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We consider the differential equation that Zernike proposed to classify aberrations
of wavefronts in a circular pupil, whose value at the boundary can be nonzero. On
this account, the quantum Zernike system, where that differential equation is seen
as a Schrödinger equation with a potential, is special in that it has a potential and
a boundary condition that are not standard in quantum mechanics. We project the
disk on a half-sphere and there we find that, in addition to polar coordinates, this
system separates into two additional coordinate systems (non-orthogonal on the pupil
disk), which lead to Schrödinger-type equations with Pöschl-Teller potentials, whose
eigen-solutions involve Legendre, Gegenbauer, and Jacobi polynomials. This pro-
vides new expressions for separated polynomial solutions of the original Zernike
system that are real. The operators which provide the separation constants are found
to participate in a superintegrable cubic Higgs algebra. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4990794]

I. INTRODUCTION: THE ZERNIKE OPERATOR

The differential operator and eigenvalue equation of Zernike23 are

Ẑ (α,β)
Ψ(r) :=

(
∇

2 + α(r · ∇)2 + β r · ∇
)
Ψ(r)=−E Ψ(r), (1)

for real parameters α and β. In order to describe the shape of scalar optical wavefields constrained by
a unit circular exit pupil, and such that at its boundary |r| = 1 the wavefields have a constant absolute
value c= |Ψ(r)| |r |=1, Zernike found that for the two-dimensional case, operator (1) can be self-adjoint
under the inner product over the pupil disk, only when the two parameters have the values αZ =−1
and βZ =−2, as we show in Sec. II.

This system and its solutions have many important properties which have been analyzed thor-
oughly in several optical and mathematical papers.5,6,11,14,18,21,22 Yet it seems that the symmetries
obtained when this system is projected from the disk on the half-sphere have not yet been elucidated.
It has been suggested to us that non-standard Hamiltonians as in (1) may be related to quantum sys-
tems with non-hermitian Hamiltonians as developed by Bender et al.2–4 even though self-adjointness
is shown for the present case, where the boundary conditions are at variance with those commonly
encountered in quantum mechanics.

The Zernike differential equation (1) can evidently be separated and solved in polar coordinates
(r, φ). As was shown in Ref. 20, the classical counterpart of this equation describes a system which
is separable in polar and elliptic coordinates and, when projected on the manifold of a sphere or
hyperboloid, displays separability in other three and six orthogonal coordinate systems, respectively.
In Sec. III we solve the separated polar and radial equations, the former yielding circular harmonics and
the latter hypergeometric polynomials that match those of Zernike.23 The quest for higher symmetries
starts in Sec. IV, where we map the disk on a half-sphere with coinciding boundaries. This step
is crucial because it allows the orthogonal coordinates on the sphere to map onto non-orthogonal
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coordinates on the disk, where the Zernike equation also separates and the separation constants
provide extra integrals of motion.

In Sec. V we introduce three coordinate systems on the sphere, whose ϑ= 0 poles point along
the z-, x-, and y-axis. The first returns essentially the solutions of Secs. I–IV, while the other two
yield solutions in terms of products of a Legendre and a Gegenbauer polynomial. In Sec. VI, the
operators that provide the separation constants are organized through their commutators into the
nonlinear cubic Higgs superintegrable algebra.10,13 Sec. VII recapitulates the construction and adds
some further remarks on Zernike-type systems.

II. BOUNDARY CONDITIONS AND RESTRICTIONS

As we mentioned in the Introduction, the Hilbert space of square-integrable functions f (r) ∈
L2(D), on the unit disk D := {|r| ≤ 1}, is determined by the inner product

(f , g)D :=
∫
D

d2r f (r)∗g(r)=
∫ 1

0
r dr

∫ π

−π

dφ f (r, φ)∗g(r, φ), (2)

where the asterisk indicates complex conjugation and the functions are required to satisfy the boundary
value |f (1, φ)| = constant. In this space, the Zernike operator (1) is required to be self-adjoint, namely,

(f , Ẑ (α,β)g)D = (Ẑ (α,β)f , g)D. (3)

Written out in polar coordinates and separated into three summands, this operator is

Ẑ (α,β) = Ẑ (α)
2 + Ẑ (α,β)

1 + Ẑφ , (4)

where

Ẑ (α)
2 := (1 + αr2)∂2

r , Ẑ (α,β)
1 :=

(1
r

+ (α + β)r
)
∂r , Ẑφ :=

1

r2
∂2
φ . (5)

On each summand, integral (2) will be performed by parts yielding boundary terms. In the last term,
we can immediately integrate by parts over φ, yielding

(f , Ẑφg)D = (Ẑφf , g)D +
∫ 1

0

dr
r

(
(f ∗∂φg − g∂φf ∗)���

π

φ=−π

)
. (6)

The last term will evidently vanish when the functions are single-valued over the disk, so we can
consider

f (r, φ)= fm(r)
eimφ

√
2π

, (7)

with any integer m. Let us continue indicating by f (r), g(r), functions of the radius r alone, suppressing
their index m, and obviating the integral over φ in (2) that will yield unity.

The first-order differential term Ẑ (α,β)
1 in (5) will now be integrated by parts over r |10 , giving a

left-over integral and a boundary term,

(f , Ẑ1g)r =−(Ẑ1f , g)r − 2(α + β)
∫ 1

0
r dr f ∗g +

(
1 + (α + β)r2

)
f ∗g���

1

0
. (8)

Proceeding similarly with the second-order differential term Ẑ (α)
2 , we obtain

(f , Ẑ2g)r = (Ẑ2f , g)r +
∫ 1

0
dr

(
2(1 + 3αr2)(∂r f ∗)g + 6αrf ∗g

)
+

(
r(1 + αr2)

(
f ∗∂rg − (∂r f ∗)g

)
− (1 + 3αr2)f ∗g

) ����
1

0
.

(9)

Summing (8) and (9) yields(
f , (Ẑ2 + Ẑ1)g

)
r
=

(
(Ẑ2 − Ẑ1)f , g

)
r

+ 2
∫ 1

0
r dr

(
(2α − β)f ∗g + (1/r + 3αr)(∂r f ∗)g

)
+

(
r(1 + αr2)

(
f ∗∂rg − (∂r f ∗)g

)
+ r2(β − 2α)f ∗g

) ����
1

0
.

(10)
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The boundary term is zero at r = 0; for r = 1 and generally nonzero values for f (1), g(1) or their
derivatives, the first summand vanishes when α =−1, and then the coefficient of the second summand
will also vanish when β = 2α =−2; for these values of α and β, the remaining integral term in the
right-hand side of (10) will then be 2 ∫

1
0 r dr (1/r − 3r)(∂r f ∗)g= 2(Ẑ (−1,−2)

1 f , g)
r
, as can be seen from

(5). The last term Ẑφ in (6) is independently self-adjoint, so it follows that the Zernike operator
Ẑ (−1,−2) satisfies the required self-adjointness condition (3).

Given the form of the angular part of the Zernike differential operator Ẑφ in (5), its eigenfunctions
being ∼eimφ for all integers m ∈ {0,±1,±2, . . .}, we may separate the solutions Ψ(r) of (1) as

Ψ(r, φ) :=R(m)(r)
eimφ

√
2π

, (11)

turning the Zernike equation (1) into an ordinary differential equation for the radial factor R(m)(r),

r2(1 − r2)
d2R(m)(r)

dr2
+ r(1 − 3r2)

dR(m)(r)
dr

− m2R(m)(r)=−Er2 R(m)(r), (12)

where the values of E will be determined by the square-integrable solutions that can be normalized
as R(m)(1) = constant.

III. THE ZERNIKE BASIS OF FUNCTIONS ON THE DISK

The radial differential equation of Zernike (12) is of hypergeometric type. Writing R(m)(r)
= rmF(r2), the factor F(z) is the solution of the hypergeometric equation [Ref. 8, Eq. (9.151)],

z(1 − z)F ′′ +
(
(m + 1) − (m + 2)z

)
F ′ −

1
4

(
m(m + 2) − E

)
F = 0, (13)

which has one solution of the form 2F 1(a, b; c; z), with parameters

a=
1
2

(m + 1) ±
1
2

√
E + 1, b=

1
2

(m + 1) ∓
1
2

√
E + 1, c=m + 1. (14)

Since m is the integer and c must be positive, the absolute value |m| should be understood for
√

m2

in (12). Also, since c = a + b, the solution will be logarithmically singular at z = r2 = 1 unless the
hypergeometric series terminates and is a polynomial. This occurs when we write E: = n(n + 2) and
ask n � |m| to be an even non-negative integer, thus defining the radial quantum number as

nr :=
1
2

(n − |m|) ∈ {0, 1, 2, . . .}, (15)

and energy E in (1) is then given by the principal quantum number n,

E = n(n + 2), n= 2nr + |m| ∈ {0, 1, 2, . . .}. (16)

Hence, the square integrable solutions to the radial Zernike equation (12) in the interval r ∈ [0, 1]
are of the form

Rm
n (r) := An,m r |m | 2F 1(−nr , nr + |m| + 1; |m| + 1; r2) (17)

= An,m

(nr + |m|
|m|

)−1

r |m |P( |m |,0)
nr

(1 − 2r2), (18)

where An,m is a constant and we recognize the identity of the hypergeometric function with Jacobi
polynomials of degree nr in (1 � 2r2) [Ref. 8, Eq. (8.962.1)].

Zernike’s original requirement [Ref. 23, Eq. (22)] was that Rm
n (1)= 1, leading to choose the con-

stant An,m in (17) and (18) given by a sign and binomial coefficient, so that AZernike
n,m := (−1)nr

(
nr+ |m |
|m |

)
defines his disk polynomials as

Zm
n (r, φ) :=Rm

n (r)
{ cos mφ, for m ≥ 0,

sin mφ, for m < 0.
(19)
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In the present paper, we prefer to attend the “quantum-mechanical” normalization of the disk
functions, using the orthogonality of the Jacobi polynomials over r ∈ [0, 1] in the form [Ref. 8, Eq.
(7.391)] ∫ 1

0
r dr ���r

|m |P( |m |,0)
nr

(1 − 2r2)���
2
=

1
2(n + 1)

. (20)

Since
∫ π

−π

dφ= 2π, we adopt the normalization constant for the disk functions as An,m =
√

2(n + 1)/2π

in (11), so they are

Ψ
m
n (r, φ) := (−1)nr

√
n + 1
π

r |m |P( |m |,0)
nr

(1 − 2r2) eimφ , (21)

with n = 2nr + |m|. At the center of the disk, Ψm
n (0, φ)= 0 for m, 0, while (for n even) Ψ0

n(0, φ)
=
√

(n + 1)/π and Ψ0
0(r, φ)= 1/

√
π. At the circle boundary r = 1,

Ψ
m
n (1, φ)=

1
8

(n + |m|)(n + |m| − 2)

√
n + 1
π

eimφ . (22)

These wavefunctions satisfy the orthonormality relation

(Ψm
n ,Ψm′

n′ )D =
∫
D

d2rΨm
n (r)∗ Ψm′

n′ (r)= δn,n′ δm,m′ (23)

and are solutions to the quantum Zernike Hamiltonian equation

−ẐΨm
n (r) :=

(
−∇2 + (r · ∇)2 + 2 r · ∇

)
Ψ

m
n (r)= n(n + 2)Ψm

n (r). (24)

Density plots of the Zernike disk polynomials are ubiquitous in the literature and on the Web, so
we need not reproduce here the real and imaginary parts of Ψm

n (r, φ) in (21). Below we shall display
the new disk polynomials associated with separating coordinates different from the polar ones.

IV. FINDING ADDITIONAL CONSTANTS OF MOTION

For a fixed value of energy E = n(n + 2) given by the principal quantum number n in (16), there is
a range of radial and azimuthal quantum numbers nr and m that sum to n = 2nr + |m|. The degeneracy
in ±m stems from the SO(2) rotational symmetry of the disk D generated by the angular momentum
operator

L̂ := x∂y − y∂x. (25)

But there is also a larger degeneracy between those two quantum numbers, present in the multiplets

m ∈ {n, n − 2, . . . − n}, (26)

that keep n � m as even integers, and which indicates an SU(2) symmetry and extra integrals of
motion that we proceed to find. These must be of second degree in momentum and would imply that
other systems of separating coordinates exist. As is well known in the two-dimensional flat space,
the Helmholtz and Schrödinger equations allow separation of variables in four orthogonal systems,
namely, in Cartesian, polar, parabolic, and elliptic coordinates.17 A simple analysis of the Zernike
equation (1) on the unit disk D shows that only the polar system evinces this separation, so the
question of existence of additional integrals of motion and of separating coordinates is open. Below
we shall solve this problem by finding two integrals of motion in addition to L̂ in (25), which is the
only obvious one.

Consider again the Zernike operator (1) with the values of α =−1 and β =−2 that we saw in
Sec. II to allow its self-adjointness on the unit disk D, written in Cartesian coordinates as

Ẑ := (1 − x2)∂xx − 2xy∂xy + (1 − y2)∂yy − 3(x∂x + y∂y). (27)

Now we perform the similarity transformation

Ŵ :=AẐA−1, A(r) := (1 − x2 − y2)
1/4
= (1 − r2)

1/4
, (28)
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to obtain the new operator

Ŵ = (1 − x2)∂xx − 2xy∂xy + (1 − y2)∂yy − 2(x∂x + y∂y)

+
1
4

(1 − x2 − y2)
−1

+
3
4

.
(29)

As in the classical system,20 we shall map the unit disk D on the upper hemisphere H+, ξ2
1 +

ξ2
2 + ξ2

3 = 1, ξ3 ≥ 0, embedded in a three-dimensional Euclidean space of coordinates {ξi}
3
i=1, using

the orthogonal (or “vertical”) projection as shown in Fig. 1,

ξ1 = x, ξ2 = y, ξ3 =

√
1 − x2 − y2, (30)

where ξ2
1 + ξ2

2 = r2, while the partial derivatives map on ∂i := ∂/∂ξi as

∂x = ∂1 −
ξ1

ξ3
∂3, ∂y = ∂2 −

ξ2

ξ3
∂3. (31)

The second-order operator Ŵ in (29), with ∂ij = ∂
2/∂ξi∂ξj , thus becomes

Ŵ = (ξ2
2 + ξ2

3)∂11 + (ξ2
1 + ξ2

3)∂22 + (ξ2
1 + ξ2

2)∂33

− 2ξ1ξ2∂12 − 2ξ1ξ3∂13 − 2ξ2ξ3∂23 − 2ξ1∂1 − 2ξ2∂2 − 2ξ3∂3 (32)

+
ξ2

1 + ξ2
2

4ξ2
3

+ 1

=∆LB +
ξ2

1 + ξ2
2

4ξ2
3

+ 1, (33)

where we have introduced the Laplace-Beltrami operator on the two-dimensional unit sphere

∆LB := L̂2
1 + L̂2

2 + L̂2
3 (34)

and {L̂i}
3
i=1 are the generators of an SO(3) Lie algebra,

L̂1 := ξ3∂2 − ξ2∂3, L̂2 := ξ1∂3 − ξ3∂1, L̂3 := ξ2∂1 − ξ1∂2. (35)

While the metric on the disk D is diagonal and distance is ds2 = dx2 + dy2, the metric on the
surface of the half-sphere H+ of |~ξ | = 1 is

g= *
,

1 + ξ2
1/ξ

2
3 ξ1ξ2/ξ

2
3

ξ1ξ2/ξ
2
3 1 + ξ2

2/ξ
2
3

+
-

, g := det g=
1

ξ2
3

=
1

1 − (ξ2
1 + ξ2

2)
, (36)

so that the distance is ds2 =
∑2

i,j=1 gi,jdξi dξj, and the surface elements on H+ and D are related by

d2V (~ξ )=
√

g dξ1 dξ2 =
dξ1 dξ2

ξ3
=

dx dy√
1 − (x2 + y2)

=
d2r
√

1 − r2
. (37)

FIG. 1. Map of the unit disk D on the unit upper hemisphere H+ through the orthogonal projection (30) of Cartesian
coordinates.



072101-6 Pogosyan et al. J. Math. Phys. 58, 072101 (2017)

This clearly shows that the measure on H+ grows when ξ3→ 0 (r→ 1) so that its vertical projection
on the disk remains constant up to the boundary.

As a result, the quantum Zernike Hamiltonian equation (24) on the unit diskD, written in terms of
Ŵ , transforms to a quantum Schrödinger equation on the unit upper half-sphereH+ for wavefunctions
Υm

n (~ξ ) of the form (
−∆LB − ω

2 ξ
2
1 + ξ2

2

ξ2
3

)
Υ

m
n (~ξ )= (E + 1)Υm

n (~ξ ), (38)

which corresponds to a form of repulsive oscillator potential,

V R(~ξ ) :=−
1
2
w2 ξ

2
1 + ξ2

2

ξ2
3

=−
1
2
w2 r2

1 − r2
, (39)

that generalizes the superintegrable Higgs attractive oscillator,9,10,12 to a repulsive one with a negative
coupling constant − 1

2w
2, whose wavefunctions are

Υ
m
n (~ξ ) :=A(r)Ψm

n (r)= (1 − r2)
1/4
Ψ

m
n (r, φ), (40)

where r is (ξ1, ξ2) or (r, φ), and with energy eigenvalues

E :=
1
2

(E + 1)=
1
2

(n + 1)2, n ∈ {0, 1, 2, . . .}. (41)

Because A(1) = 0, the wavefunctions Υm
n (~ξ ) in (40) vanish on the boundary ξ3 = 0 of H+, while at

the “top pole” ξ3 = 1, r = 0, they have the values found for Ψm
n (r) after (21).

From the orthonormality relation between the wavefunctions Ψm
n (r) when integrated over the

disk D in (23) for the inner product (◦, ◦)D, under the proper inner product on the half-sphere H+ due
to (37) and (40), the corresponding orthonormality of the wavefunctions Υm

n (~ξ ) is

(Υm
n ,Υm′

n′ )H+
:=

∫
H+

d2V (~ξ )Υm
n (~ξ )

∗
Υ

m′
n′ (~ξ )= (Ψm

n ,Ψm′
n′ )D = δn,n′δm,m′ . (42)

V. SOLUTION TO THE SCHRÖDINGER EQUATION (38)

The key to analyze the Zernike system in new light has been to map the unit disk D on the half-
sphere H+. It is on this manifold that one can introduce in a natural way other coordinate systems.
Indeed, the Higgs repulsive oscillator system (38) can be separated into four systems of coordinates:
three mutually orthogonal spherical systems of coordinates,19 namely,

system I:
ξ1 = sin ϑ cos ϕ, ξ2 = sin ϑ sin ϕ, ξ3 = cos ϑ, ϑ |π/20 , ϕ|2π0 , (43)

system II:
ξ1 = cos ϑ′, ξ2 = sin ϑ′ cos ϕ′, ξ3 = sin ϑ′ sin ϕ′, ϑ′ |π0 , ϕ′ |π0 , (44)

system III:
ξ1 = sin ϑ′′ sin ϕ′′, ξ2 = cos ϑ′′, ξ3 = sin ϑ′′ cos ϕ′′. ϑ′′ |π0 , ϕ′′ |π/2

−π/2, (45)

and also the elliptic coordinate system.
Restricting our consideration in this paper only to the above three spherical systems, we now

examine the form of the potential present in each. In Fig. 2, we show the three coordinate systems
(43)–(45) on the sphere and on the projected disk, on which the solutions in this section will separate,
and to appreciate that the latter two coordinate systems, while they are orthogonal over the sphere,
they are non-orthogonal over the disk. Normally such coordinates are not considered when examining
separability on a flat space.
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FIG. 2. The coordinate systems (43)–(45). Top row: on the half-sphere H+, where the ϑ = 0 pole is directed along the vertical
z-axis, and on the x- and y-axis. Bottom row: the same coordinate systems after projection over the disk D.

A. The system I in (43)

In the spherical coordinate system (ϑ, ϕ) of (43), the repulsive oscillator potential (39) takes the
form

VR(ϑ)=−
ξ2

1 + ξ2
2

8ξ2
3

=−
1
8

tan2ϑ, (46)

and the corresponding Schrödinger equation (38) has the form

1
sin ϑ

∂

∂ϑ
sin ϑ

∂ΥI(ϑ, ϕ)
∂ϑ

+
1

sin2θ

∂2ΥI(ϑ, ϕ)

∂ϕ2
+ (2E +

1
4

tan2ϑ)ΥI(ϑ, ϕ)= 0. (47)

We now separate the wavefunction according to the coordinates (ϑ, ϕ),

Υ
I(ϑ, ϕ)=

Z I(ϑ)
√

sin ϑ

eimϕ

√
2π

, m ∈ {0,±1,±2, . . .}, (48)

so we come to find Z I(ϑ) as the solution of a “singular” Pöschl-Teller-type equation,

d2Z I(ϑ)

dϑ2
+

(
2E −

m2 − 1
4

sin2ϑ
+

1

4 cos2ϑ

)
Z I(ϑ)= 0. (49)

This equation describes the one-dimensional quantum wavefield in the effective potential,

V I
eff (ϑ)=

m2 − 1
4

sin2ϑ
−

1

4 cos2ϑ
, (50)

shown in Fig. 3, which contains a strong repulsive singularity at ϑ= 0 (for m, 0) and a weak attractive
singularity at ϑ= 1

2π, where we choose the self-adjoint extension with positive spectrum; when
m = 0, both singularities are weak and we follow the same choice. Such singularities of the Pöschl-
Teller potentials have been considered in Ref. 7 and appear also in the coupling Clebsch-Gordan
coefficients of two lower-bound “discrete” representations of the Lorentz algebra so(2, 1).1

While in the general Pöschl-Teller potential (on a finite interval) one may have both positive and
negative energies, we will have solutions of the Schrödinger equation whose potential (50) has only
positive energy eigenvalues. Our task now is to find the square-integrable solutions of Eq. (49) that
satisfy the boundary conditions of vanishing at the singularities ϑ= 0 and 1

2π of (50),

Z I(0)= 0, Z I
(1
2
π
)
= 0, (51)

with the additional requirement that at the boundary,

Z I(ϑ)/
√

cos ϑ���ϑ=π/2 = constant , 0. (52)
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FIG. 3. Effective potential V I
eff (ϑ)= (m2 − 1/4)/sin2ϑ − 1/4 cos2ϑ in (50), for ϑ ∈ (0, π/2) and values m = 0 (continuous

line), m = 1 (dashed line), and m = 2 (dotted line).

This requirement embodies the factor A(r)= (1 − r2)
1/4
=
√

cos ϑ introduced in (28) and allows
ΥI(ϑ, ϕ) in (48) to be nonzero at the boundary r = 1.

For the boundary conditions (51), the energy spectrum of E in (49) is positive and discrete,
namely,

E= 1
2

(n + 1)2, n ∈ {0, 1, 2, . . .}, (53)

as determined by E in (16). To prove this proposition, we replace in (49) the new variable s := sin2ϑ
and substitute

Z I(ϑ)= s( |m |+ 1
2 )/2(1 − s)1/4f (s), (54)

where f (s) now satisfies

s(1 − s)f
′′

+
(
(|m| + 1) − s(|m| + 2)

)
f
′

−
1
4

(
(|m| + 1)2 − 2E

)
f = 0. (55)

The solution of this equation that is regular at s = 0 is a hypergeometric function,

f (s)=C 2F 1

(1
2

(|m| + 1 +
√

2E),
1
2

(|m| + 1 −
√

2E); |m| + 1; s
)
, (56)

where C is a constant. The second solution to (55) diverges logarithmically at s = 0, i.e., at ϑ= 0 and
hence at the center of the disk r = 0, so we disregard it.

Still, since the parameters of the hypergeometric function in (56) again sum as a + b = c, its
behaviour at s = 1 will also diverge logarithmically, as was the case in (14) for polar coordinates of
the disk D, and nevertheless the two boundary conditions in (51) are satisfied due to (54). To have
solutions ΥI that can be a nonzero constant over the circle r = 1, the third boundary condition (52)
must hold, and again this requires the hypergeometric series to terminate as a polynomial. There is
thus a subtle difference between quantization on the disk as performed in Sec. III and quantization
on the half-sphere as done here. We must therefore demand that one of the two first parameters of
the hypergeometric function in (56) be zero or a negative integer, which leads us to define again the
radial quantum number

nr :=−
1
2

(|m| + 1 −
√

2E) ∈ {0, 1, 2, . . .}, (57)

as we did to find the spectrum in (16), thus proving the assertion in (53). We thus define the principal
and radial quantum numbers related by the angular momentum parameter |m| =

√
m2 in (48) and the

Pöschl-Teller potential (50) by n = 2nr + |m| and use them to label the solutions in (49) as Z I
nr ,m(ϑ).

Using the boundary condition (52) to determine the appropriate constant C in (56), we write thus the
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solution with the two quantum number labels as

Z I
nr ,m(ϑ)=

√
2(n + 1)

nr! |m|!
(nr + |m|)!

(sin ϑ) |m |+1/2 (cos ϑ)1/2

× 2F 1(−nr , nr + |m| + 1; |m| + 1; sin2ϑ) (58)

=
√

2(n + 1) (sin ϑ) |m |+1/2 (cos ϑ)1/2P( |m |,0)
nr

(cos 2ϑ), (59)

where again P(α,β)
n (u) are the Jacobi polynomials, as was the case in the polar coordinate case (17).

The wavefunctions Z I
nrm(ϑ) in the interval ϑ ∈ [0, 1

2π] of H+ are normalized as∫ π/2

0
dϑ Z I

nr ,m(ϑ)∗ Z I
n′r ,m(ϑ)= δnr ,n′r , (60)

which yields the orthonormalization for the Υm
n (ϑ, ϕ) solution in (42).

Returning from the variables (ϑ, ϕ) of system I in (43) to the polar coordinates (r, φ), with r = sin ϑ
and φ= ϕ, as shown in Fig. 2 (left), taking into account the connection between the functionsΥI(ϑ, φ)
in (48) and Ψ(r, φ) and attaching the principal quantum number label, we obtain result (21).

B. The system II in (44)

In the second spherical coordinate (44), potential (39), expressed in the coordinates (ϑ′, ϕ′), is
now

V II
eff =−

1
8

( 1

sin2ϑ′sin2ϕ′
− 1

)
. (61)

The corresponding quantum Zernike Hamiltonian Eq. (38) can be separated with the substitution

Υ
II(ϑ′, ϕ′)=

1
√

sin ϑ′
S(ϑ′) T (ϕ′), (62)

so we come to a system of two differential equations with a separation constant k,

d2S

dϑ′2
+

(
2E −

k2 − 1
4

sin2ϑ′

)
S = 0,

d2T

dϕ′2
+

(
k2 +

1

4sin2ϕ′

)
T = 0. (63)

These equations can be put in form where the Pöschl-Teller form is more evident introducing the new
variables µ= 1

2ϕ
′ and ν = 1

2ϑ
′ as

d2T (µ)

dµ2
+

(
4k2 +

1

4sin2µ
+

1

4 cos2µ

)
T (µ)= 0, (64)

d2S(ν)

dν2
+

(
8E +

1 − 4k2

4sin2ν
+

1 − 4k2

4 cos2ν

)
S(ν)= 0. (65)

The boundary condition at the weak singularities of (64) was discussed following Eq. (49), while
those of (65) are even weaker due to the �4k2 summand. Regarding the extra boundary condition,
analogue to (52) now is

T (µ)/
√

cos µ���µ=π/2 = constant , 0. (66)

Solving these equations we obtain the constant and the energies E in (53),

k = n1 +
1
2

, E= 1
2

(
k + n2 +

1
2

)2

=
1
2

(n1 + n2 + 1)2 =
1
2

(n + 1)2, (67)

where n = n1 + n2 is the principal quantum number and n1, n2 ∈ {0, 1, 2, . . .}, so that the energy
spectrum is the same as in the previous case.

The solution to both Eqs. (63) is similar, and the orthonormalized eigenfunctions (62) can be
written, labeled by the two quantum numbers and separation constant, as

Υ
II
n1,n2

(ϑ′, ϕ′)=Cn1,n2 sinn1+ 1
2 ϑ′sin

1
2 ϕ′Cn1+1

n2
(cos ϑ′) Pn1 (cos ϕ′), (68)
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where

Cn1,n2 := 2n1+ 1
2 n1!

√
(2n1 + 1)(n1 + n2 + 1) n2!

2π (2n1 + n2 + 1)!
, (69)

and Cγ
n (z) and Pn(z) are the Gegenbauer and Legendre polynomials of degree n in z, respectively.

We note that the operator that characterizes the separation of the solutions in this coordinate
system involves the operator L̂1 in (35) and is

Ĵ1Υ
II
n1,n2

(ϑ′, ϕ′) :=
(
∂2

∂ϕ′2
+

1

4sin2ϕ′

)
Υ

II
n1,n2

(ϑ′, ϕ′)

=

(
L̂2

1 +
ξ2

2 + ξ2
3

4ξ2
3

)
Υ

II
n1,n2

(ϑ′, ϕ′)=−k2
Υ

II
n1,n2

(ϑ′, ϕ′),
(70)

where we recall that k = n1 + 1
2 . Finally, we return to the (x, y) coordinates on the disk D through

cos ϑ′ = x, cos ϕ′ = y/
√

1 − x2, to write the wavefunctions as

Ψ
II
n1,n2

(x, y)=Cn1,n2 (1 − x2)
n1/2 Cn1+1

n2
(x) Pn1

( y
√

1 − x2

)
. (71)

In this form, it is evident that these solutions are real and nonzero at the boundary except for isolated
points where the polynomials vanish. In Fig. 4, we provide a density plot for these functions on the
disk.

The Zernike differential Eq. (1) was found rather easily to separate in polar coordinates (r, φ),
where for the Zernike values (α, β)= (−1,−2), the radial part was (12). Having here separated its
solutions by coordinates (u, v) := (x, y/

√
1 − x2) that are shown in Fig. 2 (middle), we see that the

solutions can be written asΨn1,n2 (x, y)=Un1,n2 (u)Vn1 (v), and the equation can be written in a separated
form as follows:

(u2 − 1)
2 ∂2Ψ

∂u2
+ 3u(u2 − 1)

∂Ψ

∂u

+ (1 − v2)
∂2Ψ

∂v2
− 2v

∂Ψ

∂v
=E(u2 − 1)Ψ.

(72)

FIG. 4. The new polynomial solutions to the Zernike quantum system on the diskD,ΨII
n1 ,n2

(x, y) in (71), with rows of the same
principal quantum number n = n1 + n2. There are ten tones of gray between contours to emphasize the separating coordinates.
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The disk D in (x, y) is thus mapped on the square |u| ≤ 1, |v | ≤ 1 where the coordinates (u, v) are
orthogonal.

C. The system III in (45)

The same line of reasoning we followed above for systems I and II apply to the coordinate
system III in (45) for the coordinates (ϑ′′, ϕ′′). There, potential (39) also takes the form of an effective
potential also of Pöschl-Teller type,

V III
eff =−

1
8

( 1

sin2ϑ′′ cos2ϕ′′
− 1

)
. (73)

This potential stems from (61) through the exchange ϑ′→ ϑ′′ and ϕ′→ ϕ′′ + 1
2π. The solution of the

Schrödinger Eq. (38) in the coordinate system III now has the separated form

Υ
III
l1,l2

(ϑ′′, ϕ′′)=Cl1,l2 sinl1+ 1
2 ϑ′′ cos

1
2 ϕ′′Cl1+1

l2
(cos ϑ′′) Pl1 (sin ϕ′′), (74)

with l1, l2 ∈ {0, 1, 2, . . .}, the same constant (69) and principal quantum number n = l1 + l2. The energy
spectrum is also given by E in (53).

The additional operator that describes the separation of solutions in system III is

Ĵ2Υ
III
l1,l2

(ϑ′′, ϕ′′) :=
(
∂2

∂ϕ′′2
+

1

4 cos2ϕ′′

)
Υ

III
l1,l2

(ϑ′′, ϕ′′)

=

(
L̂2

2 +
ξ2

1 + ξ2
3

4ξ2
3

)
Υ

III
l1,l2

(ϑ′′, ϕ′′)=−l2
Υ

III
l1,l2

(ϑ′′, ϕ′′), (75)

where l := l1 + 1
2 . The expression of wavefunctions (74) in the original coordinates (x, y) on the disk,

using cos ϑ′′ = y and cos ϕ′′ = x/
√

1 − y2, is

Ψl1,l2 (x, y)=Cl1,l2 (1 − y2)
l1/2 Pl1

( x√
1 − y2

)
Cl1+1

l2
(y). (76)

This coincides with (71) under the rotation x→ y and y→−x which connects systems II and III. The
density plots of Ψl1,l2 (x, y) are thus identical to those in Fig. 4, except for a 1

2π rotation of the disks.

VI. THE SUPERINTEGRABLE ALGEBRA OF ZERNIKE

The two operators that determined the constants of motion, Ĵ1 in (70) and Ĵ2 in (75), were written
in terms of the angular momentum operators L̂i in (35). We can add the angular momentum L̂3 in
(25) and (35) as a third one and thus have

Ĵ1 = L̂2
1 +

ξ2
2 + ξ2

3

4ξ2
3

, Ĵ2 = L̂2
2 +

ξ2
1 + ξ2

3

4ξ2
3

, Ĵ3 = L̂3, (77)

and thereby write the operator Ŵ in (33) as

Ŵ = Ĵ1 + Ĵ2 + Ĵ2
3 +

1
2

. (78)

To complete this algebra, we construct a third linearly independent operator out of the commutator
of the previous two,

Ŝ1 = Ĵ3, Ŝ2 = Ĵ1 − Ĵ2, Ŝ3 = [Ŝ1, Ŝ2], (79)

which now satisfy the following relations:

Ŝ3 = 2{L̂1, L̂2} + −
ξ1ξ2

ξ2
3

, [Ŝ3, Ŝ1]= 4Ŝ2, [Ŝ3, Ŝ2]= 8Ŝ3
1 − 8Ŵ Ŝ1, (80)

where { , }+ is the anticommutator. Thus, the operators Ŝ1, Ŝ2, Ŝ3 generate a nonlinear algebra, called
the cubic or Higgs algebra.10
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To write the three operators that commute with the Zernike operator Ẑ in the original configu-
ration space (x, y), we must undo the similarity transformation in (29) for the symmetry operators
K̂i =A−1ŜiA, thus obtaining three constants of motion,

K̂1 = y∂x − x∂y, (81)

K̂2 =−(1 − x2 − y2)(∂xx − ∂yy) + 2x∂x − 2y∂y, (82)

K̂3 =−4(1 − x2 − y2)∂xy + 4y∂x + 4x∂y, (83)

which close into the algebra

[K̂1, K̂2]= K̂3, [K̂3, K̂1]= 4K̂2, [K̂3, K̂2]= 8(K̂3
1 − ẐK̂1). (84)

The three operators (81)–(83) separate in the coordinate systems introduced in (43)–(45).

VII. CONCLUDING REMARKS

We have introduced the quantum Zernike system defined by the Hamiltonian (1) that naturally
separates in polar coordinates. This Hamiltonian is nonstandard because it involves a quadratic
re-scaling potential term, and its wavefunctions have nonzero values at its finite circular boundary.

We have shown that this two-dimensional system can also be separated into two additional coor-
dinate systems, where the Zernike Hamiltonian takes the form of quantum mechanical Schrödinger
Hamiltonians with Pöschl-Teller potentials, whose solutions involve separated Legendre and Gegen-
bauer polynomials. These coordinate systems become evident when orthogonal coordinates on a
half-sphere are mapped as non-orthogonal coordinates on the disk. The boundary condition on the
disk requires one additional limit that the solutions on the half-sphere must satisfy. Associated with the
separable coordinate systems, there are operators whose eigenvalues are constants of motion. Previ-
ously only the angular momentum of circular harmonics was known; this, plus the two new operators
stemming from separability, yielded three operators that commute with the Zernike Hamiltonian and
close into a cubic Higgs superalgebra.

We realize that the analysis performed here on the sphere can be generalized. First, the elliptical
system of coordinates on the sphere and its projections15,16,19 can be used to separate the Zernike
equation and provide solutions on one or more systems of coordinates. Interbasis expansions will
then relate the Zernike functions on the disk with Legendre and Gegenbauer polynomials as well as
Lamé functions. We leave this as a separate analysis to be studied elsewhere. We also note that instead
of unit radius and αZ =−1, we may have a self-adjoint Hamiltonian when the circular boundary is
at r = 1/

√
|α |, provided that β =−2|α |. Finally, one can disregard the boundary problem and revert

to the full parameter ranges of α and β, such as was done in Ref. 20, and obtain solutions that
correspond to open hyperbolic trajectories and, more generally, study Schrödinger equations that
stem from quadratic extensions of the oscillator algebra. The methods of solution and mathematical
structure can be along the lines of this research.
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15 Lukač, I. and Smorodinski1̆, Ya. A., “Wave functions for the asymmetric top,” Sov. Phys. JETP 30, 728–730 (1970).
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