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We study a new class of deformations of algebrll representations, namely, ilso(n) ~ sl(n, R), 
ilu(n) ~ s l(n.C) '" u(1) and ils p (n) '" s p (I) ~ sl(n, Q) '" sp(l). The new generators are built as 

commutators between the Casimir invariant of the maximal compact subalgebra and a second-rank 
mixed tensor. These algebra deformations are related to multiplier representations and manifold 
mappings of the corresponding Lie groups. Behavior of the representations under Iniinii-Wigner 
contractions is exhibited. Through the use of these methods we can construct a principal degenerate 
series of representations of the linear groups and their algebras. 

1. INTRODUCTION 

The closely related concepts of expansion and defor
mation of Lie algebras has been developed in both the 
physics and mathematics literature. In physics, expan
sions first appeared as a way of building symplectic 
algebras sp(n, R) from the pOSition and momentum 
operators with the canonical commutation relations, 1 

and later by deforming the Poincare algebra to the de 
Sitter algebra2 as well as obtaining possible dynamical 
algebras for various physical systems.3 .4 Indeed, these 
latter types of deformations have been performed for 
inhomogeneous orthogonal, 2.5.6 unitary5.6 and sym
plectic 6 ,7 Lie algebras using a specific type of deforma
tion, i.e., iso(n) ~ so(n, 1), iu(n) ffi u(1) ~ u(n, 1), 
isp(n) ffi sp(1) ~ sp(n, 1) and other noncompact forms. 
These deformations have then been applied to various 
problems in representation theory5.8 and shown by 
Gilmore 9 to constitute a well-defined family of defor
mations in which the coset space of the deformed alge
bra in the Cartan decomposition is of rank one. 

In this article we present a family of deformations of 
representations of Lie algebras on homogeneous spaces 
of rank one (spheres), but where the rank of the coset 
spaces of the deformed algebras in the Cartan decom
position is higher. Specifically, in Sec. 2 we treat the 
cases i 2so(n) ~ sl(n, R), i 2u(n) ~ sl (n,C) ffi u(1) and 
i 2 sp(n) ffi sp(1) ~ sl(n, 0) ffi sp(1). We develop these 
cases separately so as to provide a clearer formulation 
for the reader who is not so familiar with the com
plications of the quaternionic field, which would be 
necessary in a general formulation. We then discuss 
in Sec. 3 the connection between the deformations of 
these algebras and the existence of corresponding mul
tiplier representations10 .11 of the groups SL(n, R), 
SL(n, C) ® U(1) and SL(n, 0) ® Sp(1) on the homogeneous 
spaces corresponding to the real, complex and quater
nionic spheres. In Sec. 4 we show that the InonU
Wigner contraction12 of the representations of these 
groups with respect to the maximal compact subgroups 
are the groups 12 SO(n), 12SU(n) ® U(1), and 12Sp(n) ® 
Sp(l). 

2. DEFORMATIONS OF INHOMOGENEIZATIONS OF 
THE CLASSICAL LIE ALGEBRAS 

Since we will be interested in deformations 12 and ex
pansions 9 which are representation-dependent, we begin 
with suitable definitions of expansions and deformations 
of representations in which nothing is said about the 
abstract Lie algebra. Let cP be a representation of a 
Lie algebra a, Le., a homomorphism of a into some 
suitable defined vector space, which for our purposes 
can be taken as the space of infinitely differentiable 
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functions over spheres. An expansion of the represen
tation cP is a mapping cjY ~ 1/1)., such that the 1/1).,' s form a 
representation of a Lie algebra a'. Moreover, if the 
condition 1/1)., ~ cP is satisfied, the expansion is said to 
be a deformation. The deformation of an inhomogeneous 
algebra can be thought of as the inverse of contraction. 12 
It is seen that the requirement that the 1/1).,' s form a Lie 
algebra places severe restrictions on the possible 
mappings 1/1).,' Such restrictions have an elegant formu
lation in terms of Lie algebra cohomology theory,13 
however, rather than attempt the general formulation 
here, we will discuss a family of specific examples of 
representation-dependent deformations of inhomo
geneizations of the classical Lie algebras. 

A. i 2so(n) ~ sl (n, R) 

Consider the Lie algebra so(n) of the orthogonal group 
whose generators satisfy the well-known commutation 
relations 14 

which preserve the usual metric in real n- space RR, 
so that the Greek indices take values 1, ... ,n. We ad
join now to this algebra a set of commuting n-dimen
sional second-rank symmetric tensors PjlV = PVjl ' We 
thus arrive at a Lie algebra which we denote by i 2 so(n), 
which is characterized, along with Eq. (2. 1) by 

(2.2a) 

(2.2b) 

The set of !n(n + 1) generators P constitute the maxi
mal Abelian ideal of i 2 so(n). 

The technique for deformation now consists of taking 
the commutator of the Casimir operator 41 of the ori
ginal algebra so(n) with the P's. Specifically, we con
sider the following members of the enveloping algebra 
of i 2 so(n): 

(2.3) 

where 41 '" - !MjlvMv jl and T is an arbitrary complex 
number. 

As 41 commutes with all of so(n), it follows that the 
N's transform under so(n) as the P's, Le., they satisfy 
Eq. (2. 2a) with PjlV replaced by Njlv. However, if we 
consider the analog of Eq. (3. 2b), that is, the commutator 
of two N' s, we find that in general, (for any choice of T 

other than the contraction limit T ~ 00), the N's do not 
close into a finite-dimensional Lie algebra. This is to 
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be contrasted with the better-known expansion2•9 

iso(n) = so(n, 1) where the algebra closes modulo a 
normalization factor. We can, however, obtain a repre
sentation of a Lie algebra if we impose some further 
restrictions. We choose the following representation15 

for P v and M v: P uv = x~xjx2 where the x~'s com
mute;x2 = x~:~ and M~ v = x!'a v - xvo" + O'~ v with 
[O'flV,xiJ = O,where we have mtroduced a == a/axfl' It 
is then found that the algebra will close if and only if 
a flV vanishes. This means that, in contrast with the 
iso(n) = so(n, 1) expansion, we do not have the free
dom to construct an additional vector space structure 
upon the representations described by Eq. (2.3), i.e., 
vector bundles over the sphere. This limits the possible 
representations one can construct to degenerate ones. 16 

In a straightforward manner one can then verify that 

[Nfl v' N po ] = OvpM~o + OflpMvo + OVOMflP + ofloMvp' (2.4) 

In order to see more clearly the structure of the 
algebra spanned by the M's and N's it is convenient to 
construct the traceless operators 

1 1 
XflV =="2 (MflV + Np.v) - 2n OflV TrN 

=x a -x x (x·a-O')-~o 
fl v ~ v n flV' (2.5) 

where x' a == XfloP.' a = ~(- n + T) and where we have 
taken the x to be the Cartesian coordinates on the 
(n - 1)-dini'ensional real sphere S .. _l' i.e., x2 = 1. One 
then obtains the Lie algebra in the form 

[XflV,XPO ] = 0VpXflO - 0flOXpV' (2.6) 

and TrX = O. By identifying the (n - 1) independent 
commuting X 's (no sum) as the Cartan subalgebra 
and the XflV (rt~ ZI) as the root vectors, one identifies 14 

the Cartan class An_I' 

In order to see what type of representations are 
allowed in our constructions, we notice the following 
relation in the enveloping algebra of sl(n, 1R), 

X AXAlJ = X v[(n + O')(n - 1) - 0' ]/n + 0flV(n - 1)0'(0' + n)/n2, 
fl p. ~.n 

which can be used to express all the higher-order 
Casimir operators in terms of the second-order opera
tor C2 = X X " hence we have only a most degenerate p.v Vfl 
series of representation. This reflects the fact that our 
representations are built on a rank one homogeneous 
space S .. _l' Contracting over /.l and ZI in (2.7), we have 
C 2= (n - 1)0'(0' + n)/n. 

The fact that we have an sl(n, IR) form of A .. _1 is 
indicated by Eq. (2.6) and the form (2.5) with the speci
fication of the hermiticity properties which must await 
the introduction of a Hilbert space structure which will 
be discussed in Sec. 3. Suffice it now to say that all the 
generators X will be anti-Hermitian under the usual 
scalar produ&V on the sphere S .. _l with the choice 
a = - ~n + ip, p real, Le., for T = 2ip. Indeed, with this 
choice of a, C2 is - n(n - 1)/4 - (n - 1)p2In. These 
representations are reducible as can be seen from the 
fact that the generators XJJlJ are all even functions of 
x . An extra parity label E is thus needed to specify 
i~reducible representations. Then we can say that the 
parameters (p, E) label the representations of a prin
cipal most degenerate series of sl(n, 1R) built on the 
space of square-integrable functions on the sphere. 

B. ;2 urn) => s/(n,C) EEl u (1) 
In analogy with the previous section, we consider the 

algebra u(n), the usual metric-preserving algebra for 
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the complex space e" and adjoin an ideal formed by 
the set of commuting second:!,ank mixed tensors Z iJV 
with the symmetry property Z u v = Z v (the bar de
notes complex conjugation). The i2u(nt algebra is then 
defined through the commutation relations14 

[CflV,C pO ] = OVpCflO - °JJOCpv, 

[CJJV,Zpo] = 0vpZJJO - °JJOZpv' 

and the two Z's commute. 

(2.8a) 

(2.8b) 

The extension proposed in (2.3) is, for the unitary 
groups, 

DiJV==i[lJI,ZflV]+TZiJV' (2.9) 

where lJI = - 2C JJv CvjJ is the u(n) second-order Casimir 
invariant. Again we are unable to find an expansion for 
a completely general ZiJ V and again one does not have 
the freedom to add an additional vector space structure. 
The particular choice of representation for which the 
<!e!ormation c~n be c:rrie~ thro~h iS15 CiJV =ZJJafl
zvafl' Z fl v = Z flZ vi I Z I ,I Z I == Z flZ fl' ~ere we have used 
the notation afl == a/azl!. and afl ~ a/az fl • It is then 
straightforward to verfiy that 

[DiJv,Dpo] = 0vpCjJo - 0flOCpV' (2.10) 

while the D's obey the same transformation properties 
(2.8b) under the C's as the Z's. Moreover, the trace 
of C fl v which we denote as C == C fl fl (sum), provides a 
u(1) subalgebra which not only commutes with the C's 
but also with the D's, thus providing the direct sum 
algebra sl(n, e) (j) u(I). The existence of this u(l) sub
algebra arises from the fact that the generators D fl v 
as well as each I Z Jl 12 , (/.l fixed) remains invariant 
under Z 11 -7 e;q, Z }J' This is the analog of the parity in 
the last section, and definite u(l) transformation pro
perties must be specified in order to get irreducible 
representations of s [(n, e). Indeed, it will be seen 
shortly how this provides us with an additional Casimir 
operator. 

A convenient form to display the sl(n, e) structure is 
obtained by constructing the traceless combinations 

X~v == HC flv ± DJlv - 0jJv(C ± TrD)/n], 

given explicitly by 

1 - - - ) C +0'0 
Xtv = zfla V - z-zflzV(Z • a + z· a - a -2n jJV' 

(2. 11 a) 

(2.llb) 
- -0 + 1 - ( a - a ) C -0' 0 X~v=-zv fl Z-ZflZV Z ' +Z' -0' -~ jJV' 

(2.llc) 
where 0' = - n + T and we have set Iz 12 = 1, so that the 
(2n - 1) independent real numbers in Z are the complex 
CarteSian coordinates on the (n - I)-dimensional complex 
sphere C .. -1 ~ S2 .. -1' It is easy to check that all X+'s 
commute with all X-' s and hence we have explicitly a 
pair of commuting sl(n, IR) algebras given by (2.6). In 
this form the Cartan subalgebra is given by the 2(n - 1) 
independent X~ fl (no sum) and one easily arrives at the 
Cartan structure A .. _1 (j) A .. _I • An additional advantage 
of the form (2.11) is the following convenient set of 
relations in the enveloping algebra of sl(n, e) 

X~AX~V = [Nq; 1 + n 2n 2(C ± O')Jx~v 
+n-l(C±O'/C±O'±I\O (2.12) 

2n "n J jJV' 

where N+ = nand N- = O. 
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As in the last section, these can be used to express 
all the higher-order Casimir invariants in terms of the 
second-order ones l7 • We are thus led to a class of 
degenerate representations, but not just a most de
generate series: the two Casimir operators obtainable 
from (2.12) are C~ == X~IJX~~ ± X;IJX-,,~ and take the 
values (n - 1)[a(2n + a) + C2]/2n and (n - l)C(n + a)/n, 
respectively. 

Now using the fact that C is the generator of a U(1) 
group and restricting the representations of this U(1) 
to be single-valued, one finds that the eigenvalues of C 
are integers m. In the next section we shall introduce a 
definite scalar product on C n - I , with respect to which 
hermiticity will be defined. For the generators (2.8a) 
we will have C ~"t ::::: C II~' while for the choice a ::::: - n 
+ ip, (p real), i.e., T imaginary in (2.9) D ~ / = - D ~ II 

and for (2. 11), (X~,,)t = X'F" ~. For this choice of a and 
C, the Casimir operators C~ are - (m 2 + 4p2)/2n - n/2 
and 2ipm/n, respectively. Thus we have Hermitian re
presentations of the sl(n, C) algebra described by two 
numbers, a real p and an integer m. 

In performing the previous deformation, we followed 
the analogy with the real sphere, making x ~x" -7 Z ~z II 
and USing the metric-preserving algebra on the com
plex sphere. We could alternatively have decomposed 
z ~z II into its real and imaginary parts and considered 
the corresponding deformations separately. Indeed, if 
we would have done this our a would be - n + ~T in
stead of - n + T making it more compatible with both 
the real and quarternionic cases. In the next section, 
when we consider the corresponding quaternionic case, 
it will be expedient to work in terms of real components 
due to the noncommutativity of the quaternions them
selves. We shall indicate there the corresponding re
strictions which yield the sl(n, C), sl(n, IR), u(n), and 
so(n) subalgebras. 

C. i
2
sp(n) EB sp (1) ~ s/(n, 0) EB sp(1) 

Since the symplectic algebra sp(n) is the metric
preserving algebra for the n-dimensional quaternionic 
plane1s i(}', it seems natural to carry the analogy with 
the last two sections one step further and look for the 
corresponding deformation to essentially sl(n, 0), the 
special linear algebra over the noncom mutative qua
ternionic field J4 (continuous division ring) O. Since 
the quaternions are perhaps not so well known, we pre
sent first a brief review of their propertiesl9 • 

The quaternions form a four-dimensional noncommu
tative algebra over the field of real numbers with a base 
composed of e" (a = 0, 1, 2, 3) whose multiplication 
table is 

where i,j,k = 1,2,3. We use the convention that the 
early Greek letters range from 0 to 3, whereas the 
middle Latin letters over 1,2,3, reserving the middle 
Greek letters for the tensor indices. A quaternion can 
thus be written as q = q"e". The quaternionic conju
gate is defined as q* == qOeo - qie i and one verifies 
that 1 q 12 == q*q = qq* = q "q" is a real nonnegative 
number which vanishes iff q itself vanishes. We can 
form the quaternionic n plane on by taking the n-fold 
tensor product of 0, which forms a vector space en
dowed with a scalar product on X on -7 0 given by 
u . q == utq~. The norm induced by this scalar product 
is IqI2==q'q=q*q =qq*=q"q". The scalar pro-
d t d f · d b J.! • ~ I f ~ J.I • J.I g uc e llle a ove IS e t invarIant by the group of n-
dimensional symplectic transformations whose infinite-
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simal generators MJ.I"v can be given in two different ways 
depending on whether the group action is defined from 
the right or from the left. This will be detailed in Sec. 3. 
An arbitrary second-rank mixed tensor with compo
nents Q~" transforms under the generators of sp(n) as 

[M~v' Qta] = 6lJpQ~a - 6J.1pQ:7a + 6vaQ~J.I - 6J.1aQ~v' 
(2. 14a) 

[Mt", Q~a] = 6upQ~a - 6J.1 pQta - 6uaQ~~ + 6/laQ~II' 
(2. 14b) 

[Mt", Q~a] = - ollpQ~a - 6/lpQ~a + 6I1aQ~/l + 0J.laQ~" 
(no sum on i) (2. 14c) 

[Mtv, Q~a] = €ijk(OllpQ~a + 6J.1pQta + 6vaQ~/l + 6J.1aQ~II)' 
(2. 14d) 

The symplectic algebra14 sp(n) spanned by the M's 
satisfies (2.14) with the additional speCification that 
M~" = - M~/l and Mtll = MtJ.!' We can realize this 
algebra15 on QII as 

(2. 15a) 

Mi± = ± (qioO + qioO - qOoi - qOa i ) - E·. (qja k + qjOk) 
J.I II ~ 11 V /l ~" II J.I 'Jk J.I" !J ~, 

(2. 15b) 
where 0 ~ == 0/ oq ~ and where (+) or (-) deSignates 
action from the left or right with respect to quaternionic 
multiplication. One sees then that qpqb transforms as a 
mixed second-rank tensor under the M+'s but not under 
the M-'s. Convers~ly, the quaternionic conjugate qbqp 
transforms as a mIxed second-rank tensor under the 
M-'s only. Furthermore, the commutator of the M+'s 
with the M-' s does not close to form a Lie algebra of 
finite dimension. It can be seen, however, that the 
traces 

(2.15c) 

commute with the Mi/l±'" s, ea~h forming the algebra 
sP.(1)'F £; su(2). Moreover, M'- commutes with qpqb and 
MH commutes with qbqp' Hence, we finally arrive at 
two possible isomorphic algebras which we denote as 
i2sp(n)+ EEl sp(1)- and i 2sp(n)- EEl sp(I)+ spanned by 
{M~II+' Mi-, qJ.lqt} and {M~~, Mi+, qtqll}' respectively. 

Using either of these algebras we are now in a posi
tion to write down the deformation formulas which are 
a generalization of Eqs. (2. 3) and (2.9) to the quater
nionic case. We use the first set of operators spanning 
i2sp(n)+ EEl sp(I)- and consider 

(2.16) 

where ~2± = - ~MO"lV[OIl + -2
1 Mi± Mi± is the second-/l J.I j.L II UJ.I 

order Casimir invariant for sp(n)±. If we consider the 
combinations 

(2. 17a) 

(2. 17b) 

where the XO are built to be traceless, and place Iq 12 = 1, 
the (n - I)-dimensional quaternionic sphere Q £; n-l 
S4n-l where the 4n - 1 independent real q" are the Car-
tesian coordinates, and set a ::::: - 2n + ~T, \ve arrive, 
after a fairly tedious calculation, at the explicit form 

(2. 18a) 
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Xi -qi"O_qO"i _c qi"k 
"y - "Vy "Vy "'ijk "Vy 

- (qyq~)i(q' 0 - 0'), q. a == q~o:. (2. 18b) 

It can be checked that the X's generate the Lie algebra14 

[X~v,X~o] = €tjk(fJvpX!o + fJI'OX~v)' 

identified as sl(n, Q). 

(2. 19a) 

(2. 19b) 

(2. 19c) 

It is not difficult to see that the XO's span an sl(n, R) 
subalgebra while the XO's and Xi'S for one fixed i, span 
an sl(n, C) EEl u(1) subalgebra. By taking the XOV s given 
by Eq. (2. 18) and the traces Mi- in (2. 15c), wI obtain 
an algebra sl(n, Q)+ EEl sp(1)-. It is easy to check that, 
indeed,Mi- commutes with all the X~:'s. Alternatively, 
we could have constructed the algebra sl(n, Q) - EEl sp(1)+ 
by starting fro~ the i 2sp(n)- EEl sp(I)+ algebra. The net 
effect of this on Eq. (2. 18) is to reverse the sign of the 
non-epsilon terms in the expression for the Xi v's. The 
sl(n, Q) structure of Eqs. (2.19) can be brought out by 
taking X~IL and, say, XJ.I' (no sum) as the Cartan sub
algebra. The root vectors are then given by XO v ± 
iX~ v and X~ v ± iX~ v' This identifies the Cartait class 
A 2n -1• 

The role played by the sp(l) is analogous to that of 
u(1) in the complex case. Both the set of generators 
X:v and each term Jq"J2 of the quaternionic sphere are 
invariant under sp(I)-. Again, definite sp(I)- transfor
mation properties must be specified in order to get 
irreducible representations of sl(n, Q)+. This will be
come clearer in the group theoretical context in the 
following section. 

In the enveloping algebra of sl(n, Q) we were able to 
derive one analog of Eqs. (2.7) and (2. 12) 

XO XO - Xi+ Xi+ = - Xi- Mi- + [4(n - 1) 
I'A AV I'A AV I'V 

+ n - 2Jx~v + n - 10'(0' + 4n)fJ v' 
n r n 2 I' 

(2.20) 

It seems, however, that this relation is not by itself 
sufficient to reduce all higher-order Casimir operators 
to the second-order one. Indeed, we expect more non
independent Casimir invariants due to the existence of 
the sp(I)- algebra. These invariants will be of higher 
order than second, since in contrast to the sl(n, C) case, 
sl(n, Q) is a Simple real Lie algebra. Due to the com
plexity in deriving such relations, however, we have 
thus far been unable to find them. Relation (2.20) does 
provide the second-order Casimir invariant C 2 == 
X0.xo - Xi+ Xi+ = - Mi-Mi- + (n - 1)0"(0' + 4n)/n "V VI' I'V v I' • 

The sp(1)- invariant (M-)2 == Mi-Mi- can be chosen to 
define a basis where its eigenvalues are l(l + 1) (1 in
teger on half-integer). In the next section we shall in
troduce a definite scalar product on Qn-l' with respect 
to which all the operators used in this section are anti
Hermitian if we choose 0' = - 2n + ip (p real). For 
these values of 0', the eigenvalue of the Casimir inva
riant C2 is the real number - l(l + 1) - (n - 1)(4n2 + 
p2)/n. 

3. HOMOGENEOUS FUNCTIONS AND MULTIPLIER 
REPRESENTATIONS 

In this section we shall relate the expressions ob
tained in the previous sections by the deformation of 
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inhomogeneous algebras to the corresponding technique 
of constructing multiplier representations for the group 
from certain classes of homogeneous functions Similar 
to those introduced by Bargmann10 and Gel'fand. ll In
deed, from the expreSSions for the generators givell by 
Eqs. (2. 5), (2. 11), and (2.18), the terms in 0' indicate 
that they should upon integration give rise to multiplier 
representations. 8 Rather than exponentiate these ex
pressions directly, however, we prefer to construc~ the 
multipliers by Gel'fand's method of homogeneous func
tionsll and obtain the corresponding generators for the 
one-parameter subgroups. This procedure lends insight 
into the expansions of the form (2.3) on the global group 
level. All the known expansions of the form (2.3) diS
play this correspondence to homogeneous functions. 8 

It is not difficult to see that the spheres Sn-l' Cn-l' 
and Qn-l introduced in the last section correspond to 
homogeneous spaces of the groups SL(n, F) of n x n 
matrices G = IIg"v ll , (/J., II = 1, ..• ,n), detG = l,g y E F, 
where F indicates the real, complex and quaternioh 
fields. Indeed, consider the. Iwasawa decomposition4 of 
SL(n, F) = KAN where K is SO(n), SU(n), and Sp(n), res
pectivelY,A is the (n - 1)-dimensional Abelian sub
group'of diagonal matrices of SL(n, F), and N is the 
nilpotent subgroup of lower-triangular matrices. Then 
in each case, if K' is the canonical subgroup SO(n - 1), 
SU(n - 1), and Sp(n - 1), respectively. K'AN is the sub
group of n x n matrices G' = II g' v II such that the ele
ments gin = 0 (i = 1, ..• , n - 1), ~nd detG' = 1. The 
homogeneous spaces 0 == KAN/K'AN are then, respec
tively, the spheres Sn-l' Cn_l' and Qn-l' The action of 
the group element g E G on the Cartesian coordinates 
sl'(/1= 1, ... ,n),s" E f,stsl'~l from the left is given 
by 

r - = [S*g-l*g-l S ]-1/2 r' A pAp (J (J , 
(3.1a) 

and if the field F is Q we can also have a distinct action 
from the right as given by 

.!: = [g-l s*s g-1*]-1/2 r" PA A. 0 po ' (3.1b) 

where it should be understood that the involutive auto
morphism *: s" ~ s * is the identity for F == R, complex 
conjugation for F = C, and quaternionic conjugation for 
F = Q. The subgroup G' = K'AN is then the stability 
group of the point (sl') = (0, .•. ,0,1) on O. The trans
formations of K [SO(n);SU(n), and Sp(n), respectively] are 
the largest group of rigid transformations of the sphere 
o since they leave the measure dO on the sphere invar
iant. The rest of the transformations g E G will produce 
a "deformation" of the surface of 0, where the Jacobian 
is 

(dO/dO')L == (r'/r)P, 

(dO/dW)R = (r"/ r)P, 

(3.2a) 

(3.2b) 

where p == n dimF, i.e.,p = n, 2n, and 4n for F = R, C, and 
Q, respectively. In the former two cases, (3. 2a) and (3. 2b) 
are equal. 

In comparing this approach with the one used for4 ,8,20 

SO(n, 1) :::> SO(n), SU(n, 1) :::> SU(n), and21 Sp(n, 1) :::> 
Sp(n), we notice that there is one essential difference 
with the above and that is that in the case of the se 
groups the subgroup K' is the centralizer of A and the 
normalizer of N in K. This has the consequence that 
the irreducible representations of the subgroup K' AN 
are just direct products of irreduCible representations 
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of K' and the irreducible representations (characters) 
of A. Hence, one can induce all these representations 
to the full group KAN. In the case of SL(n, F), however, 
K' is no longer the centralizer of A and only a" most 
degenerate" representation of K'AN labeled by a charac
ter of A can be induced22 to irreducible representations 
of SL(n, F). These are just the representations described 
in the previous sections by the deformation of the 
corresponding representations, of the inhomogeneous 
Lie algebras. 

A. SL(n, IR) 
Consider the space of homogeneous functions over the 

n-dimensional real plane IRn which are infinitely differ
entiable (except possibly at the origin) and satisfyll,23 

F(ay Il) = a O sgnEaF(y Il)' (3.3) 

where a,y Il E IR and E = 0,1. Now representations of 
SL(n, IR) can be constructed over this space as repre
sentations by left action 

TgF(Y Il) = F(y~) = F(g-~ uY v), g E SL(n, IR). (3.4) 

Since the functions F satisfy (3.3), i.e., are homo
geneous functions, the representation (3.4) gives rise 
to a representation on the unit sphere S .. _l in the 
following way: From (3.3) we see that we can define 
a function on S .. _l through F(y Il) = rO/(xl')' with xI' E 

S .. _l and r "" O. A simple calculation shows that (3.4) 
induces the representation 

over functions on S .. _l' where T% = r-oT gr O and the 
group action is given by (3. 1a). Furthermore, from 

(3.5) 

(3.4) and the infinite differentiability of the F' s, it follows 
that the I' s span the space :DE of infinitely differen
tiable functions on S .. _l which satisfy 

1(- x ll ) = (- i)E/(x ll ). (3.6) 

The function(r' /r) ° is a multiplier which trivially 
satisfies the condition10,l1 (r"/r')o(r'/r)o = (r"/r)o 
and hence Eq. (3. 5) is indeed a representation of 
SL(n, IR). 

We obtain the infinitesimal generators of SL(n, IR) by 
considering the one-parameter subgroups g vet) which 
tofirstorderaregv (t)""/lv -tavll , T~""lll + 
tavll X IlV , where we IJ'ave implicit the dependence of 
X)lV on (J. As it is well known that demanding detllgllvll = 
1 imposes the tracelessness conditions on the genera
tors. We can use (3. 1a) and (3.5) to arrive exactly at 
the generators (2.5) of sl(n, IR) obtained in Sec. 2A. 

One can obtain unitary representations of SL(n, IR) 
over S .. _l taking the vector spaces :DE, E = 0, 1, and 
completing them with respect to the norm induced by 
the inner product 

U{,/i)s = f dO (x)/f (x)/i(x), (3.7) 

where dO(x) is the SO(n)-invariant measure on S .. _l' 

Then one can see that the representation (3.6) is unitary 
with respect to (3.7) with (J = - in + ip (p real). The 
multiplier in (3.5) is just what is needed to offset the 
transformation (3. 2a) of the measure dO(x) under 
SL(n,R). 

B. SL(n, C) 
Consider the space of functions F(w ) over the com

plex n plane 0', infinitely differentiable in wand W 
(except possibly at the origin), which satisfy'i1.24 Il 

J. Math. Phys., Vol. 14, No. 12, December 1973 

1857 

(3.8) 

where a, w Il' (J I' (J 2 E e. Furthermore, we note that 
F(eiI/Jw,J = exp[i«(J1 - (J2)ltt]F(w ll ), thus providing a 
representation of U(l). Requiring this representation to 
be single-valued implies that (JI - (J2 = m is an integer. 
Then the functions F are said to be homogeneous of 
degree «(J,m) where (J = (J1 + (J2' Now representations 
of SL(n, e) can be constructed through left action as 

T gF(w ll ) = F(w~) = F(g-~vwv)' g E SL(n, e). (3.9) 

The homogeneity of the functions F(w) allows us to 
construct functions over G .. _1 as F(w ) = rO/(z ) with 
z E G .. _I • r "" O. The representation (3.9) indud'es the 
multiplier representation 

(3.10) 

over functions on G .. _I , where T% = r-oT gr O and (3. 1a) 
for C .. _I • It then follows that the functionsf(z) are in
finitely differentiable in z Il and z I' with the auxiliary 
condition 

(3.11) 

We denote this space of functions as :Dm • Actually 
(3.11) defines a representation of the U(l) subgroup of 
SL(n,e) 0 U(l) as T fez ) =f(eiI/Jz ) = eimI/Jf(z ). 

Il Il Il Il 

In the same way as in the preceding section, the in
finitesimal generators of both the representation of 
SL(n, e) (3.10) and U(l) (3.11) can be found with the 
parametrization 

u"" 1- iltt, T u "" 1 + it/lC, 

gVIl(t) "" /lV/l - tavll' T% "" 1 + t(avIlX~v - aV/lX~), 

By imposing the condition of tracelessness on these 
generators, we arrive at the expressions for X~v given 
by Eq. (2. 11). 

We endow the spaces :Dm with a Hilbert space struc
ture by completion with respect to the norm induced by 
the inner product 

Ur,fiJ:)c = f dO (z)/r(z)/T(z), (3. 12) 

where dn(z) is the U(n)-invariant measure on C .. _I • It 
follows that the representation (3.10) will be unitary 
with respect to the inner product (3.12) if we choose 
(J = - n + ip (p real), since the multiplier just cancels 
the change in the measure (3.2a). 

C. SL(n,O) 

The description of SL(n, 0) follows those of SL(n, IR) 
and SL(n, e), the major difference now being that the 
multiplication of quaternions in the representation can 
be taken from the left or right, giving rise to two 
different realizations of SL(n, 0). Let F(u ) be an in
finitely differentiable complex-valued fundhon on the 
quaternionic n plane 0" (except possibly at the origin). 
We can define representations by left and right group 
action as 

TfF(U/l) = F(g~~uv)' 
ffF(u/l) = F(uvg~~*), 

(3. 13a) 

(3. 13b) 

with u
ll 

E 0, g E SL(n, 0). Notice that we always have 
left multiplication with respect to the tensor indices. As 
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in the previous cases, we want to restrict our class of 
functions F to be homogeneous functions of Oil in some 
sense. Due to the quaternion noncommutativity, there is 
an ambiguity in factoring out quaternions as done in 
Eq. (3.8) for C. We thus consider" homogeneous" func
tions (in an expanded sense) of degree (a, I, m) which 
satisfy 

F~(uJls) = 6 F~,(uJl)D~'m(s(a, (3, y», 
m' 

(3. 14a) 

(3. 14b) 

where we have used the familiar Wigner D function for 
SU(2) ~ Sp(l), and s is a unit quaternion 1 s 12 = 1, para
metrized by Euler angles s(a, (3, y) = exp(e3 a) exp(e 2{3) 
exp(e3y)· 

We recognize that in order to write an equations such 
as (3. 14b) we must consider vector-valued functions 
FZ(u ) on Oil of degree l. There is an expression analo
gouJ'to (3. 14b) obtained by multiplication from the left. 
As in previous sections, we construct functions f on 
QII-l through F~(uJl) = raf~(ql!)' q E Qn-l' These will 
constitute the space :Dz. m of infinitely differentiable 
functions over QII-l' We then construct a multiplier 
representation of SL(n, O)L on :DZ•m as 

(3.15) 

where Tia = r-aTira and q~ is found in (3.1a). There 
is an expression similar to (3.17) for T: by using 
(3.1b). Now Eq. (3. 14b) simply becomes 

(3. 16) 

Notice that :DIm is not invariant under Sp(l). Indeed, 
it is seen that the f~n transform as the components of 
a rank 1 spherical tensor under Sp(l)R acting from the 
right. This equation also defines a representation of 
Sp(l)R by right action, i.e., T:f~(q ) = f~(qJls). It can 
be shown easily that this action and' (3. 15, commute, 
leading to th'e structure SL(n, O)L 181 Sp(l)R. It is clear 
that one can Similarly construct SL(n, O)R 181 Sp(l) L. 

One can then obtain the infinitesimal generators by 
using the parametrization gJlU = 0JlUeO - taJlU and im
pOSing the condition of tracelessness on the a~v term 
to arrive at the generators given in (2.15). We can 
Similarly obtain the infinitesimal generators of T: by 
reversing the sign of all non-epsilon terms in the co
efficient of a i u' Also from Eq. (3.16) we can obtain 
the generatols of Sp(l)R j they are the traces Mi- in 
(2. 15c). 

We introduce the Hilbert space structure by com
pleting :DIm with respect to the norm induced by the 
inner product 

(3.17) 

where q E QII-l and dn(q) is the Sp(n)L 181 Sp(l)R in
variant measure on Qn-l' Notice that there is no sum 
over m here since the space :D/ • m is invariant under 
the representation (3.15) of SL(n, O)L. This represen
tation is unitary if we choose a = - 2n + ip due to the 
SL(n, 0) transformation of dn (q) in (3. 2a). 

Also it can be seen that the representation (3.16) of 
Sp(l)R is unitary for I integer or half-integer, upon 
introduction of the usual vector space inner product 

(fi,j~)(q) = 6 f l~(q)f 2~(q)· (3.18) 
m ' 
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The contraction12 of the previous representations of 
the Lie algebras sl(n, F) Ell a(F) is to the algebras 
i2k(F) Ell a(F). We will adopt the notation used in the 
beginning of Sec. 3 and treat the three cases F = JR, C, 
and 0 together, and hence let k(F) denote, respectively, 
so(n),u(n), and sp(n), while a(F) denotes O,u(l), and sp(l). 
The generators of k(f) are MJiv, where a = 0 for IF = JRj 
a = 0,1 for IF = Cj and a = 0, 1,2,3 for F = OJ the re
maining generators are 

(4.1) 

with the same ranges of a. In order to perform the con
traction one considers the generators NJivl T as spanning 
along with the M Ji U a sequence of representations de
noted by s I (n, F) T' Upon taking the limit as 1 T 1 -7 ex) , 

one finds 

(4.2) 

whence we write sl(n, F)T ITI-+oo) i
2

k(IF). Equation (2.7), 
(2. 12), and (2.20) become identities in the contraction 
limit. We note that no role is played by a(F) in the 
contraction procedure. The deformation performed in 
Sec. 2 and the above contraction are inverse opera
tion. 6 We make note that although our representations 
were built as deformations of i2k(F)EIl a(F), they can 
also be viewed as expansions of the inhomogeneous 
algebra ik(IF) Ell a(F). 

B. Of the group 

The contraction of the corresponding group repre
sentations (3.5), (3.10), and (3.15) proceeds in the stan
dard way8.12 by allowing the group transformatiOn g(t) 
to approach the identity (t = 0) as we let p -7 ex) in the 
sequence of representations SL(n, F) ip in such a way 
that tp = ~,a real constant. Thus we see from (3.1) 
that s~~ sJl and 

. (r') -P/2+ip • ( ~ atu + a UJl ) ip 
hm r = hm 1 + pst 2 s Jl 

(4.3) 

where the same remarks for the cases F = JR, C, and 0 
apply. It should be noticed that only the symmetric part 
of aZ and the antisymmetric one of aiUI! contribute to 
the rriultiplierj the representations therefore contract as 

(4.4) 

showing that only the" boost" group elements generated 
by (4.1) have a finite contraction limit. We thus have 
found the representations built in Sec. 3 to contract as 
SL(n, JR) -7 12 SO(n), SL(n, c) 181 U(l) -7 12 SU(n) 181 U(l), 
and SL(n, 0) @ Sp(l) -7 12Sp(n) 181 Sp(l). 

5. CONCLUSION 

We have exhibited deformations of inhomogeneiza
tions of all the classical Cartan Lie algebras to those 
of the linear groups. These deformations are repre
sentation-dependent in that the procedure can be im
plemented only for representations which can be realized 
on rank one homogeneous spaces. While we have not 
been able to provide an 'if and only if' statement of 
this fact, we believe that we have indeed constructed 
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the most general representations from our deformation 
procedure. Thus while our family of deformations falls 
outside the class studied by Gilmore 9 (Le., rank one 
coset space in the Cartan decomposition), it does so only 
in a mild way, since a rank one homogeneous space is 
involved. These representations are precisely those 
which do not exhibit multiplicity problems when re
duced to the maximum compact subgroup. This supports 
a conjecture by Mukunda25 and Hermann4 that the 
ability to use the deformation or expansion algorithm 
is intimately connected with the nonexistence of mul
tiplicity problems. 

On the group level, it was shown that these deforma
tions are related to multiplier representations and 
"deformations" of the homogeneous space. In this re
gard, there seems to be a need to establish a more 
thoroughgoing connection between the infinitesimal and 
global approaches. A related approach is to perform 
the deformations not merely on homogeneous spaces, 
but on the whole group manifold. 21 In this way, cases 
where multiplicity problems appear might be incor
porated. 

The multiplier representations discussed in this 
paper can be used to calculate the finite group element 
representation matrix elementsS in the basis obtained 
by the canonical decomposition SL(n, IF) ::> K(F) [K = 
SO(n), SU(n), or Sp(n»). Although we only explicitly 
constructed a principal series, other series (e.g., 
supplementary and discrete) should be obtainable by 
allowing a nonlocal measure10•ll as has been done 26 

for SO(n, 1) ::> SO(n). It is also to be remarked that 
other noncompact chains can be discussed as well 
through our deformation procedure and multiplier re
presentations implemented on hyperboloids 
slst + ... + skSt - Sk+lst+l -"'- sns: = 1, as well 
as spheres. This would allow one to discuss such de
compositions as SL(n, IR) ::> SO(n - k, k), SL(n, C) ::> 
SU(n-k,k),andSL(n,Q)::> Sp(n-k,k), (k = 1, ..• , 
n - 1), without multiplicity problems beyond the doub
ling encountered in the reductionS SO(n, 1) ::> 
SO(n - 1,1). 

In conclusion iJ can be said that our realizations for 
n = 2, SL(2, IR) ~I SO(2, 1), SL(2, C) 2~l SO(3, 1) yield all 
the principal series representations and reproduce the 
known results on these groups by Bargmann10 and 
Gel'fand and collaborators.I 1 One can use Similar pro-
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