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Abstract. The study of irreducible representations of Lie algebras and groups has traditionally
considered their action on functions of a continuous manifold (e.g. the ‘rotation’ Lie algebra so(3)
on functions on the sphere). Here we argue that functions of a discrete variable —Kravchuk
functions— are on equal footing for that study in the case of so(3). They lead to a discrete
quantum model of the harmonic oscillator, and offer a corresponding set of special function
relations. The technique is applicable to other special function families of a discrete variable,
which stem from low-dimensional Lie algebras and are stationary solutions for the corresponding
discrete quantum models.

1. Introduction
The representation theory of Lie algebras and groups has provided a royal road to study families
of special functions [1, 2]. Here we follow this road in the reverse direction: starting from a family
of discrete special functions —Kravchuk polynomials— that satisfy a three-term recurrence
relation and a difference equation, we find the Lie algebra in which they appear as bases for
irreducible representations —in this case the rotation algebra so(3). On the way, seen from
the perspective of Hamiltonian systems, we identify the discrete physical system for which this
family provides the stationary wave functions.

The strategy developed here opens the way to propose other known discrete special function
families of (as yet unknown) Lie-algebraic import, and find the discrete (or continuous)
Hamiltonian system that will realize them as proper wave functions. In Sect. 2 we condense the
definition and relevant properties of the Kravchuk polynomials, and the Kravchuk functions that
are orthonormal and complete in finite-dimensional vector spaces. Their recurrence relation and
difference properties are made explicit in Sect. 3, and used in Sect. 4 to endow the family with
a Hamiltonian and a position operator realized by matrices; when subject to obey the Hamilton
equations, their commutator produces a momentum operator and provides the potential of the
discrete Hamiltonian system whose stationary solutions are the proposed family of discrete
functions. They will inherit a rich set of properties: in this so(3) case they participate with the
Wigner little-d functions in the fractional Fourier-Kravchuk transform [3] and define in Sect. 5
a canonical dual basis of momentum. In Sect. 6 we offer some applications, conclusions and
comments on other discrete special functions that may be subject to this analysis.
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2. Kravchuk polynomials and functions
Kravchuk polynomials were originally introduced as a generalization of Hermite polynomials [4],
replacing their orthogonality relation under an integral over the real line x with Gaussian weight
exp(−x2), by a summation over N + 1 points with a binomial distribution for weight. Here we
find it more useful to represent them as terminating hypergeometric series [5, pp. 237–241], i.e.,
polynomials of degree n in x,

Kn(x; p,N) := 2F1

(−n,−x; −N ; p−1
)

(1)

=
(p− 1

p

)n

2F1

(
−n, x−N ; −N ;

1

1−p

)
(2)

=

(
p− 1

p

)n

Kn(N − x; 1− p,N), (3)

for n ∈ {0, 1, 2, ..., N}, 0 < p < 1, where N ∈ Z+
0 is some nonnegative integer number, and where

we passed from (1) to (2) by using the Euler transformation formula [5, Eq. (1.7.2)].
Since the hypergeometric function in (1) is symmetric with respect to first two parameters it

follows that the Kravchuk polynomials are self-dual :

Kn(m; p,N) = Km(n; p,N), m, n ∈ {0, 1, 2, ..., N}. (4)

For generic values of the parameter p, the Kravchuk polynomials do not exhibit any special
property under reflection of the argument m across the midpoint of its interval, m ↔ N−m.
Only for p = 1

2 do they possess definite parity:

Kn(m; 1
2 , N) = (−1)nKn(N−m; 1

2 , N). (5)

We are also informed [5] of the discrete orthogonality relation satisfied by the Kravchuk
polynomials over the range of their argument:

N∑
m=0

(N
m

)
Kn(m; 1

2 , N)Kn′(m; 1
2 , N) = 2N

(N
n

)−1
δn,n′ , (6)

where ( rs) := r!/s!(r − s)! is the binomial coefficient. Indeed, there is a corresponding
orthogonality relation forKn(m; p,N) when the parameter p has a generic value [5, Eq. (9.11.2)].
Of course, being polynomials in m, the Kravchuk polynomials are defined for any real or complex
value ofm. To have explicit parity, we will shift the orthogonality interval so that it be symmetric
under inversions, denoting xm := 1

2N − m for the N+1 equidistant points in the symmetric

interval x ∈ [−1
2N, 1

2N ]. When N grows without bound while that interval and the density of
points grow as ∼ √

N , one recovers the Hermite polynomials [5, Eq. (9.11.15)],

Hn(x) = lim
N→∞

(2N)n/2Kn

(√
1
2N

(√
1
2N −x

)
; 1
2 , N

)
. (7)

Out of the Kravchuk polynomials with definite parity Kn(m; 1
2 , N) and orthogonality (6), it

is convenient to define the Kravchuk functions :

ψ(M)
n (xm) := c(M)

n,m Kn(xm+M ; 1
2 , 2M), (8)

of the argument xm that ranges over the symmetric set of points xm = m− 1
2N , and where we

denote M := 1
2N ; the coefficients c

(M)
n,m we choose so as to have the orthonormality relation in

its simplest form,
M∑

xm=−M

ψ(M)
n (xm)ψ

(M)
n′ (xm) = δn,n′ . (9)
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To find c
(M)
n,m in (8), we note that K0(m; 12 , N) = 1, so we can sum (9) using

∑N
m=0(

N
m) = 2N ,

and conclude that ψ
(M)
0 (x) is the square root of the binomial distribution,

ψ
(M)
0 (x) =

1

2M

√( 2M

M+x

)
=

1

2M

√
(2M)!

Γ(M+x+1)Γ(M−x+1)
. (10)

We shall call ψ
(M)
0 (x) the ground state in analogy with the quantum harmonic oscillator case. As

we argued above, the argument x need not be an integer, because the ratio of gamma functions
analytically extends the binomial to the complex plane, with poles on real line at ±xk = M +k,
k ∈ {1, 2, . . .}; to avoid them, let us keep x ∈ [−M,M ].

Now, writing c
(M)
n,m = d

(M)
n ψ

(M)
0 (m) and replacing again in (9) to find d

(M)
n , we conclude that

for n ∈ {0, 1, . . . , 2M},

ψ(M)
n (xm) =

(−1)n

2M

√(2M
n

)( 2M

M+xm

)
Kn(M+xm; 1

2 , 2M) (11)

provides an orthonormal basis for the (2M+1)-dimensional vector space of functions of the
discrete variable xm = M −m in the symmetric interval xm ∈ {−M, −M+1, . . . , M}; the sign

in (11) has been added so that ψ
(M)
n (−M) > 0, following the standard sign convention for the

quantum harmonic oscillator wavefunctions Ψn(x). Indeed, it has been known [6] that as M
grows without bound, while the orthogonality interval and density of points grow as ∼ √

M with
x
√
M integer, their limit is

lim
M→∞

(−1)x
√
MM1/4ψ(M)

n (x
√
M) =

1√
2nn!

√
π
e−x2/2Hn(x) = Ψn(x). (12)

A consequence of the self-duality (4) of the symmetric Kravchuk polynomials and of their
parity (5) is that, for 0 ≤ n,m ≤ N ,

ψ(M)
n (xm) = ψ

(M)
M−m(M−n) = (−1)nψ(M)

n (−xm), (13)

and also that the basis of Kravchuk functions ψ
(M)
n (xm) is complete:

2M∑
n=0

ψ(M)
n (xm)ψ(M)

n (xm′) = δm,m′ . (14)

3. Three-term recurrence relations and difference equations
Two important properties satisfied by the Kravchuk polynomials is a three-term recurrence

relation, which is inherited to the Kravchuk functions ψ
(M)
n (xm) in (11), and a difference

equation, which in discrete systems takes the place of the Schrödinger equation. The
factorization of this difference equation leads to the raising and lowering operators, which in
turn determine the mother Lie algebra of the discrete system.

The three-term recurrence relation for Kravchuk polynomials [5, Eq. (9.11.3)] yields the
corresponding relation for the Kravchuk functions (11),

−2xm ψ(M)
n (xm) =

√
(n+1)(2M−n)ψ

(M)
n+1(xm) +

√
n(2M−n+1)ψ

(M)
n−1(xm). (15)

Similarly, the difference equation for Kravchuk polynomials [5, Eq. (9.11.5)], with xm = M −m
so that xm∓1 = xm ± 1, defines the ground state

ψ
(M)
0 (xm±1) =

√
M−xm

M+xm∓1
ψ
(M)
0 (xm), (16)
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and a relation between three neighboring points xm of the Kravchuk functions,

2(M−n)ψ
(M)
n (xm) =

√
(M+xm+1)(M−xm)ψ(M)

n (xm+1)

+
√
(M+xm)(M−xm+1)ψ(M)

n (xm−1),
(17)

which we identify as the ‘Schrödinger’ difference equation that defines the discrete model of the
quantum harmonic oscillator, as we shall proceed to show below.

The distinction between the three-term recurrence relation (15) and the difference equation
(17), is that the latter can be slid along x, i.e., it remains valid if we replace xm �→ xm + ε,

for any −1 < ε < 1; the limits are imposed by the poles that ψ
(M)
n (x) inherits from (16) at

±x = M+k, k ∈ {1, 2, . . .}. On the other hand, the recurrence relation (15) is between three
successive states of this oscillator model, n and n± 1, except for the self-duality (4).

4. Geometry and dynamics in the so(3) algebra
We can regard the difference equation (17) as an eigenvector equation for the Kravchuk functions

ψ
(M)
n (xm), when these are accommodated into 2M+1 column vectors ψψψ(M)

n numbered by n, of
rows xm = M−m, with n,m ∈ {0, 1, . . . , 2M}. This is then a matrix equation that reads

H(M)ψψψ(M)
n = (M−n)ψψψ(M)

n , M−n ∈ {−M,−M+1, . . . ,M}, (18)

governed by the (2M+1)× (2M+1) shifted Hamiltonian matrix H(M) = {H(M)
m,m′}Mm,m′=−M ,

H(M) =
1

2

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 α
(M)
1−M 0 · · · 0 0

α
(M)
1−M 0 α

(M)
2−M · · · 0 0

0 α
(M)
2−M 0 · · · 0 0

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 0 α

(M)
M

0 0 0 · · · α
(M)
M 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (19)

where from (17) we identify

α(M)
m :=

√
(xm+M)(M−xm+1), xm ∈ {−M,−M+1, . . . ,M}. (20)

Since the matrix (19) is symmetric and real, H
(M)
m,m′ = H

(M)
m′,m, it is self-adjoint. We have called

it ‘shifted Hamiltonian’ because it is a second-difference operator, thus a finite analogue of the
quantum second-differential Hamiltonian operators, and its equally-spaced spectrum is shifted
from {1

2 ,
3
2 , . . .} to [−M,M ]. For short, we will henceforth call it simply ‘Hamiltonian’.

Having written the difference equation for Kravchuk functions as an eigenvalue problem for
a Hamiltonian matrix, we can easily define a position matrix X such that its eigenvalues count
the rows of the vectors in that basis,

X(M)ψψψ(M)(xm) = xmψψψ(M)(xm), xm = M−m ∈ {−M,−M+1, . . . ,M}. (21)

This matrix is of course diagonal,

X(M) =

⎛⎜⎜⎜⎜⎜⎝
−M 0 0 · · · 0 0
0 1−M 0 · · · 0 0
0 0 2−M · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · M − 1 0
0 0 0 · · · 0 M

⎞⎟⎟⎟⎟⎟⎠ , (22)
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with elements xm, and is also obviously self-adjoint and real.
Now that we have Hamiltonian and position matrices, H and X, we can investigate the

geometry and dynamics afforded by the Lie commutator form of the Hamilton equations of
mechanics. The first Hamilton equation is geometric: it defines the momentum matrix P(M) as
the vector tangent to the evolution trajectory,

P(M) := i [H(M), X(M)], (23)

where the factor i is required for the momentum matrix to be self-adjoint. It is

P(M) =
i

2

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 α
(M)
1−M 0 · · · 0 0

−α
(M)
1−M 0 α

(M)
2−M · · · 0 0

0 −α
(M)
2−M 0 · · · 0 0

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 0 α

(M)
M

0 0 0 · · · −α
(M)
M 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (24)

with elements also given in terms of the α
(M)
m ’s in (20). This matrix is an analogue of the

momentum operator in quantum mechanics, −i d/dx; instead of a derivative, (24) acts as a

weighted finite difference on f(xm) that yields −i[α
(M)
m+1f(xm+1)− α

(M)
m−1f(xm−1)].

The second Hamilton equation is dynamic and determines how the tangent momentum of
the trajectory evolves under the Hamiltonian of the system. One finds that the Lie-commutator
form of the second Hamilton equation returns the diagonal position matrix (22),

[H(M), P(M)] = iX(M). (25)

The two Hamilton equations, (23) and (25), are those of a harmonic oscillator —classical or
quantum— and combine to yield its Newton equation,

[H(M), [H(M), X(M)]] = X(M). (26)

The generated trajectories of position and momentum will thus follow harmonic motion.
Granted that we have a Hamiltonian system that is harmonic, we should lastly investigate

the remaining commutator between the above position and momentum matrices. Instead of the
quantum-mechanically expected unit matrix, we find

[X(M), P(M)] = −iH(M). (27)

This is a consequence of the difference equation (17) satisfied by the Kravchuk functions ψ
(M)
n (x)

in (11), and the construction of the diagonal position matrix in (22). The three commutators
(23), (25) and (27) close with the structure constants that characterize the rotation Lie algebra
so(3). This algebra is different from the 4-parameter noncompact oscillator algebra (which
includes 1) that we would obtain had we started with the Hermite functions Ψn(x) and their
differential equation.

The orthogonality and completeness of the Kravchuk functions over a (2M+1)-dimensional
vector space, Eqs. (9) and (14), insure that the matrices are self-adjoint on that finite-dimensional
space. We identify the self-adjoint irreducible representations to which the three matrices belong
through the value of the Casimir invariant,

(H(M))2 + (X(M))2 + (P(M))2 = M(M+1)1(M), (28)

i.e., it corresponds to generic ‘spin’ M .
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5. The algebra so(3) and dual canonical bases
In the previous section we presented matrices that we called Hamiltonian, position, and
momentum, and which were built to act as difference operators on the vectors (that can be called
states, or signals, or wavefunctions) in a complex vector space of integer dimension 2M+1. We
can identify these operators with the common notation for the generators of so(3) as follows:

J1 ↔ H, J2 ↔ P, J3 ↔ X, (29)

(dropping the index (M)) with commutation relations [Ji, Jj ] = i Jk (where i, j, k is a cyclic
permutation of 1, 2, 3) that characterize so(3) = su(2) and generate the corresponding Lie groups
of spin, SO(3) if M is integer and SU(2) if it is half-integer.

The elements of SO(3) are, with Euler angle parametrization,

R(α, β, γ) = exp(−iαJ3) exp(−iβJ2) exp(−iγJ3)
↔ exp(−iαX) exp(−iβP ) exp(−iγX),

(30)

and their action R : φφφ = φφφR on any vector φφφ = {φ(xm)}2Mm=0 is given by a linear combination
with Wigner big-D coefficients [7, Sect. 3.6],

φR(xm) :=
(
R(α, β, γ) : φφφ

)
(xm) =

M∑
xm′=−M

DM
xm,xm′ (α, β, γ)φ(xm′). (31)

In particular, an eigenvector of the position generator J3 ↔ X, namely ξξξm′ = {δxm′ ,xm}Mxm=−M
(with fixed xm′ = M − m′ ∈ {−M,−M+1, . . .M}) can be transformed into the Kravchuk
eigenvector of the Hamiltonian J1 ↔ H, namely ψψψm′ = {ψm′(xm)}Mxm=−M through a rotation

of 1
2π around the axis of momentum, J2 ↔ P . The Wigner matrix function DM

xm,xm′ (0,
1
2π, 0)

in (31) reduces then to a little-d Wigner matrix function dMxm,xm′ (
1
2π) while the sum over xm

collapses to the single xm′ . Thus we find the relation

ψ
(M)
m′ (xm) = dMxm,xm′ (

1
2π), (32)

between the Kravchuk functions and the Wigner d-functions of angle 1
2π.

Now a rotation R(0, 0, 12π) by 1
2π around the J3 ↔ X axis, will bring the Hamiltonian

J1 ↔ H to momentum J2 ↔ P . The momentum eigenvectors are obtained from the
Kravchuk eigenvectors of the Hamiltonian through the Wigner big-D matrix DM

xm,xm′ (0, 0,
1
2π) =

δm,m′ exp(−i12πxm′). This defines the momentum eigenvectors in the position basis to be

ψ̃
(M)
m′ (xm) := (−i)xmψ

(M)
m′ (xm). (33)

This basis is the canonical dual to the position eigenbasis of Kronecker deltas, ξξξm′ at xm = x′m.
Performing the rotation (33) twice, the J1 ↔ H axis is inverted, which inverts the Hamiltonian
eigenvalues; this exchanges the bottom ψψψ0 and top ψψψN states, and generally the states
n ∈ {0, 1, . . . , N} and N − n, with an alternating sign between every two positions,

ψ
(M)
N−n(xm) := (−1)xmψ(M)

n (xm). (34)

Finally, a rotation by θ around the J1 ↔ H axis represents Hamiltonian evolution, rotating
the momentum axis J2 ↔ P towards the position axis J3 ↔ X, exactly as the harmonic oscillator
does in quantum mechanics [8], which is the (inverse) fractional Fourier transform. This rotation
is

F(−θ) := exp(−iθH) = R(−1
2π, θ,

1
2π), (35)
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and its action on any vector in the position basis φ(xm), is then given by

φθ(xm) := (F(θ) : φφφ)(xm) =

M∑
xm′=−M

exp(−iθ(xm − xm′) dMxm,xm′ (θ)φ(xm′). (36)

This is the fractional Fourier-Kravchuk transform [3]. In particular, acting on the Kravchuk
functions,

(F(θ) : ψψψ(M)
n )(xm) = exp(−inθ)ψ(M)

n (xm), (37)

which is the same property enjoyed by the quantum harmonic oscillator wavefunctions under
the fractional Fourier integral transform [8].

We close this section by reminding the reader that coherent states in the finite oscillator

model can be obtained by rotating the ground state ψ
(M)
0 (xm) to any (θ, φ) on the sphere with

(31) [9]. These coherent states will perform harmonic motion under evolution by H ↔ J1,
although they are not shape-invariant as their continuous counterparts are. The rotation of
points on the sphere projected on any plane is of course a harmonic motion, which is geometric
rather than physical under the oscillator potential.

6. Conclusions
Starting with the family of Kravchuk functions, with their recurrence and finite difference
properties, we have built the generators of the group of rotations of three-dimensional space
SO(3). The three generators thus define the discrete and finite model of the quantum harmonic
oscillator, which shares with the continuous model both the geometry and dynamics of a
Hamiltonian system. We should point out that the necessary prerequisites to follow this strategy
were presumably available at least since the appearance of the monograph by Gel’fand, Minlos
and Shapiro [10], published in Russian in 1953 —and of the Kravchuk polynomials [4], which
were known since 1929.

It seems to us that the discrete Kravchuk oscillator did not attract attention earlier because it
realizes discrete function bases for the finite-dimensional spaces of the irreducible representations
of the rotation group SO(3), while the attention of the authors of Ref. [10], and many
contemporary and later authors, has been on bases of functions such as spherical harmonics,
that are continuous functions over the manifold of the sphere.

It should be also pointed out that the Kravchuk polynomials do appear in the three-
volume encyclopedic monograph by N.Ja. Vilenkin and A.U. Klimyk via the matrix elements
of irreducible representations of the Lie group SU(2), treated as functions of the column index
(see [11, page 346]). Observe that in our terminology this corresponds to matrix elements in the
dual canonical basis; this provides an algebraic reasoning on why matrix elements, as functions
of the column index, are of clear interest and explains how they emerge from a group-theoretic
point of view.

The approach followed in this work seems to be quite general. In particular, it can be used
for constructing a discrete model for free Hamiltonian systems associated with the irreducible
representations of the Euclidean group ISO(2), of the Lie group SU(1, 1) in the discrete and
continuous series of irreducible representations for models of discrete radial harmonic and
repulsive oscillators [12]. This will be dealt with elsewhere.

One final remark must be made, however. During the discussion of this work at the
VIII Symposium on Quantum Theory and Symmetries (Mexico City, August 5–9, 2013) we
became aware, thanks to W. Miller, Jr., about the recent progress in establishing close
links between the generic 3-parameter two-dimensional 2nd-order superintegrable system S9
[13, 14] and hypergeometric orthogonal polynomials from the Askey scheme [5]. It turns out
that various function space realizations of the quadratic Racah–Wilson algebra, which is the
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symmetry algebra behind this superintegrable model S9, can be put into correspondence with
all hypergeometric polynomials in the Askey scheme. Of course, these remarkable works [13, 14]
thus reveal the physical interpretation and group-theoretic context of such intricate orthogonal
families as the Wilson and Racah polynomials, which satisfy 2nd-order difference equations with
the quadratic spectra [5]. But the Kravchuk polynomials are known to be solutions of the 2nd-
order difference equation with the linear spectrum [5] and this fact is essential for constructing
unitary irreducible representations of the rotation Lie algebra so(3) in terms of the Kravchuk
polynomials. Therefore it seems to us that in this particular case when one aims at revealing a
physical interpretation and fundamental group-theoretic properties of the Kravchuk polynomials
it quite suffices to exploit the much simpler Lie algebra so(3) rather than the more elaborate
algebraic approach of Kalnins, Miller, Jr. and Post.
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