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We consider the differential equation that Zernike proposed to classify aberrations of
wavefronts in a circular pupil, as if it were a classical Hamiltonian with a non-standard
potential. The trajectories turn out to be closed ellipses. We show that this is due to the
existence of higher-order invariants that close into a cubic Higgs algebra. The Zernike
classical system thus belongs to the class of superintegrable systems. Its Hamilton-
Jacobi action separates into three vertical projections of polar coordinates of sphere,
polar, and equidistant coordinates on half-hyperboloids, and also in elliptic coordinates
on the sphere. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4990793]

I. INTRODUCTION: THE ZERNIKE OPERATOR

In Ref. 27 (p. 700), Frits Zernike proposed a two-dimensional differential equation whose poly-
nomial solutions provide an orthogonal basis for functions f (r) in a Hilbert space L2

Z(D1) over the
unit disk r ∈D1, |r| ≤ 1 which—importantly—have a constant absolute value on the boundary circle:
|f (r)||r |=1 = 1. This Zernike basis is thus distinct from the well-known bases of Bessel functions
over the disk whose values (or logarithmic derivatives) vanish on a boundary circle. The differential
operator and eigenvalue equation of Zernike are

Ẑ (α,β)f (r) :=
(
∇

2 + α(r · ∇)2 + β r · ∇
)
f (r)=−E f (r). (1)

The requirement that this operator should be self-adjoint under the inner product ( f1, f2)D1

:= ∫D1
d2r f1(r)∗ f2(r), i.e., (Ẑf1, f2)D1

= ( f1, Ẑ f2)D1
, constrains the coefficients to have the values

(αZ, βZ) := (−1,−2).27 In this paper however, we let α and β take arbitrary real values, to be later
constrained to those regions that lead to the closed orbits that we consider to be the main feature of
interest of the Zernike system.

For Ẑ (αZ,βZ) in (1), the polar factored solutions Zn,m(r) exp (imφ), |m| ≤ n, correspond to the
eigenvalues E = n(n + 2); when normalized to Zn,m(1) = 1, the radial functions are the Zernike
polynomials.27 These can be related to the Jacobi polynomials ∼P(m−n,0)

n (2r2 − 1) whose interval
of orthogonality is ��1−1↔ r��10. It was remarked in Ref. 4 that the reasons for postulating Eq. (1)
were rather arbitrary, so its authors used the Gram-Schmidt method to find the same polynomial
solutions from first principles. Zernike polynomials have wide applications in the correction of opti-
cal aberrations by describing wavefronts at circular pupils (see, for example, Ref. 5); they also
display a host of enticing mathematical properties10,11,15,20,22,26 that are characteristic of algebraic
structures.

When α = 0, Ẑ (0,β) reduces to a linear combination of generators of the real symplectic algebra
sp(4, R) under Poisson brackets or commutators (Ref. 25, Sec. 11.4); also when β = 0, then (1)
becomes simply the Laplace equation with plane wave solutions ∼exp(ik · r), ��k��2 = E or, adapted
to polar coordinates (r, φ), multipole solutions ∼Jm(kr)eimφ with Bessel functions, where the radial
wavenumber k may or may not be quantized according to whether the boundary conditions are set at
a finite or infinite radius. On the other hand, when α , 0 but β = 0, the Zernike equation (1) reduces to
the kinetic part of a nonlinear oscillator Hamiltonian.6 We shall keep their generic values (α, β) ∈R2

and particularize when convenient.
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We found that it is of interest to examine the classical counterpart of the Zernike system, which
in “wave” (or quantum mechanical) form is (1). The process of de-quantization of this equation
consists in replacing

∇ 7→ ip= i

(
px

py

)
, r=

(
x
y

)
, r := |r|, (2)

∇2 7→−(p2
x + p2

y)=−
(
p2

r +
p2
φ

r2

)
, r · ∇ 7→ i(xpx + ypy)= i rpr . (3)

The operator (1) thus yields a classical Hamiltonian function H (α,β) =−Ẑ (α,β) which depends on two
coordinates and two momenta. In Cartesian and polar coordinates, it is

H (α,β) := (p2
x + p2

y) + α(xpx + ypy)2 − iβ(xpx + ypy) (4)

= (1 + αr2)p2
r + p2

φ/r
2 − iβrpr , (5)

and its value is the energy E. The appearance of i=
√
−1 in this Hamiltonian seems indeed anoma-

lous, yet our calculations will show that at the end we have a purely real classical system whose
trajectories can be found explicitly. We have been advised on a possible relation of the Zernike
system with other non-hermitian Hamiltonian systems with complex potentials in the context of
PT-invariant theories (see, for instance, Refs. 1 and 2), although in its quantum version (following
paper), the Zernike Hamiltonian is self-adjoint, albeit on a domain that is not usual in quantum
mechanics.

The Hamilton-Jacobi method is particularly apt to solve this system, where we shall preferentially
use the polar coordinates (r, φ) and their momenta (pr , pφ) in (5). Since H (α,β) =E is independent
of time and the angular coordinate φ is cyclic, the action function S(r, φ) (also called Hamilton’s
principal function) that satisfies the Hamilton-Jacobi equation H + ∂S/∂t = 0 can be separated in the
form

S(r, φ)=R(r) + pφφ − Et. (6)

The space derivatives of this function yield the polar momenta pr and pφ as

pr =
∂S(r, φ)
∂r

, r =−
∂S(r, φ)
∂pr

, pφ =
∂S(r, φ)
∂φ

, φ=−
∂S(r, φ)
∂pφ

. (7)

In Sec. II, we shall use the derivatives of (6) with respect to the radius r and the angle φ, to find
the geometric trajectories r(φ), which are closed ellipses. Then in Sec. III, the dynamical trajectories
r(t) will be found differentiating the action S(r, φ) with respect to the energy. The symmetries behind
the closure of the orbits will be elucidated in Sec. IV, where Eq. (1) is separated into three spherical,
six hyperbolic, and elliptic coordinates, and shown to lead to constants of motion. In Sec. V, we show
that the operators which characterize these constants close into a cubic superintegrable algebra and
offer some additional comments.

II. GEOMETRIC TRAJECTORIES r(φ)

The derivative of the action function (6) with respect to the radius r is the radial momentum,

pr =
∂S(r, φ)
∂r

=
∂R(r)
∂r

. (8)

Replacing pr in (5) yields a quadratic algebraic equation for the derivative of R(r), namely,

(1 + αr2)
(
∂R(r)
∂r

)2
− iβr

(
∂R(r)
∂r

)
+

p2
φ

r2
=E, (9)

whose two solutions are

∂R(r)
∂r
=

iβ r ±
√
−β2r2 − 4(1 + αr2)(p2

φ/r
2 − E)

2(1 + αr2)
. (10)
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From here we find R(r) through the indefinite integral

R(r)=
∫

dr
*..
,

iβ r

2(1 + αr2)
±

√
(αE − 1

4 β
2)r2 + (E − αp2

φ) − p2
φ/r

2

1 + αr2

+//
-

. (11)

We can now find the trajectories that relate r and φ by differentiating (6) with respect to pφ ,

∂S(r, φ)
∂pφ

=
∂R(r)
∂pφ

+ φ= φo, (12)

where φo is a constant of the motion given by the initial conditions. The derivative of R(r) in (11)
with respect to pφ is then

∂R(r)
∂pφ

=±

∫
dr

∂

∂pφ

√
(αE − 1

4 β
2)r2 − (α + 1/r2)p2

φ + E

1 + αr2
(13)

=∓pφ

∫
dr
r

1√
(αE − 1

4 β
2)r4 + (E − αp2

φ)r2 − p2
φ

(14)

=∓
pφ
2

∫
dz

1

z
√

a + b z + c z2
, (15)

where in the last equality, we have substituted z = r2 with dr/r = 1
2 dz/z, and we define

a :=−p2
φ , b :=E − αp2

φ , c := αE −
1
4
β2. (16)

We note that the imaginary summand in (11) is absent from this equation and thus from the system.
The double sign in (13) corresponds to the ±pφ angular momentum of a trajectory traversed in
opposite directions.

One finds the indefinite integral solved in Ref. 8, Eq. (2.266), with various expressions involving
inverse trigonometric and hyperbolic functions, or logarithms, depending on the signs of the constants;
in our case (16) a < 0 and for b2 − 4ac= (E + αp2

φ)
2
− β2p2

φ > 0, the integral is∫
dz

1

z
√

a + b z + c z2
=

1
√
−a

arcsin
2a + bz

z
√

b2 − 4ac
. (17)

Thus, joining Eqs. (12) (16), and (17), we obtain

φ − φo =−
∂R(r)
∂pφ

=
1
2

arcsin
(E − αp2

φ)r2 − 2p2
φ

r2
√

(E + αp2
φ)2 − β2p2

φ

, (18)

and this leads to φ(r2) in the form

sin 2(φ − φo)=
Ar2 − B

Cr2
,




A :=E − αp2
φ ,

B := 2p2
φ ,

C :=
√

(E + αp2
φ)2 − β2p2

φ .

(19)

We can invert the dependence to r(φ) by solving for the square radius and setting for convenience
φo =−

1
4π,

r2(φ)=
B

A − C cos 2φ
=

2p2
φ

(E − αp2
φ) −

√
(E + αp2

φ)2 − β2p2
φ cos 2φ

(20)

=
D

1 − ε cos 2φ
,




D :=B/A= 2p2
φ

/
(E − αp2

φ), E , αp2
φ ,

ε :=
C
A
=

√
(E + αp2

φ)2 − β2p2
φ

E − αp2
φ

.
(21)

This is the parametric equation for ellipses, provided that
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FIG. 1. Regions of the plane of angular momentum pφ and energy E, where closed trajectories are allowed by the inequalities
(22) (in white) for (α, β)-Zernike systems. Left: Allowed regions for the original Zernike system (αZ, βZ)= (−1,−2). Right:
Allowed regions for (α, β)= (1, 2). Closed elliptical trajectories do not occur in the gray regions. The structure of these regions
is generic for all α and β , 0. The units of E in these graphs are β2 /4��α�� and the units of ��pφ �� are 1

2
��β

/
α��.

ε real ⇒ C2 ≥ 0 ⇒



E ≤ −αp2
φ −

��βpφ ��,
E ≥ −αp2

φ + ��βpφ ��,
|ε | < 1 ⇒ A2 >C2 ⇒ 4αE < β2,

r2(φ)> 0⇒ D > 0 ⇒ E > αp2
φ .

(22)

These conditions restrict the range of energies E and angular momenta pφ where the trajectories are
real and closed. As shown in Fig. 1 (left) for the generic Zernike range α < 0, β , 0, the first condition
excludes the energy interval between the two parabolas, −α p2

φ −
��β pφ �� ≤ E ≤ −α p2

φ + ��β pφ ��; the

second inequality is (for α < 0) a lower bound E >−β2/4|α | (equal to �1 for the Zernike case);
lastly, the third condition excludes the interior of the parabola E = αp2

φ that has its apex at the

origin, and which eliminates the region ��pφ ��<− 1
2

��β��/α that was (left) allowed by the previous two
conditions.

In Fig. 1 (right), we show the allowed regions for the generic Zernike range α > 0, β , 0. The
two parabolas stemming from the first inequality in (22) under α↔−α reflect the E-axis; the second
inequality in (22) is now the upper bound E < β2/4α; and the third inequality allows elliptic orbits
in the remaining interior of the parabola, namely, −αp2

φ + ��βpφ ��< E < β2/4α for 0 ≤ ��pφ ��< ��β��/2α.
Finally, when α = 0, the “forbidden” region between the two parabolas due to the first condition in
(22) becomes −��βpφ �� ≤ E ≤ ��βpφ ��, while the second two conditions are satisfied by E > 0, so that
closed elliptical trajectories occur for all E ≥ ��βpφ ��.

Since we took φo =−
1
4π, the y-axis is at φ= 0 and the x-axis at φ= 1

2π. The semi-major and
semi-minor axes of the ellipse are, respectively,

µy :=

√
D

1 − ε
=

√
B

A − C
, µx :=

√
D

1 + ε
=

√
B

A + C
. (23)

The area of this ellipse is given by π times the product of the two semi-axes,

area= πµxµy =
πD

√
1 − ε2

=
πB

√
A2 − C2

=
2π ��pφ ��√
β2 − 4αE

. (24)

III. DYNAMICAL TRAJECTORIES r(t) AND ORBITS

We return now to the integral expression for R(r) in (11), differentiating the action S(r, φ) in (6)
now with respect to the energy E,



072901-5 Pogosyan, Wolf, and Yakhno J. Math. Phys. 58, 072901 (2017)

∂S(r, φ)
∂E

=
∂R(r)
∂E

− t =−to, (25)

where to is the initial time constant. Instead of (13)–(15), we now have

∂R(r)
∂E

=±

∫
dr

∂

∂E

√
(αE − 1

4 β
2)r2 − (α + 1/r2)p2

φ + E

1 + αr2
(26)

=±
1
2

∫
dr

1√
(αE − 1

4 β
2)r2 − (α + 1/r2)p2

φ + E
(27)

=±
1
4

∫
dz

1
√

a + b z + c z2
, (28)

where as before we have set z = r2, and a, b, c are again given by (16). The indefinite integral can be
found in Ref. 8, Eq. (2.261), it is∫

dz
1

√
a + b z + c z2

=
−1
√
−c

arcsin
2cz + b
√

b2 − 4ac
. (29)

The conditions for this integral to be proper, c < 0 and b2 − 4ac > 0, also lead to (22), while the
solutions corresponding to (19) are now

sin
(
4(t − to)

√
U

)
=

A − 2U r(t)2

C
, U :=

1
4
β2 − αE =

A2 − C2

2B
> 0, (30)

with A and C given by (19).
From here we can extract the dependence of the square radius of the trajectory on time as (21)

did for the angle. We choose to such that r(t) |t=0 = µy is the semi-major axis in (23), i.e., 4to
√

U = 1
2π,

so to = 1
8π/
√

U, and write

r2(t) =
A + C cos(4t

√
U)

2U

=
E +

√
(E + αp2

φ)2 − β2p2
φ cos(2t

√
β2 − 4αE) − αp2

φ

1
2 β

2 − 2αE
.

(31)

This is a periodic function of time, with period 4T
√

U = 2π or

T = π
/√

β2 − 4α E. (32)

In the generalized Zernike range α < 0, the radicand is positive; when α > 0, the second inequality
in (22) prevents the orbits from being closed for αE > 1

4 β
2. Although orbits in the Zernike range are

ellipses, they differ from the isochronous orbits of the classical harmonic oscillator, whose period
does not depend on their energy.7

As a function of time, the trajectories
(
x(t), y(t)

)
can be found from the previous expressions,

(21) and (31), as

x(t)= r sin φ= r

√
1
2

(1 − cos 2φ)=
1
√

2ε

√
(ε − 1) r2(t) + D

=
1
√

2ε

√
(ε − 1)

A + C cos(4t
√

U)
2U

+ D, (33)

y(t)= r cos φ= r

√
1
2

(1 + cos 2φ)=
1
√

2ε

√
(ε + 1) r2(t) − D

=
1
√

2ε

√
(ε + 1)

A + C cos(4t
√

U)
2U

− D, (34)

and are shown in Fig. 2 for the Zernike case (αZ, βZ)= (−1,−2) but are valid for the range α < 0.
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FIG. 2. Trajectories
(
x(t), y(t)

)
in the classical Zernike system (αZ, βZ)= (−1,−2) and angular momentum pφ = 3, for equidis-

tant times t ∈ [0, T ]. Upper row: trajectories inside the disk D1 for energies E = 35, 20, and 15 (at the lower boundary of the
upper allowed region of Fig. 1). Lower row: trajectories outside the unit disk D1, for energies E = 3 (at the upper boundary
of the lower allowed region), 1, and �0.9 (near to the lower forbidden region), which fall completely outside the disk and
correspond to the hyperbolic case to be seen in Sec. IV. We mark the scale 1 on the y-axis, understood to be in units of 1

/√��α��.

The trajectories are circular when ε = 0, i.e., C = 0 or E + αp2
φ =±

��β pφ ��. This is the case of the
upper right and lower left trajectories in Fig. 2. For α < 0, it occurs on the two parabolas that bound the
region excluded by the first condition in (22) and respect the other two inequalities. The radius of those
circles can be found from (21), as r2(φ)=D. At the upper boundary, one has E =−αp2

φ+��β pφ �� ≥ −αp2
φ ,

so in the Zernike α < 0 region this means E ≥ |α |p2
φ , which in turn entails that |α |B ≤ A or D ≤ 1/|α |,

which yields the radius of the circle as r◦ = 1/
√��α��; in the case αZ =−1 this is the boundary of the

unit circle of Zernike’s differential equation.27 On the other hand, at the lower boundary in the same
Zernike range α < 0, E = ��α��p2

φ −
��β pφ ��, and one has r ′2◦ =D= 2p2

φ

/ (
2��α��p2

φ −
��βpφ ��

)
> 1/��α��, which

for αZ =−1 exceeds the unit radius allotted by Zernike’s requirement. We conclude that the elliptic
trajectories in the lower “allowed” region of Fig. 1 (left) cannot correspond with solutions of the
Zernike differential equation (1). Only those in the upper region do. On the other extreme of the
α < 0 region, the trajectories become lines when ε→ 1, namely, for every larger E and also when E
approaches the lower boundary −β2/4|α |.

Regarding the region α > 0 in Fig. 1 (right), the excentricity in (21) is ε = 0 on the parabola
E =−αp2

φ + ��β pφ ��. The radii of those circles can be found as we did above, yielding r2
◦ (φ)

= 2p2
φ

/ (��βpφ �� − 2αp2
φ

)
. The trajectory is a unit circle when 2(1 + α)p2

φ =
��βpφ ��, i.e., ��pφ ��= ��β��/2(α +

1)< ��β��/2α. This value falls on a single point of the parabolic boundary of the allowed region in Fig. 1
(right). On the upper boundary of that region, E = β2/4α, the excentricity is ε = 1 and the trajectories
are lines. Finally, when α = 0 and the allowed region is E ≥ ��βpφ ��, on its boundary we have ε = 0
circles of radii r2

◦ = 2��pφ
/
β��.

IV. SEPARATION OF VARIABLES AND SYMMETRIES

The classical Zernike Hamiltonian (4) in Cartesian coordinates can be subject to the Hamilton-
Jacobi method of solution with the action partial derivatives px = ∂S/∂x and py = ∂S/∂y and yields
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the Hamiltonian (4) written as

H =

(
∂S
∂x

)2

+

(
∂S
∂y

)2

+ α

(
x
∂S
∂x

+ y
∂S
∂y

)2

− iβ

(
x
∂S
∂x

+ y
∂S
∂y

)
=E. (35)

This equation is separable on the (x, y)-plane, but the boundary condition imposed by Zernike27 on
the solutions, namely, that their absolute value at the boundary x2 + y2 = 1 be constant, can only be
separated in polar coordinates, as we did in Sec. II. Although the classical Zernike system appears to
belong to the class of Bertrand systems3 in which all bounded orbits are closed, it does not qualify as
such because the linear and quadratic r · ∇ terms replace the two-dimensional central force potentials
of the Coulomb or isotropic oscillator systems. We surmise that this feature is a specific consequence
of the superintegrability of the Zernike system. It is therefore of interest to find any additional separable
systems of orthogonal coordinates and, associated with these, the extra symmetry operators that will
clearly demonstrate the classical Zernike Hamiltonian to be superintegrable. We remind the reader that
in an N-dimensional space with constant curvature (real or complex), a maximally superintegrable
system allows, in addition to the Hamiltonian H, another 2N � 2 functionally independent constants
of motion, L1, L2, . . . , L2N�2, L2N�1 := H, which are in involution with H, namely, {H, Li} = 0 for
i ∈ {1, 2, . . . , 2N − 2}.14

A. Coordinate systems on sphere and hyperboloid

Equation (1) is linear and of second order,

(1 + αx2)
∂2f

∂x2
+ 2αxy

∂2f
∂x∂y

+ (1 + αy2)
∂2f

∂y2
+ (α + β)

(
x
∂f
∂x

+ y
∂f
∂y

)
=−Ef . (36)

According to the standard classification, this equation is of elliptic type when −αr2 < 1, parabolic
type when −αr2 = 1, and hyperbolic type when −αr2 > 1. The original Zernike case αZ =−1 is in the
range α < 0, where the region of ellipticity is the interior of the circle r < 1

/√��α��. On the other hand,
when α ≥ 0, the Eq. (1) is of elliptic type over the whole x–y plane R2.

To be within the Zernike case, we consider first the range α < 0 and map the open disk x2 + y2

< 1
/��α��=: R2 on the hemisphere ξ2

1 + ξ2
2 + ξ2

3 =R2, ξ3 ≥ 0, embedded in a Euclidean space with three
Cartesian coordinates ξi, through the orthogonal (or “vertical”) projection

ξ1 = x, ξ2 = y, ξ3 =

√
R2 − x2 − y2. (37)

In these coordinates, the Hamiltonian equation (35) can be separated into three mutually orthogonal
spherical systems of coordinates,17

System I:
ξ1 =R sin ϑ cos ϕ, ξ2 =R sin ϑ sin ϕ, ξ3 =R cos ϑ, ϑ��π/20 , ϕ��2π0 , (38)

System II:
ξ1 =R cos ϑ, ξ2 =R sin ϑ cos ϕ, ξ3 =R sin ϑ sin ϕ, ϑ��π0 , ϕ��π0 , (39)

System III:

ξ1 =R sin ϑ sin ϕ, ξ2 =R cos ϑ, ξ3 =R sin ϑ cos ϕ, ϑ��π0 , ϕ��
1
2 π

− 1
2 π

, (40)

and in the elliptical system of coordinates12,13,17 to be seen below.
Still within the α < 0 case, we can consider the outside of the circle at radii r2 > 1/��α��, where

the Eq. (36) is hyperbolic. There one can map the trajectories of the x–y plane on trajectories on
the one-sheeted half-hyperboloid ξ2

1 + ξ2
2 − ξ

2
3 =R2 = 1

/��α��. Coordinates that permit separation of
variables for (36) replace trigonometric functions by hyperbolic functions thus

System H′I (pseudo-spherical):
ξ1 =R cosh τ cos ϕ, ξ2 =R cosh τ sin ϕ, ξ3 =R sinh τ, τ ∈R, ϕ��2π0 , (41)

System H′II (equidistant):
ξ1 =±R cosh τ1, ξ2 =R sinh τ1 sinh τ2, ξ3 =R sinh τ1 cosh τ2, τ1, τ2 ∈R, (42)
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System H′III (equidistant):
ξ1 =R cosh τ sin ϕ, ξ2 =R cos ϕ, ξ3 =R sinh τ sin ϕ, τ ∈R, ϕ��2π0 . (43)

On the other hand when α > 0, the region of ellipticity being the whole plane R2, allows one
to map this plane on the upper sheet of the two-sheeted hyperboloid ξ2

3 − ξ
2
1 − ξ

2
2 = %

2 = 1/α using
“modified” coordinate systems23,24

System HI (pseudo-spherical):
ξ1 = % sinh τ cos ϕ, ξ2 = % sinh τ sin ϕ, ξ3 = % cosh τ, τ ∈R, ϕ��2π0 , (44)

System HII (equidistant):
ξ1 = % sinh τ1, ξ2 = % cosh τ1 sinh τ2, ξ3 = % cosh τ1 cosh τ2, τ1, τ2 ∈R, (45)

System HIII (equidistant):
ξ1 = % cosh τ′1 sinh τ′2, ξ2 = % sinh τ′1, ξ3 = % cosh τ′1 cosh τ′2, τ′1, τ′2 ∈R. (46)

The hyperboloidal coordinates in (41)–(46) have been defined in Ref. 18.

B. Separation in spherical systems I, H′I, and HI

In the spherical coordinates (ϑ, ϕ) of system I in (38) for α < 0, the Hamilton-Jacobi expression
in (35) acquires the form

1 + αR2sin2ϑ

R2 cos2
ϑ

(
∂S
∂ϑ

)2

− iβ tan ϑ

(
∂S
∂ϑ

)
+

1

R2sin2ϑ

(
∂S
∂ϕ

)2

=E. (47)

This equation is integrable with the help of the first-order integral of motion

I1 := pϕ = xpy − ypx, (48)

that is independent of (α, β) and separates the action function as S(ϑ, ϕ)= S1(ϑ) + pϕϕ, leading to
the equation

1 + αR2sin2ϑ

R2 cos2
ϑ

(
dS1

dϑ

)2

− iβ tan ϑ

(
dS1

dϑ

)
+

p2
ϕ

R2sin2ϑ
=E. (49)

Using the same approach of Sec. III for the Zernike α < 0 case, one finds the trajectory ϑ(ϕ) to be

sin2ϑ=
|α |D

1 − ε cos 2ϕ
, (50)

where D and ε are given in (21), and which lies within the hemisphere of radius R= 1/
√��α��, as seen

in Fig. 3. The trajectories reach the rim ϑ= 1
2π only when βpφ = 0.

FIG. 3. Trajectories ϑ(ϕ) on the hemisphere given by (50) for the allowed upper regions of the Zernike system (αZ, βZ)
= (−1,−2) in Fig. 1 (left) and their projection on the x–y plane inside the unit disk D1, for the values corresponding to the
upper row of orbits in Fig. 2: pφ = 3 and energies E = 15 (continuous line, the circular orbit at the boundary of the allowed
region), E = 20 (dashed line), and E = 35 (dotted line).
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FIG. 4. Trajectories τ(ϕ) on the half-hyperboloid (of one sheet) given by (52), with α=−1 and β =−2, and their projection
on the x–y plane outside the unit disk D1. The parameter values are the same as in the second row of Fig. 2, namely, pφ = 3
and energies E = 3 (at the upper boundary of the lower allowed region, marked by a continuous line), 1 (dashed line), and
�0.9 (near to the lower forbidden region, dotted line).

Still in the α < 0 case, the pseudo-spherical coordinates (τ, ϕ) of system H′I in (41) allow
separation of the action function as S(τ, ϕ)= S1(τ) + pϕ ϕ, so the Hamiltonian (35) leads to the
equation

α

(
dS1

dτ

)2

− iβ coth τ

(
dS1

dτ

)
−

α p2
ϕ

cosh2 τ
=E. (51)

Then the trajectories, instead of (50), are given by

cosh2τ =
|α |D

1 − ε cos 2ϕ
, (52)

with D and ε given in (21). These are closed orbits in the region r2 > 1/|α |. In Fig. 4, we show such
trajectories on the one-sheeted half-hyperboloid.

Turning now to the case α > 0 for the pseudo-spherical system (44), the separation of variables
S(τ, ϕ)= S1(τ) + pϕ ϕ yields

1 + α%2 sinh
2
τ

%2 cosh2
τ

(
dS1

dτ

)2

− iβ tanh τ

(
dS1

dτ

)
+

p2
ϕ

%2 sinh2
τ
=E, (53)

so that the trajectory ϑ(ϕ) is found as

sinh2τ =
αD

1 − ε cos 2ϕ
, (54)

lying on one sheet of a two-sheeted hyperboloid %2 = 1/α and where again D and ε are given in (21).
The orbits on this manifold are elliptic and are shown in Fig. 5.

FIG. 5. Trajectories τ(ϕ) on the lower half-hyperboloid (of two sheets) given by (54) with α=+1 and β =−2 and their
projection on the full x–y plane. The parameter values are all near to the cusp of the allowed region in Fig. 1 (right): pφ = 0.5,
E = 0.75 (continuous line); pφ = 0.75, E = 0.97 (dashed line); pφ = 0.9, E = 0.993 (dotted line).
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C. Separation in coordinate systems II and HII

The second system of spherical coordinates (ϑ, ϕ) in (39) leads to the Hamiltonian (35) in the
form

1 + αR2cos2ϑ

R2sin2ϑ

(
∂S
∂ϑ

)2

+ iβ cot ϑ

(
∂S
∂ϑ

)
+

1

R2sin2ϑ


1 +

(1 + αR2) cot2ϕ

sin2ϑ

(
∂S
∂ϕ

)2
+ iβ

cot ϕ

sin2ϑ

(
∂S
∂ϕ

)
+ 2

1 + αR2

R2sin2ϑ
cot ϑ

(
∂S
∂ϑ

)
cot ϕ

(
∂S
∂ϕ

)
=E. (55)

When α < 0, separation of variables applies on the action function S(ϑ, ϕ)= S1(ϑ) + S2(ϕ) and leads
to the pair of equations

−α

(
dS1

dϑ

)2

+ iβ cot ϑ

(
dS1

dϑ

)
+

K2
II

sin2ϑ
=E, (56)

−α

(
dS2

dϕ

)2

+ iβ cot ϕ

(
dS2

dϕ

)
=K2

II, (57)

where K2
II is a separation constant. Rewriting (57) in Cartesian (x, y) coordinates, we obtain

[
1 + α(x2 + y2)

] (
dS2

dy

)2

− iβ y

(
dS2

dy

)
=K2

II. (58)

The integration in y yields a second integral of motion that depends on the parameters (α, β),

I2 :=K2
II =

[
1 + α(x2 + y2)

]
p2

y − iβ ypy. (59)

In the case α > 0, the action function admits separation of variables in the hyperbolic equidistant
system HII in (42), S(τ1, τ2)= S1(τ1) + S2(τ2) and yields the two equations

α

(
dS2

dτ2

)2

− iβ tanh τ2

(
dS2

dτ2

)
=K2

HII, (60)

α

(
dS1

dτ1

)2

− iβ tanh τ1

(
dS1

dτ1

)
+

K2
HII

cosh2τ1
=E, (61)

which lead to the same integral of motion I2 in (59).

D. Separation in the coordinate system III

The third spherical system of coordinates in (40) leads to the Hamilton-Jacobi form (35) written
as

1 + αR2cos2ϑ

R2sin2ϑ

(
∂S
∂ϑ

)2

+ iβ cot ϑ

(
∂S
∂ϑ

)
+

1

R2sin2ϑ


1 +

(1 + αR2)tan2ϕ

sin2ϑ

(
∂S
∂ϕ

)2
− iβ

tan ϕ

sin2ϑ

(
∂S
∂ϕ

)
− 2

1 + αR2

R2sin2ϑ
cot ϑ

(
∂S
∂ϑ

)
tan ϕ

(
∂S
∂ϕ

)
=E. (62)

In the case α < 0, for R2 =−1/α, the separation of variables in the action function, S(ϑ, ϕ)= S3(ϑ)
+ S4(ϕ) leads to

−α

(
dS3

dϑ

)2

+ iβ cot ϑ

(
dS3

dϑ

)
+

K2
III

sin2ϑ
=E, (63)

−α

(
dS4

dϕ

)2

− iβ tan ϕ

(
dS4

dϕ

)
=K2

III, (64)
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From (64), we find a third constant of motion that depends on (α, β),

I3 :=K2
III =

[
1 + α(x2 + y2)

]
p2

x − iβxpx, (65)

and which under the phase space 1
2π-rotation (x, px; y, py)↔ (y, py;−x,−px) coincides with I2 in (59).

Finally, we note that when α > 0, the separations of variables (44)–(46) on the hyperboloid yield the
same integrals of motion I1, I2, and I3 given above.

We note that unlike the three orthogonal coordinate systems on the sphere, on hyperboloids
there are nine orthogonal coordinate systems where the Laplace and the Helmholtz equations yield
to separation of variables.16

E. Separation of variables in the elliptic system

The Hamilton-Jacobi equation (35) also yields to separation in elliptic coordinates on the sphere
in trigonometric form,12,13,17

ξe
1 =R cos ϕ

√
1 − k2

1cos2ϑ, ξe
2 =R sin ϑ sin ϕ, ξe

3 =R cos ϑ
√

1 − k2
3cos2ϕ, (66)

where the constants k1 := cos f and k3 := sin f are related to the interfocal distance 2f of the ellipses
on the upper unit hemisphere, so that k2

1 + k2
3 = 1. When α < 0 and thus R2 = 1/|α |, the action function

separates as S(ϑ, ϕ)= Se
1(ϑ) + Se

2(ϕ) and leads again to two equations,

(1 − k2
1cos2ϑ)

[
α Se ′2

1 + iβ tan ϑ Se ′
1

]
+ Ek2

1sin2ϑ=K2
e , (67)

α(1 − k2
3cos2ϕ)Se ′2

2 − iβk2
3 cos ϕ sin ϕ Se ′

2 + Ek2
3sin2ϕ=−K2

e , (68)

where K2
e is a separation constant, Se ′

1 := dS1/dϑ and Se ′
2 := dS2/dϕ. Eliminating E from these

equations, one obtains

K2
e (k2

3sin2ϕ + k2
1sin2ϑ)

= k2
3sin2ϕ(1 − k2

1cos2ϑ)
[
α
(
S′1

)2
+ iβ tan ϑS′1

]

− k2
1sin2ϑ

[
α(1 − k2

3cos2ϕ)
(
S′2

)2
− iβk2

3 cos ϕ sin ϕS′2

]
. (69)

Returning to Cartesian (x, y) coordinates,

Se ′
1

R
= px

k2
1 sin ϑ cos ϑ cos ϕ√

1 − k2
1cos2ϑ

+ py cos ϑ sin ϕ, (70)

Se ′
2

R
=−px

√
1 − k2

1cos2ϑ sin ϕ + py sin ϑ cos ϕ, (71)

we can express the constant K2
e as

K2
e = −αk2

1y2p2
x + 2αk2

1xypxpy

−
(
αk2

1x2 + k2
3 [1 + α(x2 + y2)]

)
p2

y + iβk2
3ypy

= −αk2
1 I2

1 − k2
3 I2.

(72)

Thus the elliptic separation constant K2
e is not functionally independent but depends on the constants

I1 and I2 in (48) and (59).

V. ALGEBRAIC STRUCTURE AND CONCLUSIONS

We have found three functionally independent integrals of motion, I1 in (48), I2 in (59), and I3

in (65), with no singularities on the full (α, β) parameter space. To probe their algebraic structure,
let us define
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J1 :=
1
2

I1 =
1
2

(xpy − ypx), (73)

J2 :=
1
2

(I3 − I2)=
1
2

[
1 + α(x2 + y2)

]
(p2

x − p2
y) −

1
2

iβ(xpx − ypy). (74)

The function J1 is 1
2 -angular momentum and its Poisson operator {J1, ◦} generates rotations of phase

space, while the function J2 does depend on (α, β). These functions Poisson-commute with the
Zernike Hamiltonian function H (α,β) in (4), which can be written as

H (α,β) = I3 + I2 − αI2
1 , (75)

but do not commute with each other. This shows that the generalized classical (α, β)-Hamiltonian of
Zernike, H (α,β) in (5), is superintegrable on each of the domains examined above, in particular on the
(x, y)-disk DR, r < R= 1/

√
|α | for α < 0, that contains the Zernike original case (αZ, βZ)= (−1,−2).

To identify the symmetry of the generalized Zernike (α, β)-Hamiltonians, we introduce a new
integral of motion through the Poisson bracket of (73) and (74),

J3 := {J1, J2} =
[
1 + α(x2 + y2)

]
pxpy − i

1
2
β(xpy + ypx), (76)

which also Poisson-commutes with H (α,β) and is functionally independent of J1 and J2, although it
can be seen that J2 and J3 are connected to each other by a rotation of 1

4π in the x–y phase space
planes. The algebraic structure of three functions J1, J2, J3 is thus found to be

{J3, J1} = J2, {J1, J2} = J3, (77)

{J2, J3} = J1(β2 − 2αH (α,β) − 8α2J2
1 ). (78)

They form therefore a cubic Higgs algebra9 that Poisson-commutes with the generalized Zernike
Hamiltonian, {Ji, H (α,β)} = 0.

When α→ 0 so R→∞, the Zernike Hamiltonian becomes a simpler quadratic function,

H (0,β)(q, p)=p2 − iβ q · p. (79)

The Poisson operators of all quadratic functions of these four phase space coordinates close under
commutation into the real symplectic Lie algebra sp(4, R).

The Hamiltonian (79) belongs to the elliptic orbit of harmonic oscillators (Ref. 25, Chap. 12),
as can be seen under the complex linear canonical transformation(

p
q

)
=

(
1/
√

2 iβ1/
√

2
0

√
2 1

) (
P
Q

)
. (80)

This maps (79) on a regular harmonic oscillator,

F0 :=H (0,β)(Q, P)=
1
2

(P2 + β2Q2), (81)

and the three constants of the motion, J1, J2, J3 in (73), (74), and (76), on

F1 :=
1
2

Q × P=
1
2

(QxPy − QyPx), (82)

F2 :=
1
2

(P2
x + βQ2

x ) −
1
2

(P2
y + β2Q2

y ), (83)

F3 :=
1
2

PxPy +
1
2
β2 QxQy, (84)

whose Poisson brackets close into a scaled u(2) Lie algebra,

{F1, F2} =F3, {F2, F3} = β
2F1, {F3, F1} =F2, {F0, Fi} = 0. (85)

In the paraxial geometric or wave optical interpretation, the central F0 ∈ u(1) generates isotropic
fractional Fourier transforms,21 while F2 generates anisotropic ones, F1 generates rotations, and
F3 generates gyrations19 that transform Hermite-Gauss into Laguerre-Gauss beams. Together their
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Poisson operators form the Fourier algebra,21 which is the maximal compact subalgebra in sp(4, R).
If β were a pure imaginary number, (81) would be the repulsive oscillator Hamiltonian and (82)–(84)
its commuting “Fourier” algebra su(1, 1)= so(2, 1); a similar treatment of the classical system with
Hamiltonian (4) would yield hyperbolic orbits. For β = 0, a free system with an inhomogeneous
iso(2) “Fourier” algebra would appear.

The original Zernike system Ẑ (αZ,βZ) in (1)27 was proposed to develop a set orthogonal and a
complete set of two-variable orthogonal polynomials Zn,m(r) exp (imφ), Zn,m(1) = 1, |m| ≤ n, which
present the same (n, m)-pattern as the two-dimensional quantum harmonic oscillator states. There has
been some effort in replicating the raising and lowering techniques of the oscillator scheme on the
Zernike system20,26 without achieving a proper Lie algebra. Because here we have a two-parameter
system H (α,β), we could surmise that superintegrable systems can be obtained as a new kind of
algebra deformation, from (81)–(85) to (73)–(78), consisting in the addition of the square of an
element of a Lie algebra to the generator designed to be the original quadratic Hamiltonian. Imposing
boundary conditions such as those proposed by Zernike will need the quantum treatment of this
construction.
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