, φ ∈
�−π; π� on H�, projects on the polar coordinates �r;ϕ� of D.
But as shown in Fig. 1, the half-sphere can also be covered with
other orthogonal and separated coordinate systems (i.e., those
whose boundary coincides with one fixed coordinate): where
the coordinate poles are along the x axis and the range of spheri-
cal angles is ϑ 0 ∈ �0; π� and φ 0 ∈ �0; π�. Since the poles of the
spherical coordinates can lie in any direction of the �x; y� plane
and rotated around them, we take the x-axis orientation as rep-
resenting the whole class of new solutions, which we identify by
the label II, to distinguish them from Zernike’s polar-separated
solutions, which will be labeled I.

The coordinate system II is orthogonal on H� but projects
on nonorthogonal ones on D; the new separated solutions con-
sist of Legendre and Gegenbauer polynomials [9]. Of course,
the spectrum fEng in Eq. (1) is the same as in the coordinate

1844 Vol. 34, No. 10 / October 2017 / Journal of the Optical Society of America A Research Article

1084-7529/17/101844-05 Journal © 2017 Optical Society of America

mailto:bwolf@fis.unam.mx
mailto:bwolf@fis.unam.mx
mailto:bwolf@fis.unam.mx
https://doi.org/10.1364/JOSAA.34.001844
https://crossmark.crossref.org/dialog/?doi=10.1364/JOSAA.34.001844&domain=pdf&date_stamp=2017-09-15


system I. Recall also that coordinates that separate a differential
equation lead to extra commuting operators and constants of
the motion. In this paper, we proceed to find the I–II interbasis
expansions between the original Zernike and the newly found
solution bases; its compact expression in terms of su(2)
Clebsch–Gordan coefficients certainly indicates that some kind
of deeper symmetry is at work.

The solutions of the Zernike system [1] in the new coordi-
nate system, which we indicate by ϒI and ϒII on H�, and ΨI

and ΨII on D, are succinctly derived and written out in
Section 2. In Section 3, we find the overlap between them,
add some remarks in the concluding Section 4, and reserve
for Appendix A some special-function developments.

2. TWO COORDINATE SYSTEMS, TWO
FUNCTION BASES

The Zernike differential Eq. (1) in r � �x; y� on the diskD can
be “elevated” to a differential equation on the half-sphereH� in
Fig. 1 through first defining the coordinates ~ξ � �ξ1; ξ2; ξ3� by

ξ1 ≔ x; ξ2 ≔ y; ξ3 ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2 − y2

q
; (2)

then relating the measures of H� and D through

d2S�~ξ� � dξ1dξ2
ξ3

� dxdyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2 − y2

p � d2rffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jrj2

p (3)

and the partial derivatives by ∂x � ∂ξ1 − �ξ1∕ξ3�∂ξ3
and ∂y � ∂ξ2 − �ξ2∕ξ3�∂ξ3 .
A. Map Between H� and D Operators

Due to the change in measure (3), the Zernike operator on D,bZ in Eq. (1), must be subject to a similarity transformation by
the root of the factor between d2S�~ξ� and d2r; thus we define
the Zernike operator on the half-sphereH� and its solutions asbW ≔ �1−2�1∕4bZ �1 − jrj2�−1∕4;

ϒ�~ξ�≔ �1 − jrj2�1∕4Ψ�r�: (4)

In this way the inner products required for functions on the
disk and on the sphere are related by

�Ψ;Ψ 0�D ≔
Z
D
d2rΨ�r��Ψ 0�r�

�
Z
H�

d2S�~ξ�ϒ�~ξ��ϒ 0�~ξ�≕ �ϒ;ϒ 0�H� : (5)

Perhaps rather surprisingly, the Zernike operator bW in Eq. (4)
on ~ξ ∈ H� has the structure of (−2 times) a Schrödinger
Hamiltonian,

bWϒ�~ξ� �
�
ΔLB �

ξ21 � ξ22
4ξ23

� 1

�
ϒ�~ξ� � −Eϒ�~ξ�; (6)

which is a sum of the Laplace–Beltrami operator
ΔLB � L̂21 � L̂22 � L̂23, where

L̂1 ≔ ξ3∂ξ2 − ξ2∂ξ3 ; L̂2 ≔ ξ1∂ξ3 − ξ3∂ξ1 ; L̂3 ≔ ξ2∂ξ1 − ξ1∂ξ1
(7)

are the generators of a formal so(3) Lie algebra. The second
summand in Eq. (6) represents a radial potential

V W �r�≔ − r2∕8�1 − r2�, which has the form of a repulsive
oscillator constrained to �−1; 1�, whose rather delicate
boundary conditions were addressed in Ref. [9].

The coordinates ~ξ can be now expressed in terms of the two
mutually orthogonal systems of coordinates on the sphere [11],
as shown in Fig. 1:

System I∶ ξ1 � sin ϑ cos φ; ξ2 � sin ϑ sin φ;

ξ3 � cos ϑ; ϑjπ∕20 ; φjπ−π ; (8)

System II∶ ξ1 � cos ϑ 0; ξ2 � sin ϑ 0 cos φ 0;

ξ3 � sin ϑ 0 sin φ 0; ϑ 0jπ0 ; φ 0jπ0 : (9)

In the following, we succinctly give the normalized solutions
for the differential Eq. (6) in terms of the angles for H� in
the coordinate systems I and II, and their projection as wave-
fronts on the disk D of the optical pupil. The spectrum of
quantum numbers that classify each eigenbasis, �n; m� and
�n1; n2�, will indeed be formally identical with that of the
two-dimensional quantum harmonic oscillator in polar and
Cartesian coordinates, respectively.

B. Solutions in System I [Eq. (8)]

Zernike’s differential Eq. (1) is clearly invariant under rotations
around the center of the disk, corresponding to rotations of bW
in Eq. (6) around the ξ3 axis of the coordinate system (8) on the
sphere. Written out in those coordinates, it has the form of a
Schrödinger equation,

1

sin ϑ

∂
∂ϑ

sin ϑ
∂ϒI�ϑ;φ�

∂ϑ
� 1

sin2θ

∂2ϒI�ϑ;φ�
∂φ2

�
�
E � 1

4
tan2ϑ� 1

�
ϒI�ϑ;φ� � 0; (10)

Fig. 1. Top row: orthogonal coordinate systems that separate on the
half-sphere H�. Bottom row: their vertical projection on the disk D.
Left: spherical coordinates with their pole at the �z axis; separated
solutions will be marked by I. Right: spherical coordinates with their
pole along the�x axis, whose solutions are identified by II. The latter
maps on nonorthogonal coordinates on the disk that also separate
solutions of the Zernike equation.
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with a potential V W �ϑ� � − 1
8 tan

2 ϑ. Clearly this will separate
into a differential equation in φ with a separating constant m2,
where m ∈ Z≔ f0;	1;	2;…g and solutions ∼eimφ. This
separation constant then enters into a differential equation
in ϑ that also has the form of a one-dimensional
Schrödinger equation with an effective potential of the
Pöschl–Teller type V I

eff �ϑ� � �m2 − 1
4�csc2 ϑ − 1

4 sec
2ϑ, whose

solutions with the proper boundary conditions at ϑ � 1
2 π

are Jacobi polynomials.
On the half-sphere, the solutions to Eq. (6) are thus

ϒI
n;m�ϑ;φ�≔

ffiffiffiffiffiffiffiffiffiffiffi
n� 1

π

r
�sin ϑ�jmj�cos ϑ�1∕2

× P�jmj;0�
1
2�n−jmj�

�cos 2ϑ�eimφ; (11)

where n ∈ Z�
0 ≔ f0; 1; 2;…g is the principal quantum number

corresponding to En � n�n� 2� in Eq. (1). The index of the
Jacobi polynomial is the radial quantum number that counts
the number of radial nodes, nr ≔ 1

2 �n − jmj� ∈ Z�
0 . Thus, in

each level n, the range of angular momenta are
m ∈ f−n; −n� 2;…; ng. These solutions are orthonormal over
the half-sphere H� under the measure d2SI�ϑ;φ� �
sin ϑdϑdφ with the range of the angles �ϑ;φ� given in Eq. (8).

Projected on the disk D in polar coordinates r � �r;ϕ�, the
original solutions of Zernike, orthonormal under the inner
product in Eq. (5), are

ΨI
n;m�r;ϕ�≔ �−1�nr

ffiffiffiffiffiffiffiffiffiffiffi
n� 1

π

r
r jmjP�jmj;0�

nr �1 − 2r2�eimϕ; (12)

which are shown in Fig. 2 (top).

C. Solutions in System II [Eq. (9)]

The Zernike differential equation in the form of Eq. (6), after
replacement of the second coordinate system �ϑ 0;φ 0� in Eq. (9)
on the half-sphere, acting on functions separated as

ϒII�ϑ 0;φ 0� � 1ffiffiffiffiffiffiffiffiffiffiffi
sin ϑ 0p S�ϑ 0�T �φ 0�; (13)

yields a system of two simultaneous differential equations
bound by a separation constant k, whose Pöschl–Teller form
is most evident in variables μ � 1

2φ
0 and ν � 1

2 ϑ
0,

d2T �μ�
dμ2

�
�
4k2 � 1

4 sin2 μ
� 1

4 cos2 μ

�
T �μ� � 0;

d2S�ν�
dν2

�
�
4�E � 1� � 1–4 k2

4 sin2 ν
� 1–4 k2

4 cos2 ν

�
S�ν� � 0: (14)

Finally, as shown in Ref. [8] and determined by the boun-
dary conditions, two quantum numbers n1; n2 ∈ Z�

0 are im-
posed for the solutions on H�, yielding Gegenbauer
polynomials in cos ϑ 0 and Legendre polynomials in cos φ 0.
These are

ϒII
n1 ;n2�ϑ 0;φ 0�≔Cn1 ;n2�sin ϑ 0�n1�1∕2�sin φ 0�1∕2

× Cn1�1
n2 �cos ϑ 0�Pn1�cos φ 0�; (15)

with the normalization constant

Cn1 ;n2 ≔ 2n1n1!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2n1 � 1��n1 � n2 � 1�n2!

π�2n1 � n2 � 1�!

s
; (16)

where the principal quantum number is n � n1 � n2 ∈ Z�
0 ,

and with E � n�n� 2� as before. The orthonormality of these
solutions is also over the half-sphere H� under the formally
same measure d2SII�ϑ 0;φ 0� � sin ϑ 0dϑ 0dφ 0, where the angles
have the range shown in Eq. (9).

On the disk in Cartesian coordinates r � �x; y�, the
solutions are

ΨII
n1 ;n2�x; y� � Cn1 ;n2�1 − x2�n1∕2Cn1�1

n2 �x�Pn1

�
yffiffiffiffiffiffiffiffiffiffiffiffi

1 − x2
p

�
;

(17)

separated in the nonorthogonal coordinates x and y∕
p�1 − x2�,

and normalized under the inner product on D in Eq. (5). These
are shown in Fig. 2 (bottom).

3. EXPANSION BETWEEN I AND II SOLUTIONS

The two bases of solutions of the Zernike equation in the
coordinate systems I and II on the half-sphere, ϒI

n;m�ϑ;φ�

Fig. 2. Top: the basis of Zernike solutions ΨI
n;m�r;ϕ� in Eq. (12),

normalized on the disk and classified by principal and angular momen-
tum quantum numbers �n; m�. Since they are complex, we show Re
ΨI

n;m form ≥ 0 and ImΨI
n;m form < 0. Bottom: the new real solutions

ΨII
n1 ;n2 �r;ϕ� in Eq. (17) of Zernike’s equation [Eq. (1)] in the coor-

dinate system II, classified by the quantum numbers �n1; n2� (as if
they were two-dimensional quantum harmonic oscillator states—
which they are not). (Figure by Cristina Salto–Alegre.)
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in Eq. (11) and ϒII
n1 ;n2�ϑ 0;φ 0� in Eq. (16), with the same prin-

cipal quantum number n,

n1 � n2 � n � 2nr � jmj ∈ Z�
0 ;

nr ; n1; n2 ∈ Z�
0 ; m ∈ f−n; −n� 2;…; ng; (18)

whose projections on the disk are shown in Fig. 2, were ar-
ranged into pyramids with rungs labeled by n, and containing
n� 1 states each. They could be mistakenly seen as indepen-
dent su(2) multiplets of spin j � 1

2 n because, as we said above,
in system II they are not bases for this Lie algebra. Nevertheless,
in each rung n, the two bases must relate through linear com-
bination (the notation for the indices of the ϒI-function bases,
here �n; m�, is different but equivalent to �nr ; m� used in
Ref. [9]):

ϒII
n1 ;n2�ϑ 0;φ 0� �

Xn
m�−n�2�

W n;m
n1 ;n2ϒ

I
n;m�ϑ;φ�; (19)

where
Pn

m�−n�2� indicates that m takes values separated by 2 as
in Eq. (18). The relation between the primed and unprimed
angles in Eqs. (8) and (9) is

cos ϑ 0 � sin ϑ cos φ; cos φ 0 � sin ϑ sin φffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sin2ϑ cos2 φ

p : (20)

To find the linear combination coefficients W n;m
n1 ;n2 in Eq. (19),

we compute first the relation (19) near to the boundary of the
disk and sphere, at ϑ � 1

2 π − ε for small ε, so that cos ϑ �
− sin ε ≈ −ε and sin ϑ � cos ε ≈ 1 − 1

2 ε
2. There, Eq. (20)

becomes

cos ϑ 0 ≈ cos φ; sin ϑ 0 ≈ sin φ;

cos φ 0 ≈ cos ε; sin φ 0 ≈ − sin ε∕sin φ: (21)

Hence, when ε → 0 is at the rim of the disk and sphere,
after dividing Eq. (19) by

p�−ε� on both sides, this relation
reads

Cn1 ;n2�sin φ�n1Cn1�1
n2 �cos φ�Pn1�1�

�
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

π

r Xn
m�−n�2�

W n;m
n1 ;n2P

�jmj;0�
nr �−1�eimφ; (22)

with nr � 1
2 �n − jmj�. Recalling that Pn1�1� � 1 and

P�jmj;0�
nr �−1� � �−1�nr , we can now use the orthogonality of

the eimφ functions to express the interbasis coefficients as a
Fourier integral,

W n;m
n1 ;n2 �

�−1�nrCn1 ;n2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π�n� 1�

p Z
π

−π
dφ�sin φ�n1

× Cn1�1
n2 �cos φ� exp�−imφ�: (23)

The integral Eq. (23) does not appear as such in the standard
tables [12]; in Appendix A we derive the result and show that it
can be written in terms of a hypergeometric 3F 2 polynomial
which is an su(2) Clebsch–Gordan coefficient with a special
structure,

W n;m
n1 ;n2 �

in1�−1��m�jmj�∕2n1!�n1 � n2�!�
1
2 �n1 � n2 � m�

�
!
�
1
2 �n1 − n2 − m�

�
!

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n1 � 1

n2!�2n1 � n2 � 1�!

s
(24)

× 3F 2

�
−n2; n1 � 1; − 1

2
�n1 � n2 � m�

−n1 − n2; 1
2 �n1 − n2 − m� � 1

����1�
� in1�−1��m�jmj�∕2Cn1 ;0

1
2n;−

1
2m;

1
2n;

1
2m
; (25)

where we have used the notation of Varshalovich et al. in
Ref. [13] that couples the su(2) states �j1; m1� and �j2; m2�
to �j;m�, as Cj;m

j1 ;m1;j2 ;m2
≡ Cj1 ;j2 ;j

m1 ;m2 ;m ≡ hj1; m1; j2; m2j�j1; j2�j; mi.
One can then use the orthonormality properties of the

Clebsch–Gordan coefficients to write the transformation
inverse to Eq. (19) as

ϒI
n;m�ϑ;φ� �

Xn
n1�0

eW n1 ;n2
n;m ϒII

n1 ;n2�ϑ 0;φ 0�; (26)

eW n1 ;n2
n;m � �−i�n1�−1��m�jmj�∕2Cn1 ;0

1
2n;−

1
2m;

1
2n;

1
2m

(27)

with n1 � n2 � n. The relation between the unprimed and
primed angles of the coordinate systems I and II is the inverse
of Eq. (20), namely,

cos ϑ� sin ϑ 0 sin φ 0; cos φ� cos ϑ 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sin2ϑ 0 sin2φ 0p : (28)

4. CONCLUDING REMARKS

The new polynomial solutions of the Zernike differential
Eq. (1) can be of further use in the treatment of generally
off-axis wavefront aberrations in circular pupils. While the
original basis of Zernike polynomials ΨI

n;m�r;ϕ� serves natu-
rally for axis-centered aberrations, the new basis ΨII

n1 ;n2�r;ϕ�
in Eq. (17) includes, for n1 � 0, plane wave trains with n2
nodes along the x axis of the pupil, which are proportional
to Un2�x�, the Chebyshev polynomials of the second kind.

We find that the Zernike system is also very relevant for
studies of “nonstandard” symmetries described by Higgs alge-
bras. While rotations in the basis of spherical harmonics is
determined through the Wigner-D functions [13] of the rota-
tion angles on the sphere, here the boundary conditions of the
disk and sphere allow for only a 1

2 π rotation of the z axis to
orientations in the x-y plane, and the basis functions do not
relate through Wigner D-functions, but Clebsch–Gordan co-
efficients of a special type. Since the classical and quantum
Zernike systems analyzed in Refs. [8,9] have several new
and exceptional properties, we surmise that certain applications
must also be of interest.

APPENDIX A: THE INTERBASIS INTEGRAL AND
CLEBSCH–GORDAN COEFFICIENTS

The integral in Eq. (23) does not seem to be in the literature,
although similar integrals appear in a paper of Kildyushov [14]
to calculate his three coefficients. Thus, let us solve ab initio,
with λ � n1 and ν � n2, integrals of the kind
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I λ;mν ≔
Z

π

−π
dφ sinλ φCλ�1

ν �cos φ�e−imφ; (A1)

where λ; ν ∈ f0; 1; 2;…g.
We write the trigonometric function and the Gegenbauer

polynomial in their Fourier series expansions,

sinλ φ� eiλφ

�2i�λ �1− e
−2iφ�λ � 1

�2i�λ
Xλ
k�0

�−1�kλ!
k!�λ− k�!e

i�λ−2k�φ;

(A2)

Cλ�1
ν �cos φ� �

Xν
l�0

�λ� l�!
l !�ν − l�!

�λ� ν − l�!
�λ!�2 e−i�ν−2l�φ: (A3)

Substituting these expansions in Eq. (A1), using the orthog-
onality of the eiκφ functions and thereby eliminating one of the
two sums, we find a 3F 2 hypergeometric series for unit
argument,

I λ;mν � 2π

�2i�λ
�λ� ν�!

ν!

�−1��λ−ν−m�∕2�
1
2 �λ − ν − m�

�
!
�
1
2 �λ� ν� m�

�
!

× 3F 2

 
−ν; λ� 1; − 1

2 �λ� ν� m�
−λ − ν; 1

2 �λ − ν − m� � 1
1

!
: (A4)

Multiplying this by the coefficients Cn1 ;n2 in Eq. (23), one
finds the first expression in Eq. (24).

In order to relate the previous result with the su(2) Clebsch–
Gordan coefficients in Eq. (25), we use the formula in [13]
[Eq. (21), Section 8.2] for the particular case at hand, and a
relation between 3F 2-hypergeometric functions,

3F 2

�
a;b; c
d ; e

����1��Γ�d �Γ�d − a −b�
Γ�d − a�Γ�d −b�3F 2

�
a;b; e − c

a�b−d �1; e

����1�;
(A5)

to write these particular symmetric coefficients as

C γ;0
α;−β;α;β �

�2α�!γ!
�α� β�!�γ − α − β�!

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γ � 1

�2α − γ�!�2α� γ � 1�!

s

× 3F 2

�
−2α� γ; γ � 1; −α − β

−2α; γ − α − β� 1

����1�: (A6)

Finally, upon replacement of α � 1
2 n � 1

2 �n1 � n2�,
β � 1

2
m, and γ � n1, the expression (24) reduces to

Eq. (25) times the phase and sign.
The interbasis expansion coefficients binding the two bases in

Eq. (19) and Fig. 2 can be seen as �n� 1� × �n� 1�
matrices W�n� � kW n;m

n1 ;n2k with composite rows �n1; n2� and
columns �n; m� for each rung n1 � n2 � n ∈ Z�

0 , on �n� 1�-
dimensional column vectors of functions as ϒII�ϑ 0;φ 0� �
W�n�ϒI�ϑ;φ�. The elements W n;m

n1 ;n2 in Eq. (25) are the product
of phases

in1 ; �−1�	1
2�m�jmj� �

� �−1�m; m > 0;
1; m ≤ 0

(A7)

times the special Clebsch–Gordan coefficients Cn1 ;0
1
2n;−

1
2m;

1
2n;

1
2m
. For

even n and odd n1, C
n1 ;0
1
2n;0;

1
2n;0

� 0.

The Zernike polynomials come in complex conjugate pairs,
ϒI

n;m � ϒI�
n;−m, while the ϒII

n1 ;n2 ’s are real. The linear combina-
tions afforded by the W matrices above indeed yield real
functions because

Cn1 ;0
1
2n;−

1
2m;

1
2n;

1
2m

� �−1�n2Cn1 ;0
1
2n;

1
2m;

1
2n;−

1
2m
: (A8)
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