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Using a previous technique to rotate two-dimensional images on an N × N square pixellated screen unitarily, we
can rotate three-dimensional pixellated cubes of side N , and also generally D-dimensional Cartesian data arrays,
also unitarily. Although the number of operations inevitably grows as N2D (because each rotated pixel depends
on all others), and Gibbs-like oscillations are inevitable, the result is a strictly unitary and real transformation
(thus orthogonal) that is invertible (thus no loss of information) and could be used as a standard. © 2014 Optical
Society of America
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1. INTRODUCTION
The unitary rotation of data arrays of pixellated images in two
or three dimensions has basic implications in image process-
ing and presents an interesting theoretical problem on the
conservation of information. While efficient algorithms exist
to perform rotations of such data arrays through interpolation
techniques [1], our aim is to represent these transformations
unitarily, so that they can be inverted with no loss of informa-
tion. This requirement cannot be met by interpolation or
approximation algorithms.

Among the papers that provide a group-theoretical treat-
ment to the problem, Pei and Liu wrote a very interesting
paper [2] that used the transformation between 3D Cartesian
and angular oscillator modes given by the Moshinsky
coefficients hnx; ny; nzjn;l;m� [3,4], implementing various
cutoffs in n (total energy), l (angular momentum) and/or
m (z projection) to approximate 3D functions by finite data
arrays.

Our approach was originally based on the geometry and
dynamics of the discrete and finite harmonic oscillator model
on N points [5]. Without invoking explicitly this physical
model, we will refer the construction of Cartesian arrays of
N � 2j � 1 values (pixels) per side to the well-known repre-
sentations of the Lie algebra su(2) of spin j. We regard one-
dimensional (1D) data arrays as states f �m�≡ 1hj;mjfi ∈ CN

on the usual complex vector space of functions on N � 2j �
1 equidistant points mjj

−j ; these points belong to the spectrum
of the “position” operator J1, chosen among the three su�2�
generators. Another generator of su�2�, J3, numbers a conven-
ient orthonormal basis for CN , that ofKravchuk functions. The
necessary expressions are briefly reviewed in Section 2.

In two dimensions (2D), we see and call the states pixel-
lated images f �mx;my�≡ 1xhj;mxj1yhj;myjfi on an N × N
grid of points mx, myjj−j , whose coordinates are the

eigenvalues of two commuting operators J1;x, J1;y ∈ su�2�x⊕
su�2�y � so�4�—the 4D orthogonal algebra, in the “square”
representation jx � jy≕ j, where again N � 2j � 1. As we
recall in Section 3, we can import [6] bases of states with
“angular momentum” ljj0, with components classified by
μjl

−l [7], on which rotations act through multiplication by
phases. This rotation is unitary in the complex vector space
jfi ∈ CN

2
of all 2D images [8]. In Section 4, we use these 2D

results for three-dimensional (3D) rotations through Euler
angles �α; β; γ� around the z, y, and z axes, respectively. Each
factor is a unitary 2D rotation in a stack of pixel planes.

In Section 5, we use the generalized Euler angle paramet-
rization for D-dimensional rotations of Cartesian data arrays,
factoring the SO�D� manifold into SO�D − 1� and a D-sphere
SD. In the concluding Section 6, we briefly indicate approxi-
mations which are invariant under rotations and some evident
remarks on the extension to the Fourier group of linear
Hamiltonian systems [9,10].

2. ONE-DIMENSIONAL FINITE OSCILLATOR
BASIS
The eigenvalues and eigenvectors of the generators fJig3i�1 of
su�2� in the representation j will provide the labels and bases
for CN (N � 2j � 1) as follows:

positionm: J1jj;mi1 � mjj;mi1; mjj
−j ;

moden: J3jj; ni3 � �n − j�jj; ni3; nj2j0 ; (1)

while “momentum” is identified with −J2, and the “energy”
eigenvalue of jj; ni3 is n� �1∕2� in the finite oscillator
model [5]. They have the usual commutation relations [11]

�J3; J1� � iJ2; �J3;−J2� � iJ1; �J1; J2� � iJ3; (2)

where the first two correspond to the geometric and dynami-
cal Hamilton equations of an oscillator, and the third is the
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“deformed” commutator between position and momentum
that distinguishes the finite from the continuous model.

The overlap between the position and mode bases yields
the finite oscillator eigenstates,

Ψn�m�≔1hj;mjj;ni3�3hj;j�mje�i12πJ2 jj;ni3�djn−j;m

�
1
2
π

�
(3)

� �−1�nΨn�−m� � �−1�mΨ2j−n�m� (4)

� �−1�n
2j

������������������������������������
2j
n

��
2j

j �m

�s
Kn

�
j �m;

1
2
; 2j

�
; (5)

where djm;m0 �β� in Eq. (3) are the well-known Wigner “little d“
functions [11], which provide the linear combination coeffi-
cients of the mode eigenstates under rotations generated
by J2, namely,

exp�−iβJ2�jj; ni3 �
X2j
n0�0

djn−j;n0
−j�β�jj; n0i3; (6)

djμ;μ0 �β� � 3hj; j � μje−iβJ2 jj; j � μ0i3 � djμ0 ;μ�−β�
�

����������������������������������������������������������������
�j � μ�!�j − μ�!�j � μ0�!�j − μ0�!

p
×
X
k

�cos 1
2 β�2j−2k�μ−μ0 �sin 1

2 β�2k−μ�μ0

k!�j � μ − k�!�j − μ0 − k�!�μ0 − μ� k�! ; (7)

which are real (by convention), and their generic form will be
needed below. In Eq. (5), Kn�x; �1∕2�; 2j� � Kx�n; �1∕2�; 2j� �
2F1�−n;−x;−2j; 2� are the Kravchuk polynomials of degree n
in x, so theΨn�m� have been called the Kravchuk functions—

they are real, orthogonal, and complete under the natural CN

inner product. A state f ≡ jfi is given by the set of values
f m � 1hj;mjfi ∈ CN .

3. TWO-DIMENSIONAL ROTATIONS
In two dimensions, we have pixellated images on N × N
square “screens” given as states f ≡ jfi of the elements
f mx;my

� 1hj;mx;myjfi ∈ CN
2
, with the direct products

jj;mx;myi1 ≡ jj;mxi1xjj;myi1y of two 1D eigenbases of the
two commuting generators J1;x; J1;y ∈ su�2�x⊕su�2�y and
“position” eigenvalues mx, myjj−j . The 2D Cartesian basis of
Kravchuk functions is thus the product of two 1D Kravchuk
functions from Eq. (3),

Ψnx;ny
�mx;my� :� 1hj;mx;myjj;nx; nyi3 � Ψnx

�mx�Ψny
�my�;

(8)

that have the total mode n � nx � ny (“energy” nx � ny � 1),
and a mode difference μ :� nx − ny.

On each n � constant ≤ 2j mode level lie the n� 1 states

fjj; 0; ni3; jj; 1; n − 1i3;…; jj;n; 0i3g; nj2j0 ; (9)

while for n ≥ 2j lie the 4j − n� 1 states

fjj;n− 2j;2ji3; jj;n− 2j� 1;2j − 1i3;…; jj;2j;n− 2ji3g; nj4j2j ;
(10)

and the two sets overlap in the n � 2j level. We underline that
the subsets of n � constant states do not form submultiplets

under su�2�x⊕su�2�y, because this algebra does not contain
linear raising and lowering operators to connect �nx; ny� with
�nx � 1; ny∓1�; these will be imported.

The importation process [6] subjects the states in each
n � constant level to the same linear combination with which
the continuous oscillator model relates Cartesian and radial-
angular mode separations—between the 2D Hermite–Gauss
and Laguerre–Gauss modes. In this way the row in Eq. (9),
in the lower half of the so�4�multiplet, having n� 1members,
is endowed with an “angular momentum” l � �1∕2�n �
�1∕2��nx � ny� and projection μ � �1∕2��nx − ny�, jμj ≤ l. We
write these states as jj;n; μ�, where the round ket indicates
that these are not the eigenstates of any so�4� generator. In
the upper half-rhombus [Eq. (10)], we replace n with 4j − n.
The linear combination coefficients are again the well-known
Wigner little-d matrices dn∕2μ;μ0 �β� of su�2� [11]. This imported
su�2� will have integer and half-integer representations
l � �1∕2�n.

In analogy to the continuous Hermite–Gauss and Laguerre–
Gauss functions, out of the Kravchuk functions we form the
Laguerre–Kravchuk functions given by [7,8,10]

Λj
n;μ�mx;my� :� 1hj;mx;myjj;n; μ�

�
X

nx�ny�n

ei�nx−ny�∕4dn∕2μ∕2;�nx−ny�∕2

�
1
2
π

�

×Ψnx;ny
�mx;my�; (11)

which take complex values, and where the ranges of μ are

μjν−ν for ν �
�
n; when 0 ≤ n ≤ 2j;
4j − n; when 2j ≤ n ≤ 4j:

(12)

On the left side of Fig. 1, we show the images of the Cartesian
Kravchuk states [Eq. (8)] on the �mx;my� screens, while on
the right we show the images of the Laguerre–Kravchuk states
[Eq. (11)]. From Eqs. (4) and (11) we obtain their reality and
parity properties

Λj
n;μ�mx;my� � Λj

n;−μ�mx;my��

� �−1�nΛj
n;μ�−mx;−my�

� �−1�mx�myΛj
4j−n;μ�mx;my�; (13)

so that the upper triangle of states [Eq. (10)] mirrors the lower
triangle [Eq. (9)] multiplied by a checkerboard of signs: their
high-frequency counterparts.

Both sets of discrete functions in Fig. 1 are orthonormal
and complete bases for CN

2
, and 1hj;mx;myjj;n; μ� is the

unitary transform kernel between the pixel basis �mx;my�
and the mode and angular momentum basis �n; μ�. Finally,
in the j → ∞ limit, as the upper triangle “vanishes upward,” the
Kravchuk and Laguerre–Kravchuk functions become the well-
known Hermite–Gauss and Laguerre–Gauss beam functions.

Now we can import the action of a rotation R�α� on the
states jj;n; μ� through their natural multiplication by phases
e−iμα:

R�α�: Λj
n;μ�mx;my� :� 1hj;mx;myjR�α�jj;n; μ�

� e−iμαΛj
n;μ�mx;my�: (14)

Since Λj
n;μ�mx;my� are the elements of a unitary matrix of

rows and columns �mx;my� and �n; μ�, and R�α� in Eq. (14)
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is diagonal and unitary in the latter, the images in the pixel
basis of the screen, ff mx;my

g, mx, myjj−j , will transform unitar-
ily within the 2D square screen with an N2 × N2 matrix kernel
R�j��α� given by its elements as

R�α�: f mx;my
�

Xj

m0
x;m

0
y�−j

f m0
x;m

0
y
R�j�
m0

x;m
0
y ;mx;my

�α�; (15)

R�j�
m0

x;m
0
y;mx;my

�α� :�
X
n;μ

Λj
n;μ�m0

x;m0
y�e−iμαΛj

n;μ�mx;my��: (16)

This kernel is unitary and also real, because complex con-
jugation of Eq. (11) exchanges μ↔ − μ, so under rotations real
images will remain real. In Fig. 2, we show rotations obtained
with Eqs. (15) and (16) for an image with 1-or-0 values; as in
ordinary Fourier analysis, the “discontinuities” inevitably lead
to Gibbs-like oscillations, but smoothing quickly lets them die
away [8].

The composition of rotations, R�α1�R�α2� � R�α1 � α2�,
proceeds through the corresponding composition of their
representing N2 × N2 matrices,X
m0

x;m
0
y

R�j�
mx;my;m0

x;m
0
y
�α1�R�j�

m0
x;m

0
y ;m

00
x;m

00
y
�α2� � R�j�

mx;my;m00
x;m

00
y
�α1 � α2�:

(17)

The null rotation is R�j�
mx;my ;m0

x;m
0
y
�0� � δmx;m0

x
× δmy;m0

y
, the

inverse of a rotation is given by the matrix transpose

R�j�
mx;my ;m0

x;m
0
y
�−α� � R�j�

m0
x;m

0
y ;mx;my

�α�, and associativity holds.

The matrices in Eq. (16) are thus a (reducible) unitary repre-
sentation of the group SO�2� of 2D rotations.

4. THREE-DIMENSIONAL ROTATIONS
Three-dimensional rotations R3�α; β; γ� form a group SO�3�
that will act on N × N × N pixellated cubes parametrized by
Euler angles as

R3�α; β; γ� � Rx;y�α�Rz;x�β�Rx;y�γ�; (18)

where Ri;i0 �α� are 2D rotations in the �i; i0� plane (i.e., around
the z, y, and z axes, respectively). With an evident notation,
it is natural to use this decomposition to rotate three-
dimensional images f ≡ jfi of N3 components f mx;my;mz

�
1hj;mx;my;mzjfi ∈ CN

3
by applying Eq. (18) successively to

stacks of pixel planes as

R3�α; β; γ�: f mx;my;my
�

Xj

m0
x;m

0
y;m

0
z�−j

f m0
x;m

0
y;m

0
z

× R�j�
m0

x;m
0
y;m

0
z;mx;my;mz

�α; β; γ�; (19)

R�j�
m0

x;m
0
y;m

0
z;mx;my;mz

�α; β; γ� :�
Xj

m00
x;m

000
x ;m

00
y�−j

R�j�
m0

x;m
0
y ;m

00
x;m

00
y
�α�

× R�j�
m0

z;m
00
x ;mz;m000

x
�β�R�j�

m000
x ;m

00
y ;mx;my

�γ�;
(20)

where the multi-indices �mx;my;mz� can be replaced with
a single index by m � mx � Nmy � N2mz if need be. The
matrices R�j�

m0 ;m�α; β; γ� form the kernels of real and unitary
(and hence orthogonal) transformations of the N3-dimensional
vector space of CN

3
pixellated images in the cube.

Another useful parametrization of SO�3� is the polar,
which specifies the rotation angle ψ around a unit axis
n̂ � �nx; ny; nz�. The relation to Euler angles is obtained from
their 2 × 2 representation as

cos2
1
2
β � cos2

1
2
ψ � n2

z sin2
1
2
ψ ; (21)

cos
1
2
�γ � α� � cos

1
2
ψ∕ cos

1
2
β; (22)

tan
1
2
�γ − α� � ny∕nx: (23)

In Fig. 3, we show successive rotations of a 3D image by
angles ψ about the axis that joins two opposing vertices
of the cube; at 2π∕3 � 120°, the original 3D image is

n
µny nx

Fig. 1. Left: Images of the 2D Cartesian Kravchuk functions
Ψnx;ny

�mx;my� in Eq. (8), of pointsmx, myjj−j for j � 8 on 17 × 17 pix-
ellated screens, arranged by modes �nx; ny�. Right: The Laguerre–
Kravchuk functions Λj

n;μ�mx;my� in Eq. (11) on the same pixellated
screens. At its center (μ � 0) the functions are real; to the right
(μ > 0) are the real parts of Λj

n;μ, and to the left (μ < 0) are the imagi-
nary parts of Λj

n;−μ, which can be seen to be off by a phase of �1∕4�π.
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Fig. 2. Rotation of a pixellated letter “R” in steps of 6°, from 0° to 90°,
for j � 8; i.e., N � 17. The N2 × N2 matrix kernel R�j�

mx;my ;m0
x;m

0
y
�α� was

computed once for α � 6° and applied successively to each image to
obtain the next one. At right is the gray-tone range for the pixels in the
figure.
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reconstituted without Gibbs-like oscillations. From Eqs. (21)–
(23), this corresponds to the Euler angles �0; �1∕2�π; �1∕2�π�,
where the rotation kernel [Eq. (20)] reduces to the cyclic per-
mutation mx↦my↦mz of the components of f mx;my;mz

∈ CN
3
.

One common problem with 3D displays is the visual represen-
tation of images; we render them using transparent small
cubes without smoothing.

Since Eq. (20) is the product of three real unitary transfor-
mations in separate planes, these 3D transformations are real

and unitary (i.e., orthogonal) maps of CN
3
, and are hence

reversible with no loss of information. Perhaps surprisingly,
they do not form a representation of SO�3�, as Eq. (16) does
for plane SO�2� rotations—that is, the product of two 3D
transformations [Eq. (19)] will generally not follow the prod-
uct of the corresponding 2 × 2 spin realization of this group,

because the imported 2D bases Λj
n;μ�mi;mi0 � in Eq. (11) do

not commute with rotations outside their planes. Those that
do form SO�2� subgroups are rotations around the z axis
R3�α; 0; 0� parametrized by α ∈ S1 (the circle), and rotations
with any axis n̂ that lies in the �x; y� plane,R3�γ; β;−γ�, where
γ is fixed, so n̂ � �− sin γ; cos γ; 0� and β ∈ S1. In these cases,

the matrix elements of R�j�
m0

x;m
0
y;m

0
z;mx;my;mz

�α; β; γ� may be

computed only once and applied successively to build all
its multiples. Otherwise, as in Fig. 3, each step needs the
computation of Eqs. (21)–(23) to produce the corresponding
transform kernel.

5. D-DIMENSIONAL ROTATIONS
The Euler angle parametrization can be extended to D dimen-
sions given by �1∕2�D�D − 1� rotations in successive planes.
One minor point concerns the z–y–z sequence of 3D rotations,
which is bettered by considering z–x–z rotations in the planes
(1,2)–(2,3)–(1,2), because this can be more easily generalized
[12]. As mentioned above, the Wigner little-d functions
djm;m0 �β� that represent rotations around the y axis are
real by convention, while those around the x axis will be

multiplied by phases exp�i�1∕2�π�m −m0��; equivalently, we
can use the little-d’s for rotations in the (2,3) plane and place
a phase factor exp�−i�1∕2�π�m −m0�� for rotations in the (3,1)
plane (which will not be needed).

Following this z–x–z convention, and generally indicating
by θ�d�i;i0 a rotation angle in the �i; i0� plane as before, one can
write the factorization of the SO�D� group manifold as

SO�D� � SO�D − 1� ⊗ SD−1; (24)

where Sd is the manifold of the d-sphere, whose d-angle co-
ordinates and ranges are

fθ�d�·;· g :� fθ�d�1;2; θ
�d�
2;3;…; θ�d�d;d�1g;

0 ≤ θ�d�1;2 < 2π;

0 ≤ θ�d�i;i�1 ≤ π; 2 ≤ i ≤ d: (25)

Reserving the upper index 1 ≤ d ≤ D − 1 to distinguish be-
tween distinct rotations in the same plane, one defines SO�D�
Euler angles enclosing collective variables in braces, as

fθ··;·g�d� :� fθ�1�1;2; fθ�2�·;· g;…; fθ�d�·;· gg: (26)

Generic rotations RD�fθ··;·g�D−1�� ∈ SO�D�; are thus decom-
posed recursively into 2D rotations R�θ··;·� as

Rd�1�fθ··;·g�d�� � Rd�fθ··;·g�d−1��Sd�fθ�d�·;· g�; (27)

Sd�fθ�d�·;· g� :� R�θ�d�d;d�1�R�θ�d�d−1;d�…R�θ�d�2;3�R�θ�d�1;2�: (28)

Cartesian-pixellated D-dimensional images, given by the
set of values f m1;m2 ;…;mD

≡ f fmg ∈ CN
D
, with allmijj−j in a hyper-

cube of edge N � 2j � 1, will transform under SO�D� rota-
tions with each factor R�θ�d�i;i�1� rotating in the �i; i� 1�
plane, and affecting only the indices mi and mi�1 by θ�d�i;i�1
as in Eqs. (15) and (16). As before, these transformations are
real and unitary, and hence orthogonal.

6. APPROXIMATION, EXTENSIONS, AND
CONCLUSION
We have extended previous work on plane rotations of
Cartesian-pixellated N × N images to generic dimension
D—in particular, to three dimensions. The main advantage
of these rotations is that they are unitary and real—i.e.,
orthogonal—in the complex vector space CN

D
, so information

is conserved. The main drawback of unitarity is the heavy
computational cost, because every pixel of the transformed
image generally depends on the values of all the original ones,
leading to ∝ N2D growth in the number of product and sum
operations. No fast algorithm seems to exist. Also, beyond
D � 2 these transformations do not represent the group faith-
fully, since they do not follow its product law exactly.

As we saw in Section 3, the rows of states nj4j0 in the D � 2
case do not mix under the imported rotations. Thus, if we
approximate (smoothen or filter) an image ff mx;my

g by its total
mode components n � nx � ny (such as eliminating high-
frequency ones), the resulting (approximate) images will
transform equally under R2�θ�; i.e., these approximants will
be covariant under 2D rotations [8].

The strategy to use the plane rotations for the D-
dimensional case can be extended rather straightforwardly

Fig. 3. Rotation of a pixellated 1-and-0 three-dimensional image in
steps of 8° from 0° to 120°, around the axis n̂ � �1; 1; 1�∕p3, for
j � 8; i.e., N � 17. The color bar at right indicates the density range
of the partially transparent pixels in the figure. The “TL” figure is not
centered in the cube.
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to the Fourier group UF�D� ⊃ SO�D� [9], which includes frac-
tional Fourier–Kravchuk transforms and gyrations. The for-
mer involve multiplication of the states Ψni

�mi� by phases
einiϕ, and the latter are products with rotations [10]. The D2

parameters of UF�D� can be built as the analogues of the
Euler-angle decomposition out of phases and plane rotations.
Yet only for D � 2 plane-pixellated images will these transfor-
mations follow the U�2� product law.

Finally, the Fourier group is but a subgroup of the most
general group U�ND� of unitary transformations among
the ND pixel elements of images f m1 ;…;mD

∈ CN
D
. This is the

“aberration group” described in Ref. [13] for 1D finite signals.
At present, we see no compelling application for this group
beyond the two-dimensional case. Yet it would further the
understanding of the structure of all transformations that con-
serve information in finite discrete systems, from the same
viewpoint where linear and nonlinear canonical transforma-
tions conserve the structure of Hamiltonian geometric optics.
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