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Abstract We set forth that the Kravchuk polynomials of a discrete variable are actu-
ally “encoded” within appropriate finite-dimensional irreducible representations of the
group of rotations of three-dimensional space SO(3). Hence, discrete irreducible rep-
resentation spaces of the group SO(3) can be naturally interpreted as finite (discrete)
versions of the linear quantum harmonic oscillator.

Mathematics Subject Classification 33D45 · 39A70 · 47B39

1 Introduction

Classical orthogonal polynomials of a discrete variable (the Hahn, Meixner, Charlier,
and Kravchuk polynomials) are extensively used in physics and mathematics [18]. In
particular, discrete (finite) quantum oscillator models, which are constructed in terms
of these polynomials of the hypergeometric type, find a large number of applications in
signal [4,5,7] and in optical image processing [8,20]. Recall that, chronologically, this
type of discrete oscillator models were introduced in the following way. One starts with
a family of discrete orthogonal polynomials, governed by a difference equation with
a linear spectrum. This difference equation is then interpreted as a discrete analog of
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28 M. K. Atakishiyeva et al.

the well-known Hamiltonian for the linear harmonic oscillator in quantum mechanics.
Eigenfunctions in such a model are naturally defined in terms of the initial discrete
polynomials times the square root of their orthogonality weight function. Moreover, the
subsequent factorization of an ad hoc introduced “discrete Hamiltonian” enables one
to construct appropriate difference analogs of the raising and lowering operators for
the linear quantum harmonic oscillator and, consequently, a corresponding spectrum
generating algebra. In particular, in the case of Kravchuk polynomials this spectrum
generating algebra turns out to be the su(2) Lie algebra [2,3], whereas in the Charlier
and Meixner cases these are the su(1, 1) Lie algebras [6].

This work shows that there is a different way of arriving at discrete oscillator
models, based on the use of the algebraic properties of the generators of a particular
Lie group. As a first step in formulating this approach, we will be engaged in this
work solely with the Lie group of rotations of three-dimensional space SO(3) [or
locally isomorphic to it, the Lie group SU (2)]. We contend that discrete quantum
oscillator models built in terms of the Kravchuk functions are actually “encoded”
within appropriate finite-dimensional irreducible representations of the rotation group
SO(3).

A summary of what the remaining sections of this paper contain is as follows.
Section 2 recalls those difference equations from the monograph [10], that are needed
in order to find the explicit forms of irreducible representations of the group of rotations
of three-dimensional space SO(3). Since the simplest solutions of these difference
equations are expressed in terms of the Kravchuk functions, one arrives naturally
at the desired discrete oscillator model. Section 3 contains conclusions and a brief
discussion of some further research directions of interest. Finally, in the Appendix we
have collected basic background facts about symmetric Kravchuk polynomials and,
associated with them, the Kravchuk functions that are used in this work.

Throughout this exposition we employ standard notations from the theory of special
functions (see, for example, [1,9,13]) and from non-relativistic quantum mechanics
[15].

2 Irreducible representations of the rotation group

It is well known that in the study of representations of the rotation group SO(3) [or its
locally isomorphic group SU (2)], one employs essentially the algebraic properties of
the generators of this group Jk, k = 1, 2, 3, which are the operators of the infinitesimal
rotations about the coordinate axes (see, for example, [10,21]). These operators form
the Lie algebra so(3) (or su(2)) with the commutation relations

[J1, J2] = i J3, [J2, J3] = i J1, [J3, J1] = i J2 , (2.1)

where by definition [A, B] := AB − B A.
It is important to observe from the outset that from (2.1) it follows at once that

[J1, [J1, J3]] = −i[J1, J2] = J3. (2.2)
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Kravchuk polynomials and irreducible representations 29

This observation plays a key role in this work for the following reason. Recall that
quantum-mechanical analog of classical Newton’s equation m dv

dt
= −dU

dx
for a linear

harmonic oscillator is written in terms of the position operator x and the Hamiltonian
Ĥ := p2/2m + mω2x2/2 as in [15,16]

[
Ĥ , [Ĥ , x]

]
= (h̄ω)2 x . (2.3)

On comparing (2.2) with (2.3) it becomes clear that, with proper normalizations,
the generators J1 and J3 can be also interpreted as the position operator X and the
Hamiltonian H of some discrete (finite) model of the linear quantum harmonic oscil-
lator. Taking into account that the momentum operator P̂ in quantum mechanics is
defined as ω P̂ := i[Ĥ , x], one concludes that the association

J1 ⇒ H, J2 ⇒ P, J3 ⇒ X, (2.4)

enables one to interpret the commutation relations (2.1) of the Lie algebra so(3) (or
su(2)) as a closed defining algebra for a triplet X, P and H with the commutation
relations

[X, H ] = i P, [H, P] = i X, [P, X ] = i H, (2.5)

and, consequently,

[H, [H, X ]] = X. (2.6)

To establish what kind of an oscillator model emerges from this interpretation (2.4)
of the commutation relations (2.1), one needs to recall the following. To find the
explicit form of an unitary irreducible representation of the group of rotations SO(3),
it is more convenient to consider the linear combinations of the generators J1 and J2
in the form J± = J1 ± iJ2. Indeed, from (2.1) it then follows that

[J+, J−] = 2 J3, [J3, J±] = ±J±, (2.7)

which means that the operators J± are actually step (or raising and lowering, respec-
tively) operators: if �fm is an eigenvector of the operator J3, i.e., J3 �fm = m �fm , then the
vectors J± �fm represent eigenvectors �fm±1 of the same operator J3. By using this prop-
erty of the step operators J±, one can prove, pure algebraically and, most importantly,
without employing explicit forms (realizations) of the generators J± and J3, that (see
pages 22–25 in [10]) for any unitary irreducible representation of SO(3) the operators
J± and J3 define an orthogonal basis consisting of the normalized eigenvectors of J3
by the equations

J+ �f (l)m = α
(l)
m+1

�f (l)m+1, J− �f (l)m = α(l)m
�f (l)m−1, J3 �f (l)m = m �f (l)m , (2.8)

where m = −l,−l + 1, . . . , l, the weight l of the corresponding irreducible represen-
tation is an integer or half an odd integer, and α(l)m := √

(l + m)(l − m + 1).
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In terms of the initial generators Jk, k = 1, 2, 3, the equations (2.8) in the canonical
basis �f (l)m can be written as (cf formula (19) on page 26 in [10])

J1 �f (l)m = 1

2

[
α
(l)
m+1

�f (l)m+1 + α(l)m
�f (l)m−1

]
, (2.8’)

J2 �f (l)m = 1

2i

[
α
(l)
m+1

�f (l)m+1 − α(l)m
�f (l)m−1

]
,

J3 �f (l)m = m �f (l)m .

Notice that since in a finite-dimensional space each linear operator is given by a
matrix, from (2.8′), it is evident that the generators Jk in the canonical basis �f (l)m ,
m = −l, 1− l, 2− l, . . . , l, are represented by (2l +1)×(2l +1)-matrices of the form
(cf. (21) on page 28 in [10]):

||(J1)
(l)
m,m′ || = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 α
(l)
1−l 0 · · · 0 0

α
(l)
1−l 0 α

(l)
2−l · · · 0 0

0 α
(l)
2−l 0 · · · 0 0

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 0 α

(l)
l

0 0 0 · · · α
(l)
l 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, (2.9)

||(J2)
(l)
m,m′ || = i

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 α
(l)
1−l 0 · · · 0 0

−α(l)1−l 0 α
(l)
2−l · · · 0 0

0 −α(l)2−l 0 · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 0 α

(l)
l

0 0 0 · · · −α(l)l 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, (2.10)

||(J3)
(l)
m,m′ || =

⎛
⎜⎜⎜⎜⎜⎜⎝

−l 0 0 · · · 0 0
0 1 − l 0 · · · 0 0
0 0 2 − l · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · l − 1 0
0 0 0 · · · 0 l

⎞
⎟⎟⎟⎟⎟⎟⎠
, (2.11)

The problem of finding the form of an unitary irreducible representation of the
rotation group SO(3) thus reduces to that of solving the equations (2.8), that is, finding
explicit forms for the triplet of operators Jk , satisfying the commutation relations
(2.1) and exhibiting properties (2.8′). Well-known examples of continuous unitary
representations1 of the group SO(3), constructed in this way and often used in various
applications, are those formulated in terms of functions on the sphere. In this case, the
canonical basis consists of the spherical functions

1 Recall that the representation g → Tg is called continuous if the elements of the matrix Tg are continuous
functions of g (see, for example, [10]).
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Y m
l (θ, ϕ) := 1√

2π
eimϕ P m

l (cos θ), (2.12)

where Pm
l (x) are the normalized associated Legendre functions (see (26), p.46 in

[10]). The generators J± and J3 in this basis are then realized as partial differential
operators

J± := e ± i ϕ
(

± ∂

∂θ
+ i cot θ

∂

∂ϕ

)
, J3 := −i

∂

∂ϕ
, (2.13)

in the variables θ and ϕ.
But note that the Eq. (2.8′) do have another type of solutions in terms of the discrete

eigenvectors �f (l)m of J3. Notice that contrary to the case of spherical functions (2.12),
this discrete basis does not depend explicitly on the group parameters. So, upon using
those solutions of (2.8′), one actually arrives at the explicit form of a discrete version
of the linear quantum harmonic oscillator in the following way.

Recall that a physical system in quantum mechanics is described by the eigenfunc-
tions of Hamiltonian H , whereas either the position operator X is associated with the
multiplication by the coordinate x (and this case referred to as coordinate realization),
or the momentum operator P is associated with the multiplication by the momentum
p (momentum realization). Therefore, to interpret the generators J1 and J3 as in the
association scheme (2.4), one should build a basis of an irreducible representation of
SO(3) (or SU (2)) in terms of the eigenvectors of the generator J1, rather than of the
generator J3 as in (2.8′). This can be regarded as introducing a dual canonical basis,
defined as follows. Let us first change slightly the enumeration of the basis vectors
�f (l)m , −l ≤ m ≤ l , by arranging them as

�u (l)n := �f (l)n− l , n = 0, 1, 2, . . . , 2l. (2.14)

Then, the dual canonical basis vectors �v (l)n with components
(
�v (l)n

)
k
, k =

0, 1, . . . , 2l, are defined in terms of the canonical basis vectors �u (l)n as

(
�v (l)n

)
k

:=
(
�u (l)k

)
n
, k, n = 0, 1, 2, . . . , 2l. (2.15)

It is not hard to verify that there are solutions of Eq. (2.8′) with the generators Ji ,
i = 1, 2, 3, explicitly given by (2.8′) as difference operators, and with basis vectors
�f (l)m , whose 2l + 1 components

( �f (l)m

)
n
, n = 0, 1, 2, . . . , 2l, are defined in terms

of the Kravchuk functions ψ(l)n (x) [see (4.12) in the Appendix] as

( �f (l)m

)
n

:= ψ(l)n (m), −l ≤ m ≤ l. (2.16)

The advantage of this simple solution (2.16) is that the associated dual canon-
ical basis vectors, defined as in (2.15), coincide with the canonical basis vectors
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in (2.16) due to the self-duality property of the Kravchuk functions (4.12). There-
fore it becomes quite transparent why the commutation relations (2.1) admit the
association scheme (2.4). In particular, the generator J3, represented in the canon-

ical basis
{ �f (l)−l ,

�f (l)−l+1, . . . ,
�f (l)l−1,

�f (l)l

}
by the diagonal matrix (2.11) with the diag-

onal elements {−l,− l + 1, . . . , l − 1, l}, can be also interpreted, but in the dual
canonical basis (2.15), as a matrix of the multiplication by the discrete coordinate
x = {−l,− l + 1, . . . , l − 1, l}. That is why the generator J3 can be regarded as
the operator X . Besides, from the difference equation (4.18) it follows at once that
the canonical basis vectors (2.16) are actually eigenvectors of the generator J1; this
explains why J1 ⇒ H in the association scheme in (2.4). Finally, from the previous
two, J1 ⇒ H and J3 ⇒ X , it is plain that [cf the second entry in (2.4)]

J2 = i [J1, J3] ⇒ i [H, X ] = P. (2.17)

In conclusion, it should be pointed out that in the three-volume encyclopedic mono-
graph by N. Ja. Vilenkin and A. U. Klimyk the Kravchuk polynomials had been
attributed to matrix elements of irreducible representations of the Lie group SU (2),
treated “as functions of column index” (see page 346 in [19]). So the algebraic reason-
ing in this section reveals that those “matrix elements as functions of column index”
are simply matrix elements in the dual canonical basis, thus making it transparent
how the former ones emerge from the group-theoretical point of view.

3 Concluding remarks

We have demonstrated that the generators of the group of rotations of three-
dimensional space SO(3) can be interpreted as the triplet of the operators {X, P, H},
which define a discrete (finite) model of the linear quantum harmonic oscillator in
terms of the Kravchuk functions. It is worthwhile to mention that the necessary pre-
requisite of observing this circumstance had been presumably available at least since
the appearance of the monograph by Gel’fand et al. [10], first published in Russian
in 1953 (recall that Kravchuk polynomials [14] had been known since 1929). So it
seems to us that the discrete Kravchuk oscillator did not attract much attention earlier
because it is realized on discrete function bases for the finite-dimensional spaces of
unitary irreducible representations of the rotation group SO(3), while the attention of
the authors of [10] and many other contemporary and later authors has been on bases
of functions that are continuous functions (similar to spherical harmonics) over the
manifold of the sphere.

The approach followed in this work seems to be quite general. In particular, it
can be used for constructing discrete oscillator models, associated with the discrete
series of irreducible representations of the Lie group SU (1, 1). This will be dealt with
elsewhere.

A final remark concerns the possibility of studying the group-theoretic properties of
families of discrete polynomials that are not associated with some Lie algebra. A recent
work by Kalnins et al. [12] discussed the generic three-parameter second-order super-
integrable system S9 in two dimensions in detail (see also [11,17]). It turns out that
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Kravchuk polynomials and irreducible representations 33

this superintegrable model is closely interconnected with hypergeometric orthogonal
polynomials from the Askey scheme [13]. In particular, various function space realiza-
tions of the quadratic Racah–Wilson algebra, which is the symmetry algebra behind
the S9 superintegrable model, can be associated with all hypergeometric polynomials
in the Askey scheme. These remarkable works [11,12] thus reveal the group-theoretic
context of such intricate orthogonal families as the Wilson and Racah polynomials
that satisfy second-order difference equations with quadratic spectra.

Acknowledgments Discussions with E.I.Jafarov, W.Miller, Jr. and L.Vinet are gratefully acknowledged.
The participation of MKA in this work has been partially supported by the SEP-CONACYT project 168104
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Appendix: Kravchuk polynomials and functions

Kravchuk polynomials [14] in the real variable x are defined in [13] (see pages 237–
241) as

Kn(x; p, N ) := 2 F1

(
−n,−x;−N ; p−1

)
, n = 0, 1, 2, . . . , N , (4.1)

where p is a positive real number smaller than unit, 0 < p < 1, and N is some positive
integer number.

Since Gauss’s hypergeometric function 2 F1 (a, b; c; z) is symmetric with respect
to the parameters a and b, i.e., 2 F1 (a, b; c; z) = 2 F1 (b, a; c; z), from the definition
(4.1) it follows at once that the Kravchuk polynomials Kn(x; p, N ) are self-dual:

Kn(m; p, N ) = Km(n; p, N ), m = 0, 1, 2, . . . , N . (4.2)

Observe also that from Euler’s (or the Pfaff or Pfaff–Kummer) transformation for-
mula (see (1.7.2) in [13]) ,

2 F1 (a, b; c; z) = (1 − z)−a
2 F1

(
a, c − b; c; z

z − 1

)
, (4.3)

it follows that

2 F1

(
−n,−x;−N ; p−1

)
=

(
p − 1

p

)n

2 F1

(
−n, x − N ;−N ; 1

1− p

)
. (4.4)

This means that

Kn(x; p, N ) =
(

p − 1

p

)n

Kn(N − x; 1 − p, N ), (4.5)
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reflecting the fact that the Kravchuk polynomials Kn(x; p, N ) for generic values of
the parameter p do not exhibit any reflection symmetry property with respect to the
change x ⇒ N − x . Only exceptional value of p = 1/2 represents the case when
the Kravchuk polynomials Kn(x; 1/2, N ) are either symmetric (when n is even) or
skew-symmetric (when n is odd) with respect to the change x ⇒ N − x :

Kn(x; 1/2, N ) = (−1)n Kn(N − x; 1/2, N ). (4.6)

From the discrete orthogonality relation for the Kravchuk polynomials Kn(x; p, N )
for the generic values of the parameter p (see (9.11.2) in [18]) it follows that

N∑
l=0

(
N
l

)
Kn(l; 1/2, N ) Kn′(l; 1/2, N ) = 2N

(
N
n

) δnn′, (4.7)

where

(
m
n

)
:= m!/n!(m − n)! is the binomial coefficient. Very often it turns out to

be more convenient to represent (4.7) in a symmetric form with respect to the variable
x by denoting N = 2M , that is,

M∑
m=−M

(
2M

M + m

)
k(M)n (m) k(M)n′ (m) = 4M

(
2M
n

) δnn′ , (4.8)

where the polynomials k(M)n (x), n = 0, 1, 2, . . . , 2M , are defined as

k(M)n (x) := Kn(x + M; 1/2, 2M) = 2 F1 (−n,−x − M;−2M; 2) . (4.9)

The polynomials k(M)n (x) will be referred to as the symmetric Kravchuk polyno-
mials.

The next natural step is to define orthonormalized Kravchuk functions, which can
be interpreted as discrete (finite) analogs of the Hermite functions Hn(x) exp(−x2/2),
where Hn(x) are the classical Hermite polynomials.2 Since k(M)0 (x) = 1 by definition,
from (4.8) it follows that

4−M
M∑

m=−M

(
2M

M + m

)
≡

M∑
m=−M

[
ψ
(M)
0 (m)

]2 = 1, (4.10)

2 We remind the reader that the properly normalized Hermite functions are interpreted in quantum mechan-
ics as the linear harmonic oscillator wave functions [15].
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where

ψ
(M)
0 (x) := 1

2M

√
(2M)!


(x + M + 1)
(M − x + 1)
, x ∈ [−M,M]. (4.11)

This means that Kravchuk functions ψ(M)n (x), defined as

ψ(M)n (x) :=
(

2M
n

)1/2

k(M)n (x) ψ(M)0 (x), n = 0, 1, 2, . . . , 2M, (4.12)

do satisfy the discrete orthogonality relation of the form

M∑
m=−M

ψ(M)n (m) ψ(M)n′ (m) = δnn′, (4.13)

which is essentially just another way of writing down the orthogonality relation (4.8).
Evidently, all other main properties of the Kravchuk polynomials, which follow

from their three-term recurrence relation, difference equation, and so on, can be readily
reformulated in terms of the Kravchuk functions (4.12). For instance, the three-term
recurrence relation (cf. (9.11.3) in [13])

2x k(M)n (x) = (n − 2M) k(M)n+1(x)− n k(M)n−1(x) (4.14)

for the symmetric Kravchuk polynomials k(M)n (x) entails a corresponding relation

− 2x ψ(M)n (x)=√
(n + 1)(2M−n) ψ(M)n+1(x)+

√
n(2M−n + 1) ψ(M)n−1(x) (4.15)

for the Kravchuk functions (2.12).
Similarly, using the difference equation (cf. (9.11.5) in [13])

2(M − n) k(M)n (x) = (M − x) k(M)n (x + 1)+ (M + x) k(M)n (x − 1) (4.16)

for the symmetric Kravchuk polynomials k(M)n (x) and taking into account that

ψ
(M)
0 (x + 1) =

√
M − x

M + x + 1
ψ
(M)
0 (x) , (4.17)

one arrives at the difference equation

2(M − n) ψ(M)n (x) = √
(x + M + 1)(M − x) ψ(M)n (x + 1)

+ √
(x + M)(M − x + 1) ψ(M)n (x − 1) (4.18)

for the Kravchuk functions (4.12). This difference equation is regarded as defining the
discrete model of the quantum oscillator,
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36 M. K. Atakishiyeva et al.

Ĥ (F O) ψ(M)n (x) = (M − n) ψ(M)n (x), (4.18’)

governed by the “Hamiltonian”

Ĥ (F O) = 1

2

[√
(x + M + 1)(M − x) T+ + √

(x + M)(M−x + 1) T−
]
, (4.19)

where T± f (x) := f (x ± 1).
The Kravchuk polynomials (4.1) are known to reduce to the Hermite polynomials

Hn(x) in the limit as N → ∞. In particular, for the symmetric Kravchuk polynomials
k(M)n (x) one has (cf. (9.11.15) in [13])

lim
M→∞ Mn/2 k(M)n

(√
Mx

)
= (−1)n

2n
Hn(x). (4.20)

By using this limit property and the asymptotical behavior
√

2π
x

( x
e

)x of the gamma
function 
(x) for large x , it is not hard to verify that the Kravchuk functions (4.12)
reduce to the Hermite functions in the limit as M → ∞.

Finally, observe that the self-duality (4.2) of the Kravchuk polynomials Kn(x; p, N )
entails the following duality property of the Kravchuk functions (4.12):

ψ(M)n (k − M) = ψ
(M)
k (n − M), 0 ≤ n, k ≤ 2M. (4.21)

It is immediate to show that this duality property enables the transformation of the
discrete orthogonality relation (4.13) into discrete closure (completeness) relation for
the Kravchuk functions (4.12), which has the form

2M∑
n=0

ψ(M)n (m) ψ(M)n (m′) = δmm′ , (4.22)

and vice versa. In other words, contrary to the continuous case when the two properties
of the type (4.13) and (4.22) require separate proofs, here (4.13) and (4.22) are mutually
linked because of the self-duality property (4.21).
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