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Abstract—There are well-trodden paths between geometric and wave 

optics while, with sampling and interpolation, a further bridge to discrete 
optics is usually traversed. Our previous work points to a Royal road to 

link the paraxial, metaxial, and global geometric with discrete models, 

where canonicity becomes unitarity and where phase spaces retain their 
meaning. This short review maps the terrain that has been traversed. 

 

 

The line of work of the Óptica Matemática projects 

centres on the applications of group theoretical methods 

to geometric, wave and discrete (mostly finite) optical 

models, although it still lies on the fringes of the main-

stream applied research in Mexico. We use the fact that 

when two models exhibit the same underlying symmetry 

group, a correspondence can be established between 

them. In this contribution to the monographic Special 

Issue we give an overview of the common symmetries 

and distinct realizations in the regimes of geometric and 

discrete optics.   

   The geometric model of optics assumes "screens" on 

which a manifold of rays is characterized by their position 

q and their momentum p (i.e. |p| = n sin θ, with the index 

of refraction n and angle θ to the screen normal, allowing 

for p є R2
 in the paraxial régime), which satisfy the basic 

Poisson brackets {qi, pj} = δi,j. Optical transformations q 

→ q′(q,p), p → p′(q,p) due to free flight, refracting 

surfaces, or transit through inhomogeneous media, can 

only be canonical, i.e., preserve the Poisson brackets [1, 

ch. 3]. Canonical transformations are reversible and, since 

no rays are gained nor lost, they conserve information; 

caustics are not singularities in a phase space. In the linear 

(paraxial) regime, these transformations form the real 

symplectic group Sp(2D,R) in D dimensions. Light fields 

are understood as generally complex functions ϱ(q,p), 

whose absolute square can represent intensity.  

The discrete model of optics that we use consists of 

finite pixelated screens, where each pixel contains a 

complex value of the discrete wavefunction that forms the 

image. The pixel address is given by the equally-spaced 

finite spectrum of a position operator Q, and a momentum 

operator is defined through P:= i[H,Q], with the Lie 

bracket (commutator) of the generator H of  the Fourier-

Kravchuk transform [2] (i.e. of a harmonic oscillator –

other models with infinite discrete screens use the 
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repulsive oscillator or the free system [3-4]). The 

resulting structure is the unitary Lie algebra su(2) for 1D 

screens, and  sux(2)×suy(2) = so(4) for 2D Nx×Ny screens. 

This Lie algebra exponentiates to the corresponding 

unitary Lie groups of transformations. An important 

property of the discrete model is that, when the number 

and density of pixels increases without bound, it contracts 

to the common Heisenberg-Weyl algebra and its 

quantum-mechanical or paraxial wave-optical rendering 

of operators and wavefields, which in turn come down to 

the classical or geometric model when the wavelength 

tends to zero. 

In 1D, this formalism leads to the non-standard 

commutation relation [Q, P] = i J3, with J3:= H ‒ j – ½, 

that characterizes the representation of dimension N = 

2j+1 of su(2), and provides the Hamilton equations of the 

harmonic oscillator in the form [H,Q] = ‒iP and [H,P] = 

iQ, thus identifying Q =: J1 and P =: J2, with the position 

and momentum operators. The position spectrum is  m|
j
‒j 

in the Q eigenbasis, and fm = (m| f ) are the values of any 

pixelated 1D image; a π/2 rotation generated by H yields, 

through the Fourier-Kravchuk transform, the discrete and 

finite momentum eigenbasis of P [2]. To this algebra we 

can add a fourth generator, 1, that will generate overall 

phases, and turn the algebra into u(2) = u(1)×su(2). This 

u(1) does not have a counterpart in classical models 

because {1, ◦} = 0. 

In 2D, there are two position and momentum operators, 

whose postulated algebraic relations are [Qx, Qy] =: i M := 

[Px, Py], defining an new (angular momentum) operator 

M, which closes together with them and H through [M, 

Qx] = +iQy, [M, Qy] = ‒iQx, [M, Px] = +iPy, [M, Py] = ‒iPx, 

and [M, H] = 0, into the Lie algebra sux(2)×suy(2) = so(4). 

In the same way, a 2D image is a matrix of values fmx,my  = 

(mx,my | f ) in Cartesian coordinates on a rectangular 

screen. 

For Nx = Ny, a similar structure allows also for screens 

with circular pixellation [5], where radial and angular 

coordinates are determined using the sub-algebra chain 

so(4) › so(3) › so(2). The map between Cartesian and 

circular pixellations is unitary, so it is reversible and no 

information is lost in the transfer of images between the 

two. Including overall phases, the 2D algebra is 

ux(2)×uy(2) = u(1)×u(1)×so(4). 

Royal road from geometric to discrete optics 
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   The Fourier group is a maximal compact subgroup of 

the real symplectic group of linear canonical trans-

formations. In 1D, this is the u(1) ‹ sp(2,R) that generates 

phase space rotations in the geometric model, and the 

fractional Fourier-Kravchuk transform in the discrete one. 

In 2D, it is the four-parameter u(2) ‹ sp(4,R) that generates 

rotations within the 4D phase space, composed of 

rotations in the x- and y- phase subplanes which are 

fractional Fourier-Kravchuk transforms in discrete optics; 

cross-rotations in the qx−py and px−qy  planes which are 

gyrations in wave optics and in discrete optics as well [6]; 

and rotations in the x−y plane of image and momentum, 

which are natural in geometric optics, and are thus 

imported onto square pixelated screens [5], as unitary and 

fully reversible transformations [7].  

   Free flights, thin lenses and squeezings are beyond the 

Fourier group that is strictly the same for both the 

paraxial geometric and discrete optical models. We recall 

that in 2D, the symplectic group Sp(4,R) has 10 

parameters; the remaining six in geometric optics include 

slantings of phase space, generated by the Poisson 

operators {px
2
,◦}, {py

2
,◦} (free flights), {qx

2
,◦}, {qy

2
,◦} 

(thin lenses), and {pxqx,◦}, {pyqy,◦} (squeezings). What are 

their counterparts in discrete optics? There we have to 

resort to the covering of the 6-parameter algebra 

sux(2)×suy(2), namely the squares of the position and 

momentum generators identified within each factor. Since 

in discrete optics on square screens these are represented 

by N
2
×N

2
 self-adjoint matrices, their squares and higher 

powers are still self-adjoint matrices that exponentiate to 

unitary matrices which will act on the pixelated image 

field. The Hamiltonian generators Hx and Hy need not be 

considered beyond their first power because the Casimir 

operators relate their sum of squares to the squares of the 

previous ones.   

   The metaxial regime of geometric optics in 1D is gener-

ated by Poisson operators {p
r
q

s
,◦}, for r+s > 2. These 

correspond in the discrete model with matrix represen-

tations of the covering algebra of su(2), which are self-

adjoint and of dimension N×N. Since there are no more 

than N
2
 independent self-adjoint complex matrices that 

exponentiate to the group U(N
2
), no more than N

2
‒4 

aberrations exist in the discrete model (removing the 3 

linear transformations and the overall phase). The 

correspondence between the two models has been defined 

through the matrices {P
r
Q

s
}Weyl, using the Weyl ordering 

of the factors (which preserves self-adjointness) –but now 

we also have a second set of aberration generators 

{P
r
Q

s
H}Weyl that include a harmonic oscillator-like factor 

[8]. We can check by counting that these exhaust the Lie 

algebra u(N
2
). The 2D case has not yet been pursued 

beyond unitary rotations [5] and gyrations [6], but its 

computational treatment is presently within the Óptica 

Matematica research project.   

   We should remark that, even in 1D, the full U(N
2
) group 

includes not only "continuous" transformations such as 

those afforded by optical setups with all aberrations 

properly controlled, but also all pixel permutations. The 

permutation of two pixels, i and j, lies within a SO(2) 

subgroup that rotates between the i
th 

and j
th 

rows of the 

image vector. It is thus not clear whether the discrete 

models are in fact much "larger" than their physically 

possible geometric counterparts. 

   A last and sobering remark on the algorithms for unitary 

transformations of pixelated screens is in order: they are 

computationally the slowest algorithms of all, because 

generally every transformed pixel value depends on the 

values of all the original pixels, since the N×N matrices in 

the group representation are irreducible for 1D, and 

reducible N
2
×N

2
 (but not in the pixel basis) for 2D. This is 

true in particular with rotations, where the commercial 

algorithms that rotate digital images use any one of 

several interpolation strategies, as can be seen in 

MATHEMATICA
©
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   The su(2) Wigner function defined in [9] maps 1D finite 

signals onto a compact phase space that is a sphere in an 

ambient 3D space, and has the desired properties of 

covariance with the su(2) model of discrete optics. It 

serves to visualize the action of aberrations on signals [8], 

and to identify translated coherent states with their rotated 

discrete counterparts [10]. Here also, when su(2) contracts 

to the Heisenberg-Weyl algebra, the radius of the sphere 

grows and the Wigner function becomes the standard one 

on the phase plane. With these tools, in Ref. [8] we 

pictured the linear transformations and aberrations acting 

on a "rectangle" signal of 0’s and 1’s. For 2D it does not 

seem convenient to interpret a pixelated image on a 4-

sphere within an ambient 6D space; although the direct 

product nature of sux(2)×suy(2) can be exploited, we have 

not yet studied this possibility. 

   The 4π regime of optics requires a different group of 

symmetries to describe the geometric and build a discrete 

model of optics. No longer bound to 2D screens, we 

consider the iso(3) Euclidean symmetry algebra that 

generates translations and rotations in space. In [1, App. 

B] we showed that this algebra contains several optical 

models for lines, planes, bands, screws, etc., and also a 

sui generis Hilbert space for the monochromatic 

Helmholtz wave-fields. The 2D model of the latter has a 

continuous compact basis (a circle) of plane waves, and 

also an infinite discrete basis of a line of J0(z) and J1(z)/z 

Bessel functions, placed a half-wavelength apart [4], [11]. 

For the latter, the 1D case has been examined through its 

iso(2) Wigner function depicted on a cylinder [13]. 

   Another more recent approach to the 4π régime is based 

on the geometric optical Maxwell fish-eye, which is well 

known to be the stereographic projection of free motion 

on a sphere [1, ch. 6], and where geometric rays are 

circles. The wave-optical version uses the spherical 
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harmonic basis to define new bases of position and 

momentum characterized for having maximal second 

moment, and whose contraction, when the radius of the 

sphere grows without bound, is the Helmholtz medium, 

matching with the bases mentioned in the previous 

paragraph [14]. Their examination through the so(3) and 

iso(2) Wigner functions is also one of our current aims.   

 

In conclusion, we can state that our interest lies building 

and studying discrete models of optics that can be set up 

directly from the geometric picture, and whose 

contraction (when the number and density of pixels grow) 

yields a useful wave-optical model, which in turn will 

contract to a geometric one). One reason for this strategy 

is that approximations by a finite set of values will 

converge smoothly to the intended continuous wavefields. 

Another reason is that other models (such as lines, planes, 

screws, etc.) can be handled with the same tools. But the 

main reason may simply be the quest to find symmetries 

behind the objects and systems in Nature. Along that 

Royal road we also find interesting relations between 

discrete special functions (Kravchuk, Meixner, Pollaczek, 

Hahn) and their relation with a well-known group of 

theoretical constructs, such as Wigner’s and Bargmann’s 

little-d functions as well as the Clebsch-Gordan 

coefficients, dressed in the guise and garb of optics. 
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