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Abstract
The Euclidean group contains two models of free Hamiltonian evolution:
one has a continuous configuration space in which the wavefunctions obey
the Helmholtz equation, and require two initial conditions: initial values and
initial velocities; the other is based on a discrete position space where the
wavefunctions obey a difference equation, and its evolution requires only
initial values. Yet the two models are unitarily equivalent. We find that the
two initial conditions of the former correspond, according to their parity, with
the initial condition of the latter at alternate points, either even or odd.

PACS numbers: 02.20.Qs, 02.30.Ik, 02.60.Lj, 03.65.Aa

(Some figures may appear in colour only in the online journal)

1. Introduction: the Euclidean group

A homogeneous and isotropic medium is invariant under the Euclidean group of translations
and rotations. We choose two-dimensional media since they are easily visualized and show
the essential issues that we present and solve here. We denote the Euclidean (inhomogeneous
special orthogonal) group in two dimensions by ISO(2) [1]. The Lie algebra ISO(2) that
generates this group has three generators, that we denote by Q, P, and H, whose Lie
(commutation) brackets are

[H, Q] = −iP, [H, P] = 0, [Q, P] = iH. (1)

The first two brackets we can identify with the two Hamilton equations for free systems, which
classically are written with Poisson brackets as {h, q} = −p and {h, p} = 0, where q and p
are position and momentum, and a Hamiltonian function h = 1

2 p2 that generates evolution in
time. The last bracket in (1) is distinct from the classical Poisson bracket {q, p} = 1.

A complementary interpretation of the Euclidean algebra (1) is suggested by a realization
of its generators as first-order differential operators,

P̂ = −i∂x,

Ĥ = −i∂z,
Q̂ = −i(x∂z − z∂x), (x, z) ∈ R2, (2)

1751-8113/13/335202+07$33.00 © 2013 IOP Publishing Ltd Printed in the UK & the USA 1

http://dx.doi.org/10.1088/1751-8113/46/33/335202
mailto:bwolf@fis.unam.mx
http://stacks.iop.org/JPhysA/46/335202


J. Phys. A: Math. Theor. 46 (2013) 335202 K B Wolf

where P and H generate translations along x- and z-axes, while Q generates rotations in that
plane. There are two physical models of free Hamiltonian systems that we can associate with
the Euclidean Lie algebra (1), that are determined by its two distinct subalgebra chains

iso(2) ⊃ ix � P, (3)

iso(2) ⊃ so(2) � Q. (4)

Since (3) implies that the spectrum � of P̂ is continuous while that of Q̂ is discrete, the two
chains harbor the continuous and the discrete model respectively, as we shall detail in section 2
for continuous Helmholtz systems, and in section 3 for discrete free systems.

The unitary irreducible representations of the Euclidean group are determined by the
eigenvalues k2 � 0 of its second-order invariant operator,

P2 + H2 = k21, k ∈ R, (5)

and are further reduced by parity �, the inverting element in IO(2) that can distinguish between
±k. Within one ISO(2) representation k, the Lie algebra ISO(2) can be realized by

P◦ = k sin θ, H◦ = k cos θ, Q◦ = −i
d

dθ
, (6)

which are self-adjoint operators in the Hilbert space L2(S) of square-integrable functions over
the circle S. Their spectra are �(P) = [−k, k] = �(H) and �(Q) = Z (the integers).

The realization (2) in the representation k turns equation (5) into the Helmholtz equation
for waveforms �(x, z),

(∂2
x + ∂2

z )�(x, z) = −k2�(x, z). (7)

If for initial data we are given the waveform at the line screen z = 0, the z-evolution of
�(x, z) generated by H requires the specification of two initial conditions: the initial form
�(x) := �(x, z)|z=0 and the initial z-derivative (‘velocity’), �z(x) := ∂z�(x, z)|z=0.

On the other hand, the waveforms in free discrete systems (6), where the position
coordinate ranges over the integers xm ≡ m ∈ Z, exhibit waveforms φ(m, z), written as
φφφ(z) ≡ {φm(z)}m∈Z, only the initial formφφφ(0) is needed to determine z-evolution. This apparent
mismatch will be resolved in section 4 through finding the explicit unitary map between the
waveforms in the two models. In section 5 we shall add some conclusions pertaining the use
of this result in the description of waveform propagation in planar multimodal waveguides
based on the discrete models where position space is a discrete and finite set of points, and
where the description of the corresponding phase space is of interest.

2. Helmholtz model on the screen and circle

The function domain of the realization of the ISO(2) algebra given in (2), restricted to
the representation k by (5), is the space of oscillatory solutions �(x, z) of the Helmholtz
equation (7). This space of functions can be made into a Hilbert space through defining a
Euclidean invariant inner product over the line x ∈ R, z = 0, that we will consider as a screen
where the initial conditions are impressed or measured [2]. For two waveforms �(x), �(x)

and their z-derivatives �z(x), �z(x), this inner product is unique and contains a nonlocal
measure μk given by

(�,�)Hk :=
∫

R
dx

∫
R

dx′(�(x)∗μ′
k(|x−x′|)�(x) + �z(x)∗μk(|x−x′|)�z(x)), (8)

μk(y) := 1

4
J0(ky)/k, μ′

k(y) := k∂yμk(y) = 1

4
J1(ky)/y, (9)
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where Jn are Bessel functions, and boldface �(x, z) stands for the pair of functions that we may
write as a 2-vector

(
�(x,z)
�z(x,z)

)
. Euclidean invariance means that the screen line can be translated

or rotated to any other line in the x–z plane without changing the norms and inner products. We
thus have the Hilbert spaces Hk of Helmholtz waveforms. The measure (9) can obtained also
from the Haar measure of ISO(2), or generally ISO(N) for the N-dimensional homogeneous
media [3]. This measure was used in [4] to find the least-energy approximation by Helmholtz
fields to the initial data available from measurements on a finite number of isolated points on
a line.

The Helmholtz equation (7) can be written in evolution form generated by H realized as
in (2), by a first-order derivative,

Ȟ�(x, z) = ∂z�(x, z), Ȟ :=
(

0 1
−	k 0

)
, �(x, z) :=

(
�(x, z)
�z(x, z)

)
, (10)

where 	k := ∂2
x + k2. The first ‘vector’ component establishes that �z(x, z) = ∂z�(x, z),

and its replacement into the second component, −	k� = ∂z�z, yields the original Helmholtz
equation (7). The other two ISO(2) generators in this realization are,

P̌ :=
(−i∂x 0

0 −i∂x

)
, Q̌ :=

(
0 x

−x	k − ∂x 0

)
. (11)

The checked matrix operators (10) and (11) satisfy the same ISO(2) commutation relations
(1) and as the hatted generators in (2).

The two-dimensional inverse Fourier transform of Helmholtz waveforms has support on
a circle of radius k; this leads to the following wave transform [3, 4], which is a unitary map
between �(x, z) ∈ Hk and φ◦(θ ) ∈ L2(S),

�(x, z) =
√

k

2π

∫
S

dθφ◦(θ ) exp(ik(x sin θ + z cos θ )), (12)

φ◦(θ ) := σθ

2

√
k

2π

∫
R

dx

(
�(x, 0) cos θ + 1

ik

∂�(x, z)

∂z

∣∣∣∣
z=0

)
exp(−ikx sin θ ). (13)

On the circle and in this representation, the ISO(2) generators (1) are realized by (6).
The z-evolution by Tz = exp(izH◦) of φ◦(θ ) is thus

Tzφ
◦(θ ) = φ◦(θ, z) = exp(ikz cos θ )φ◦(θ ). (14)

From here one derives the z-evolution of the Hk waveforms by a Green function Gc(x, x′; z)
and its z-derivative,

�(x, z) =
∫

R
dx′ ∂Gc(x, x′; z)

∂z
�(x′) +

∫
R

dx′Gc(x, x′; z)�z(x
′), (15)

Gc(x, x′; z) = Gc(|x−x′|; z) = 1

4π i

∫ π

−π

dθσθ exp(ik(|x−x′| sin θ + z cos θ )), (16)

where σθ := sign cos θ . This continuous Helmholtz model is based on the subalgebra chain
(3); its z-evolution is unitary in Hk and, as we stated in the introductory section, it involves
separately the initial form and the initial z-velocity of the Helmholtz waveform at the chosen
screen.

3. The discrete model and the circle

The discrete model of free systems is also based the Euclidean algebra (1) that incorporates
the two Hamilton equations, and also belongs to the irreducible representation k in (5), but is

3
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distinct from the Helmholtz model of the previous section for being reduced by the subalgebra
chain (4) to the compact generator Q, whose spectrum we understand to be the space of
positions in the system driven by the Hamiltonian H. With Q represented by diagonal matrix,
�(Q) = Z, and using H ± iP to raise and lower its eigenvalues, one finds the following
representation of ISO(2) by infinite matrices of elements (m, m′) ∈ Z, as given by:

Pm,m′ = −i 1
2 k(δm,m′−1 − δm,m′+1),

Hm,m′ = 1
2 k(δm,m′−1 + δm,m′+1),

Qm,m′ = mδm,m′ . (17)

These matrices satisfy (5) and are self-adjoint in the Hilbert space of functions φφφ ∈ 
2(Z) of
square-summable sequences, i.e., vectors φφφ = {φm}m∈Z, to which we may refer as the signals
sensed at points on a line: the chosen z = 0 screen.

Hamiltonian evolution along the z-axis normal to the screen is given as before by the
ISO(2) translation Tz = exp(izH), which is here represented by a matrix Gd(z) acting as a
(discrete) Green function,

Tz : φφφ(0) = φφφ(z), φm(z) =
∑
m′∈Z

Gd
m,m′ (z)φm′ (0),

Gd
m,m′ (z) = Gd(|m−m′|; z) = eiπ |m−m′ |/2J|m−m′ |(kz). (18)

Here the Bessel functions Jn(y) are of integer orders n, so J−n(y) = Jn(−y) = (−1)nJn(y),
and thus Gd

m,m′ (−z) = Gd
m′,m(z)∗ is unitary in 
2(Z). As stated in the introductory section, only

the initial data φφφ(0) are needed for evolution in the discrete model of free systems.
As indicated in the title to this section, waveforms in the free discrete model outlined

above on φm ∈ 
2(Z), can be mapped unitarily to waveforms φ◦(θ ) ∈ L2(S) on the circle,
through Fourier series,

φ◦(θ ) := 1√
2π

∑
m∈Z

φm exp(−imθ ), φm = 1√
2π

∫
S

dθφ◦(θ ) exp(imθ ). (19)

This map also intertwines the realizations of the generators on the integers (17) and on the
circle (6).

4. Map between continuous and discrete systems

Both the continuous and discrete free systems have been mapped on the circle. Combining the
wave transform (13) with the Fourier series (19), yields(

�(x)

�z(x)

)
=

√
k
∑
m∈Z

φm

(
Jm(kx)

imJm(kx)/x

)
(20)

φm = 1

2
√

k

∫
R

dx(m�(x)/x − i�z(x))Jm(kx), (21)

which provides a unitary map between the continuous and discrete model waveforms in Hk

and in 
2(Z) respectively. To verify that (21) is the inverse of (20) we note the integral from
[5, 6.538.2], ∫

R
dx

m

x
Jm(kx)Jn(kx) = 1

2
δm,n, (22)

which is valid for m, n > 0, but (21) can be continued for φ0 = 1/
√

2π down to m = 0.
To understand how this map works, we note first that, under inversions, parity σ ∈ {+,−}

in the m-lattice and in the x-line is preserved:
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Figure 1. z-evolution in the discrete model of a free system (with k = 1). For visibility, we
interpolate the discrete m-points with lines. Left: z-evolution of an initial unit impulse signal
κm(0) := δm,0 (with zero velocity) plotted at even m = 2n positions κ2n(z) = (−1)nJ2n(z). Right:
z-evolution of an initial kick iκ ′

m(0) := 1
2 (δm,1 + δm,−1) plotted at odd m = 2n + 1 positions,

iκ ′
2n+1(z) = (−1)nJ2n+1(z) that starts from equilibrium.

φm = σφ−m ↔
{

�(x) = σ�(−x),

�z(x) = σ�z(−x),
(23)

due to J−m(y) = Jm(−y). And generally for even and odd points m, (20) leads to

φm = φ−m ↔ �(x) = 2φm
√

k

⎧⎪⎪⎨
⎪⎪⎩

(
Jm(kx)

0

)
m even,

i

(
0

mJm(kx)/x

)
m odd,

(24)

φm= − φ−m ↔ �(x) = 2φm
√

k

⎧⎪⎪⎨
⎪⎪⎩

i

(
0

mJm(kx)/x

)
m even,(

Jm(kx)

0

)
m odd.

(25)

Thus we see that a real symmetric pair φm = φ−m at even m corresponds with the initial form
of a real Helmholtz waveform (with no initial velocity, �z(x) = 0), and at odd m with i times
the initial velocity of the continuous field (starting with zero waveform �(x) = 0). The phase
of the latter is eiπ/2 times that of the former, so the waveform indeed advances along the z-axis.
Conversely, a real skew-symmetric pair φm = −φ−m at even m yields i times initial velocities,
and at odd m real initial forms, so the field moves in the −z-direction. Stationary Helmholtz
fields �z(x) = 0 correspond to discrete fields that are symmetric (σ = +1) at even-m points
and skew-symmetric (σ = −1) at odd-m ones.

Further insight into the separate roles played by the even- and odd-m positions is provided
by the dynamics of z-evolution that is illustrated in figure 1. The Green matrix of the discrete
model is Gd

m,m′ (z) in (18), where we observe that two neighboring waveform values, φm(z)
and φm′ (z) with |m−m′| = 1, are related with a phase of eiπ/2. This indicates an alternation
between the values and velocities of the discrete waveform in (24)–(25). On the other hand,
second neighbors with |m−m′| = 2, are related with a minus sign.

In figure 1 we show the z-evolution of two initial conditions of even parity, σ = + in
(23), as given by (24): the unit impulse κm(0) := δm,0 at the even m = 0 origin and plotted
only at the even-m points; and that of a unit kick iκ ′

m(0) := 1
2 (δm,1 + δm,−1) plotted only at the

odd-m points. These basic discrete waveforms are invariant under displacements by 2 units.
The waves in the figure open in beam of half-angle cot α ≈ k because Jm(kz) starts to oscillate
after m ≈ kz; the wavenumber k only changes the scale along the z-axis. Real initial conditions

5
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Figure 2. z-evolution of diffused unit-impulse initial values. Left: in the discrete model the signal
κ2n(z) = (−1)nJ2n(z+5i) is plotted only at the even m = 2n positions (interpolated with lines).
Right: in the continuous model, the analytic waveform K(x, z) is J0(k

√
x2+(z+5i)2).

φm(0) over even (or odd) positions m evolve into real discrete waveforms φm(z) measured on
those points. For σ = − functions in (23), the roles of even and odd points m are exchanged
as we can see in (25).

In the discrete case, the unit impulse κm(0) is the narrowest waveform in the model;
through (20), its corresponding Helmholtz waveform K(x) = √

k J0(kx) is also the narrowest,
but in the x–z plane it is circularly symmetric: K(x, z) = √

k J0(kr), with r := √
(x2+z2).

The unit kick κ ′
m(0) has a width of 2 units (in m) and corresponds to K′(x, z) = J1(kr) e±iθ /r,

the next-to-narrowest waveform, with a circular phase symmetry. This is the salient difference
between the discrete and continuous models of free systems (yet see the next paragraph). In
[4] we noted that the central peak of J0(y) is narrower than that of sinc y = J1/2(y)/

√
y, which

is commonly used for interpolation between equidistant point-values (and which in turn is
narrower than that of J1(y)/y); their use for a ‘Helmholtz interpolation’ is thus intrinsically
adapted for Helmholtz waveforms and their z-velocities.

When the evolution parameter z is allowed to become complex, iζ with ζ real, free
Hamiltonian systems become diffusive systems [6–8]. Under diffusion, the unit impulse
signal κ0(m) evolving through iζ finds a Green function (18) that is a modified Bessel
function J2m(eiπ/2ζ ) = (−1)mI2m(ζ ), which has a bell shape over the integers—even and
odd. For complex z+iζ , its matrix elements on the even integers are Gd

2m,0(z+iζ ), shown
in figure 2, where they are compared with a continuous complex Bessel–Gauss beam [9],
J0(k

√
x2+(z + iζ )2 ), which is a Helmholtz solution with null initial velocity. With growing

ζ > 0, the latter acquires a widening waist at z = 0 while the angle of the beam apron reduces,
so at some ζ it comes to resemble the discrete diffused solutions, as in the figure. When ζ

increases, the direction range narrows until it becomes a plane wave.

5. Conclusions

We have related the evolution of waveforms in the continuous Helmholtz free Hamiltonian
system, with signals in the discrete model. The two models are based on two inequivalent
subalgebra reductions of the Euclidean algebra ISO(2), the first with respect to the noncompact
generator P of momentum, and the second with respect to the compact position operator Q, both
belonging to the same self-adjoint irreducible representation of the algebra k. Position space in
the Helmholtz model is a double continuum for initial waveforms and velocities; in the second
it is the set of integers. We could obviously expect the relation to be a unitary transformation
between theHk and 
2(Z) Hilbert spaces, but we found a rather subtle correspondence between
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a continuous waveform and its z-velocity, with the odd and even points of a discrete signal,
which is determined by the parity of the functions and the parity of the position points.

We should briefly comment on the Schrödinger free system, whose Hamiltonian is
HSch = 1

2 (PSch)2, with the quantum operators of position QSch = q · and momentum
PSch = −i∂q, which close into a four-parameter algebra with [QSch, PSch] = i1. Under
commutation, these operators close into a Lie algebra which is not ISO(2), and which does
not have a compact generator to serve as position operator in a discrete model. Instead, free
evolution is given by the z-dependent Fresnel transform. In the free quantum system, the
evolution of a centered Gaussian, ζ -diffused out of a Dirac δ, is ∼ exp[−x2/2(ζ+iz)]/(ζ+iz),
which bears little resemblance to the evolution of the continuous or discrete systems based on
ISO(2).

Other discrete Hamiltonian models whose evolution generator is represented by a tri-
diagonal matrix with zeros on the main diagonal, as P or H here, or their sums, products and
powers, will also dynamically relate the waveform values φm at even-m points only among
themselves, and odd points only. Such Hamiltonians have been used to treat multimodal
waveguide systems, harmonic but with aberrations, represented by unitary evolution matrices.
When eigenvectors are demanded from a computer—the ground state for example—the result
can be a ‘Gaussian porcupine’ whose odd points are all zero [10]. Tying together separately
even and odd points can provide a better understanding of such discrete systems and their
relation to a continuous counterpart system that obeys the same algebra.
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