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ABSTRACT

In this essay we finitely quantize the Hamiltonian system of geometric optics to a finite system that is also Hamil-
tonian, but where signals are described by complex N -vectors, which are subject to unitary transformations that
form the group U(N). This group can be decomposed into U(2)-paraxial and aberration transformations. Proper
irreducible representation bases are thus provided by quantum angular momentum theory. For one-dimensional
systems we have waveguide models. For two-dimensional systems we can have Cartesian or polar sensor arrays,
where digital images are subject to unitary rotation, gyration or asymmetric Fourier transformations, as well as
a unitary map between the two arrays.
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1. INTRODUCTION: FINITE QUANTIZATION

Geometric optics is a continuous, classical Hamiltonian system which can be finitely quantized into a Hamiltonian
system that is finite and consists of N ×N self-adjoint matrices. This process is similar to —but distinct from—
the usual Schrödinger quantization of classical mechanics. The finite quantization of optics yields models that
apply in finite signal analysis and pixellated image processing. There is general interest in finite systems because
their states —signals— represent the input data that is sampled with finite (nanoscale1) sensor arrays, and
thereafter handled by digital computation. Our approach is based on group-theoretical models where the tools
of symmetry are used to define appropriate orthonormal bases for the space of signals, and to understand their
phase space. In this essay we review the group-theoretical formulation of these systems, relating results for the
paraxial and metaxial régimes, in one and two dimensions. Most references will thus cite works of our group.

Plane geometric optics in a medium of refractive index n(x, z) is a Hamiltonian system whose phase space
(x, p) at a standard screen line (z = constant) has a position coordinate x ∈ �, and a momentum coordinate
p = n(x, z) sin θ, θ ∈ S1 (the circle). In segments of z-homogeneous media, the Hamiltonian functions we consider
have the generic form

h(x, p) := −
√
n(x)2 − p2 ≈ 1

2p
2/ν0 − n2(x) + · · · . (1)

In the paraxial régime, one extends phase space to (x, p) ∈ �2, n(x) ≈ n2(x) := ν0 − ν1x − ν2x
2, bringing the

system in contact with the classical systems of quadratic potentials −n2(x). The standard harmonic waveguide
or oscillator has the Hamiltonian h = 1

2 (p
2 + x2), and the Hamilton equations of this model (using Poisson

brackets) are

{x, p} := 1, {h, x} = −p, {h, p} = x, (2)

while 1 Poisson-commutes with x, p, h. These are a basis for the one-dimensional oscillator algebra osc1. The
Schrödinger quantization of this algebra on the Hilbert space L2(�) is well known. The Hamiltonian is the only
compact generator of the algebra, which thus has a discrete albeit infinite (lower-bound) spectrum.
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We deform the oscillator algebra (2) to the unitary algebra u(2) = u(1) ⊕ su(2), where the three generators
of su(2) = so(3) have discrete and finite spectra {−j, −j+1, . . . , j} in any one of its irreducible representations
of integer dimension N = 2j + 1. This replaces osc1 in (2) with commutators of matrices

[X,P] := −iK, [K,X] = −iP, [K,P] = iX, (3)

and 1 ∈ u(1) commuting with all, on the complex N -vector space CN . In this representation, the operators are
N ×N self-adjoint matrices

Xm,m′ = mδm,m′, m, m′ ∈ {−j, −j+1, . . . , j}, (4)

Pm,m′ = −i 12
√
(j −m)(j +m+ 1) δm+1,m′

+ i 12
√
(j +m)(j −m+ 1) δm−1,m′ , (5)

Km,m′ = 1
2

√
(j −m)(j +m+ 1) δm+1,m′

+ 1
2

√
(j +m)(j −m+ 1) δm−1,m′ . (6)

Here the position operator X in (4) is diagonal, the momentum operator P in (5) is a purely imaginary skew-
symmetric weighted central difference matrix, while K in (6) is real and symmetric; we call the latter the
pseudo-Hamiltonian, since it is related to the ‘true’ Hamiltonian of the finite oscillator by

Hosc := K+ (j+ 1
2 )1. (7)

These matrices are bound by the Casimir invariant C := X2 +P2 +K2 = j(j+1)1.

This compactification of the paraxial optical model is, in a nutshell, the finite quantization process. The
Casimir invariance implies that phase space, previously flat, becomes a sphere of radius

√
j(j+1). The classical

sphere is of course a symplectic manifold, and in Sec. 2 we justify that the finitely quantized phase space can be
treated in the same way as the Schrödinger-quantized phase space through the introduction of an SU(2)-covariant
Wigner function. In Sec. 3 we recall the finite oscillator functions and coherent states, which are the actors in
one-dimensional systems. Sec. 4 condenses developments on the separation between SU(2)-linear transformations
and U(N) aberrations in N -point systems. Following considerations on the convergence of the aberration series,
in Sec. 5, we treat the ‘exact’ quantization of the waveguide Hamiltonian (1), which is the square root of a
positive matrix, and where the two root signs represent forward- and backward-moving finite wavefields in the
guide. In Sec. 6 we succintly report on current research on two-dimensional finite systems, whose states are
images pixellated along Cartesian and along polar coordinates. The concluding remarks in Sec. 7 address the
context of some further lines of work.

2. THE SU(2) PHASE SPACE AND WIGNER FUNCTION

The Wigner function used in standard paraxial wave optics2 can be defined by asking for the covariance between
a classical function and a quantum operator function. The classical function is Fc(ξ, η;x, p) := exp[−i(ξx+ ηp)],
built with the observables of position and momentum (x, p) ∈ �2; this generates translations by (η,−ξ) of
phase space under Poisson brackets. Including the phases generated by 1, this is the general element of the
Heisenberg-Weyl (HW) subalgebra of the oscillator algebra hw1 ⊂ osc1. The quantum operator function is

F̂Q(ξ, η) := exp[−i(ξX̂ + ηP̂ )], with the Schrödinger operators of position X̂ and momentum P̂ , which also gen-
erates translations on their linear space. The standard HW-Wigner operator is then obtained as the bilinear
generating function which integrates over the translation parameters,

ŴHW(x, p) :=

∫∫

�2

dξ dη Fc(x, p; ξ, η)
∗ F̂Q(ξ, η). (8)

Finally, the expectation value of this operator in a quantum state ψ(x) is the well-known Wigner function

WHW(ψ|x, p) := 〈ψ|ŴHW(x, p)|ψ〉 used in quantum mechanics and in paraxial wave optics.

Applying the same strategy to arbitrary groups whose generators correspond to classical observables x, p, κ
in G := SU(2) or its Z2-quotient SO(3), we introduce a classical function on the �3 algebra manifold3, 4

Gc[u, v, w;x, p, κ] := exp[−i(ux+ vp+ wκ)],

{
u = ρ sin θ sinφ,
v = ρ sin θ cosφ,
w = ρ cos θ,

(9)
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Figure 1. Left : Polar coordinates of the sphere (β, γ) ∈ S2 referred to the x-axis of positions. Right : Projection of the
sphere onto the rectangle β|π0 , γ|π−π. Both the sphere and the rectangle are divided into octants by heavy lines.

where [x, p, κ] ∈ �3 are the Cartesian coordinates of meta-phase space. The coordinates on the group are
[u, v, w] ≡ (ρ, θ, φ) ∈ S3 = SU(2), with ranges ρ|4π0 for SU(2) or ρ|2π0 for SO(3), and (θ|π0 , φ|π−π) ∈ S2. We ask for
covariance with an operator function on the group G,

G(ρ, θ, φ) ≡ G[u, v, w] := exp[−i(uX+ vP+ wK)]. (10)

This N × N unitary matrix is a Wigner Big-D matrix5 that carries the action of SU(2) on N -point vectors of
‘spin’ j (for N = 2j+1).6–9

Covariance between (9) and (10) is built through the bilinear generating function, which integrates over the
group manifold of G, and yields the unitary, self-adjoint ‘Wigner matrix’

W[x, p, κ] ≡ W(r, β, γ)

:=

∫

G
dH[u, v, w]Gc[u, v, w;x, p, κ]

∗G[u, v, w] (11)

=

∫

G
dH[u, v, w] exp i[u(x−X) + v(p−P) + w(κ−K)], (12)

where we use the spherical coordinates of �3 meta-phase space x = r cosβ, p = r sinβ sin γ, and κ = r sinβ cos γ,
and the G-invariant Haar measure dH[u, v, w] := du dv dw = ρ2 dρ sin θ dθ dφ =: dH(ρ, θ, φ).

Finally, the G-Wigner function of the signal N -vector f = {fm}jm=−j is the expectation value of (12) in that

state, W (f | r, β, γ) := f†W(r, β, γ) f . This can be factorized as Wj(r)W (f |β, γ), where Wj(r) is a function of
the radius that has significant positive values only for r ≈ √

j(j+1), and

W (f |β, γ) =

j∑

m,m′=−j
f∗mWm,m′(β, γ) fm′ , (13)

Wm,m′(β, γ) = e−i(m−m
′)γ

j∑

m̄=−j
djm,m̄(β)W j

m̄ djm̄,m′(−β). (14)

The sphere (β, γ) ∈ S2 is thus the proper phase space for finite Hamiltonian systems.3 All the angular dependence
of the matrix ‖Wm,m′(β, γ)‖ in (13) is thus contained in the Wigner little-d matrices, and there only remains

the diagonal ‘sub-Wigner’ matrix ‖δm,m′W j
m′‖ in (14) to be computed for any given dimension N . This has an

analytic expression3 but can be conveniently computed.10

Because we have position as the diagonal operator, the x-axis takes the role of the traditional “z-pole.” And
since the broadest features of a signal occur for low energies κ ≈ −r, where the sphere is tangent to the classical
phase space plane (x, p) ∈ �2, it is convenient to project the sphere onto the rectangle β|π0 , γ|π−π, as shown in
Fig. 1, where the center of rectangle is the point of tangency of the finite and continuous phase spaces. In Fig.
2 we show the SO(3)-Wigner function of a finite rectangle signal.
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Figure 2. Left : A ‘rectangle’ signal R(m) on N = 21 points (j = 10) that has value 1 for |m| ≤ 5 and zero elsewhere.
Right : The SO(3) Wigner function of this signal, W (R |β, γ).

3. FINITE OSCILLATOR AND COHERENT STATES

The finite analogues of the quantum harmonic oscillator wavefunctions are the overlaps between the natural
Kronecker eigenvectors of the diagonal position matrix X in (4), |xm〉1 with xm ≡ m|j−j , and the eigenbasis of

pseudo-energy K in (6), |n〉
3
, where we use the number label n = κ−j|2j0 . These overlaps between eigenfunctions

of two generators of rotations whose axes are separated by 1
2π rotation, are Wigner little-d functions5

Ψn(xm) := 1〈xm|n〉3 = djn−j,m(12π) = Ψm+j(n−j) (15)

=
(−1)n

2j

√
(2j
n

)( 2j

m+j

)
Kn(m+j; 1

2 , 2j). (16)

In the last expression we have the square root of a binomial as a finite a Gaussian) and a Kravchuk polynomial,
finite analogue of the Hermite ones.11 In6 we called (16) the Kravchuk functions ; we thus have an orthonormal
and complete real basis for complex N -point signals.

Coherent states of the finite oscillator are defined, as in the standard theory, to be meta-phase space rotations
of the oscillator ground state Ψ0(xm). Through rotations by θ|π0 around the momentum axis, we have the family
of coherent states

Υj
θ(xm) :=

j∑

m′=−j

(
exp(iθP)

)

m,m′
Φj

0(xm′) = dj−j,m(12π+θ), (17)

where the little-d function can take any angle. Further rotation around the vertical evolution axis will will asign
a coherent state to every point on the sphere, as shown schematically in Figure 3.

4. PARAXIAL TRANSFORMATIONS AND ABERRATIONS

The finite quantization process can be applied to optical models beyond the linear SO(3) transformations.
Nonlinear transformations of the classical phase space plane (x, p) ∈ �2 are generated by the Poisson op-

erators Mk,m
0 (x, p) := {pk+mxk−m, ◦}, said to be aberrations of rank k ∈ {0, 12 , 1, 32 , . . .} and weight m ∈

{k, k−1, . . . ,−k},12 [13, Chap. 13]. When the symplectic manifold is a sphere x2 + p2 + κ2 = constant, we
can use so(3) Berezin brackets, which have all the properties of Poisson brackets, but on the three coordinates
(x, p, κ) ∈ �3, and are defined by the basic ones: {x, p}B = κ, {p, κ}B = x, and {κ, x}B = p. The generators of all
transformations of the sphere will be the Berezin operators {xapbκc, ◦}B, which belong to an infinite-dimensional
Lie algebra, graded by their rank a+ b+ c = 2k. For 2k = 1 they generate rigid rotations of the sphere; and for
k > 1 they generate nonlinear transformations of its surface, preserving Berezin brackets and volume elements
in meta-phase space.

The finite quantization of the monomial functions xapbκc with Weyl ordering yields N ×N self-adjoint ma-
trices, of which there are N2 independent ones that close into the Lie algebra u(N) that generates the Lie group
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Figure 3. The sphere of finite (N = 21, j = 10) coherent states Υθ,φ(xm), obtained from phase space rotations of the
ground state Υ0,0(xm) = Ψ0(xm) at the bottom pole. The state Υπ/2,0(xm) along the x-axis is the extreme Kronecker
state at xj ≡ j; the 1

2
π harmonic evolution leads to Υπ/2,π/2(xm) along the p-axis. The top coherent state reproduces

the ground state with a change of sign between consecutive points.

U(N). They are graded into multiplets of 2k + 1 aberrations for each rank k ∈ {0, 12 , 1, . . .}. We proposed in
Ref.10 the monomial basis of matrices

Mk,m
0 (X,P) := {Pk+mXk−m}Weyl, m ∈ {−k,−k+1, . . . , k}, (18)

Mk,m
1 (X,P,K) := {KMk−1/2,m,0(X,P)}Weyl,

m ∈ {−k+1
2 ,−k+3

2 , . . . , k−1
2}, (19)

where the Casimir condition prevents the appearance of powers of K higher than 1. The singlet M0,0
0 = 1

generates overall phases U(1) ⊂ U(N), and the triplet {M1,1
0 , M

1/2,0
1 , M1,−1

0 } generate the SO(3)-linear rigid

rotations of the sphere. Thereafter, Mk,m
0 and Mk,m

1 , generate flow lines at the bottom pole of the sphere in Fig.

1 which are tangent to the classical flows of {Mk,m
0 , ◦} aberrations. For |m| < k, the Mk,m

0 flows loop within

quadrants, while the Mk,m
1 flows are inside octants, because of the extra factor of κ. In Ref.10 we illustrated these

deformations of phase space for aberrations up to rank k = 3, with the intention to mimic the transformation
of geometric optical beams and images on N -point signals or N × N pixellated screens, using the aberration
coefficients computed for the former in Ref. [13, Chap. 14].

5. PLANAR WAVEGUIDE HAMILTONIANS

We considered waveguides whose Hamiltonian is (1), and instead of approximating the square root by a slow-
converging aberration series, we considered the square root form directly for a family of elliptic refractive index
profiles, [nν,μ(x)]2 = ν2 − μ2x2, for |x| < ν/μ. Taking the Casimir into account, the finitely quantized Hamilto-
nian matrix is

Hν,μ = −
√
ν2C−P2 − μ2X2 = −

√
[(ν2−1)C− (μ2−1)X2] +K2. (20)

Noting that for ν = 1 = μ, (20) is H = −√
K2, this case serves as reference when we let the parameters ν, μ

depart into the generic elliptic profile; a second parametric anchor is the free case μ = 0.

The eigenvectors of the (H1,1)2 are the Kravchuk functions Ψn(xm) in (16), and its eigenvalues are λ1,1 :=

κ2|j20 (from κj−j), forming j doublets and a ground singlet; in the free case, (H1,0)2 also has j doublets but a
top singlet. Within that μ-interval the eigenvalues ην,μ of Hν,μ are nondegenerate, but we have to identify the
± signs of their square root. With the eigenvector matrix Ψ := ‖Ψηn(xm)‖ we solve

(Hν,μ)2 Ψη(m) = λν,μ Ψη(m), λν,μ := (ην,μ)2 ≥ 0,
Ψ† (Hν,μ)2Ψ = Λν,μ, Ψ = ‖Ψηn(m)‖
Λν,μ = diag (λν,μ

max
, λν,μ

max−1, . . . λ
ν,μ
min+1, λ

ν,μ
min).

(21)
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Figure 4. Two-dimensional screens for j = 8 (N = 17). a): Cartesian arrangement (mx,my). b): Polar arrangement
(ρ, φk) with the same number of points.

The problem of finding the square root of a matrix is similar to that faced by Dirac to Schrödinger-quantize
E =

√
(mc2+p2) out of a second-order differential operator. In the free case, he found four uncoupled solutions.

Our problem is SU(2) rather than the Lorentz group, and the system is discrete rather than continuous. But
here also we can identify the forward-moving solutions by η < 0 and the backward-moving ones by η > 0.14

The eigenvectors Ψη ≡ Ψν,μ
η of (Hν,μ)2 in (21) satisfy a step-2 difference equation15 obtained from the ma-

trices (4)–(6). It does not seem possible to find a known discrete special function to solve it exactly for general
ν, μ. This step-two difference equation in fact stands for two difference equations: one binding Ψo

η(m)’s with m
odd, and the other binding Ψe

η(m)’s with m even. When solving (21) by machine computation, the result is that
the first has zeros at even m’s, and the second with zeros at odd m’s, both having a ‘porcupine’ appearance, as
shown in Refs.14, 15 The ‘good’ eigenfunctions are obtained as the sum and difference of the right- and left-moving
solutions,

Ψ→η (m) := [Ψe
η(m) + Ψo

η(m)]/
√
2 Ψ←−η(m) := [Ψe

η(m)−Ψo
η(m)]/

√
2. (22)

6. TWO-DIMENSIONAL FINITE SYSTEMS

We now give a brief review of the extension of the finite quantization process to Hamiltonian systems that trans-
form two-dimensional pixellated images. It would seem that such finite images in two dimensions can only be
pixellated on rectangular arrays of points, where they are direct products of two one-dimensional signals. On a
square screen of side N = 2j+1 there will be an N2-dimensional space of images. However, a group-theoretical
accident allows for other models, because it turns out that the direct sum of two su(2) algebras is isomorphic
with the Lie algebra so(4) that generates rotations in a 4-dimensional space,

su(2)x ⊕ su(2)y = so(4) ⊃ so(3)ρ ⊃ so(2)θ. (23)

When the representation indices of the two summand algebras are j, reduced by the position subalgebra u(1)x⊕
u(1)y with Kronecker basis (mx,my), the so(4) representation is reduced with respect to the canonical subalgebra
so(3)r, yielding representations 0 ≤ ρ ≤ 2j that we endow with the meaning of a radial discrete variable; each
of these in turn is reduced with respect to so(2)θ into a 2ρ+1-dimensional Kronecker basis of angular momenta
|m| ≤ r. Through the finite Fourier matrix, this turns into a set of 2ρ+1 equidistant angles θk modulo 2π. The
total number of points is thus N2 = (2j+1)2, the same as for the N ×N square screen. In Fig. 4 we show the
two screens.

This is separation of variables —for discrete and finite coordinates. The overlap between the two bases is thus
a purely group-theoretic affair that we solve with Clebsch-Gordan coefficients, yielding a unitary transformation
between pixellated images on one screen and on the other. In Ref.16 we have thus mapped images between both
screens. We have been interested in the general problem of separation into discrete elliptic coordinates, following
the existence of non-subgroup reductions for so(3) which have continuous counterparts in the quantum harmonic
oscillator,17 but this goal has not yet been achieved.

In plane geometric optics, fractional Fourier transforms form the compact subgroup SO(2) ⊂ Sp(2,�); in
three dimensions (where screens are planes), the compact subgroup is U(2) ⊂ Sp(4,�), called the U(2)-Fourier
group.18 It includes fractional Fourier transforms in the x- and y-directions, rotations between the x- and y-
phase space coordinates,19 and gyrations which cross-rotate them.20 In Fig. 5 we show the relation between
these transformations as rotations of the sphere. We can require that under the finite quantization process, the
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Figure 5. Action of the Fourier group U(2) on the sphere. The isotropic Fourier transformation lies in the U(1) center of
the group.

U(2)-Fourier group action on finite pixellated images be unitary and effective in either of the two arrays in Fig.
4.21 In this way we obtain two distinct N2-dimensional unitary and irreducible representations of the Fourier
U(2) group. These two representations are bridged by the transformation between images on both arrays.16

7. CONCLUDING REMARKS

The applications of the finite quantization process lies in the analysis and synthesis of signals and images. Square
(or rectangular) sensor arrays are commonly used to asess the quality of laser beams. To find the formant modes
it is common to use the sampled Hermite-Gauss or Laguerre-Gauss functions to expand the observed image.
Since we have at hand the finite Kravchuk (16) and polar functions obtained by gyration, we have compared the
fidelity that the sampled and the finite bases provide to reproduce a finite signal or image.22, 23

A complete study of the properties of Wigner functions on Lie groups and their coset spaces is still in process.
The HW case was analyzed in,24 the present SO(3) case in3 and on a general class of Lie groups in.4 In the
present case, the SO(3)-covariantWigner function turns out to be equivalent to the Stratonovich-AgarwalWigner
function that was built out of the irreducible tensor decomposition of wavefields, as shown in.25 The analysis of
discrete but infinite signals has been based on the noncompact Euclidean algebra iso(2) in Ref.,26 where phase
space is a cylinder and the Hamiltonian system is free. In Refs.27, 28 we studied the Lorentz algebra so(2, 1) to
define discrete repulsive oscillator models, but their phase space —which ought to be hyperboloids— has not
been described. All desirable properties of the standard Wigner function are present in the G-Wigner function,
except for the non-negativity of the ground energy state.

As this essay suggests, there are several avenues of research open in the finite optical model for signal and image
processing. It seems to us that the use we have given to group theory —in particular that of SU(2) traditionally
used for quantum angular momentum— is a novel way to treat discrete systems that are Hamiltonian and have
a phase space and Wigner function that is properly covariant.
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We thank the support of the Óptica Matemática projects DGAPA-UNAM IN-105008 and SEP-CONACYT
79899.

REFERENCES

[1] Papp, E. and Micu, C., [Low-dimensional nanoscale systems on discrete spaces], World Scientific, Singapore
(2007).

[2] Forbes, G. W. et al. Eds., [Wigner Distributions and Phase Space in Optics], Feature Issue of J. Opt. Soc.
Am. A 17(12), December (2000).

[3] Atakishiyev, N. M., Chumakov, S. M. and Wolf, K. B., “Wigner distribution function for finite systems,” J.
Math. Phys. 39, 6247–6261 (1998).

Proc. of SPIE Vol. 8011  801161-7

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 05/25/2015 Terms of Use: http://spiedl.org/terms



[4] Ali, S. T., Atakishiyev, N. M., Chumakov, S. M., and Wolf, K. B., “The Wigner function for general Lie
groups and the wavelet transform,” Ann. H. Poincaré 1, 685–714 (2000).
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