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Finite Hamiltonian systems on phase space

Kurt Bernardo Wolf

Abstract. We construct and analyze a Hamiltonian system whose position
coordinate takes values on the finite subset of contiguous integers Zj :=
{−j,−j+1, . . . , j}, with the purpose of applying the resulting model to the
parallel processing of finite, N-point signals by optical means, and for un-
derstanding models of finite quantum mechanics. Preserving the geometric

and dynamic Hamilton equations of paraxial geometric optics, ‘discrete quan-
tization’ leads us to the Lie algebra so(3), while the metaxial expansion by
aberrations provides the rest of the N2 unitary transformations that can be
applied to any N-point signal. A compact phase space is the scenario for an
so(3)-covariant Wigner function to see such signals as nonlinear aberrations of
the surface of a sphere.

1. Introduction

Over the last several years, our group in Cuernavaca has worked with geometric
optics and —apparently disconnected— discrete models of quantum mechanics.
Among the latter, finite N -point Hamiltonian systems are based on the well-known
Lie algebra and group so(3), usually associated with rotations in space. Geometric
optics and finite quantum mechanics are related through a ‘quantization’ process,
distinct from the standard Schrödinger quantization of classical mechanics. Under
this finite quantization, we associate to the observables of position, momentum,
and energy, three N × N skew-hermitian matrices in a complex N -dimensional
Hilbert space. These act on column vectors containing the data in the signal.
We require that the geometry and dynamics of the classical system given by its
Hamilton equations (written as Lie brackets) should be preserved under this finite-
quantization process, and that in the limit N → ∞, when the set of positions
is contracted to the continuum, the original classical model should be recovered.
The application of these endeavors is to provide models for finite signal analysis on
phase space. In this essay we examine the finite analogue of the one-dimensional
harmonic oscillator. The free particle and the repulsive oscillator, as well as a
q-finite harmonic oscillator and two-dimensional models of pixellated screens have
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2 KURT BERNARDO WOLF

been investigated; although referenced below, these topics will not be included here.
We shall favor the narrative style of mathematical physics manuscripts; since the
algebra so(3) is so well known, we need not develop a theorem-proof-corollary text,
but only highlight the main results.

In Section 2 we detail the discrete quantization process for the three systems
that classically have quadratic Hamiltonians, and lie under the ægis of the Lie
algebras so(3), iso(2), and so(2, 1), verifying that their contraction to the continuum
limits returns the corresponding standard quantum and classical systems. We then
review in Section 3 the ranges that the discrete position can have within each of
these algebras, and their relation with the value of the Casimir invariant. The
overlap between the position and energy bases provides the wavefunctions of the
discrete system; in Section 4 we find the finite difference ‘Schrödinger’ equations
that rule the three systems. Thereafter, from Section 5 we concentrate on the so(3)
case of finite signals, where Kravchuk functions are the finite counterparts of the
Hermite-Gauss eigenfunctions of the harmonic oscillator.

With these tools we examine in Section 6 the SO(3) ‘linear’ transformations
such as the fractional Fourier-Kravchuk transform, and apply them in Section 7
to produce the sphere manifold —and phase space— of finite N -point coherent
states. Now, whereas SO(3)-linear transformations rotate this sphere rigidly, N -
point signals can be acted upon by the group U(N) of N ×N unitary matrices, as
shown in Section 8; these will include all the aberrations of the signal as nonlinear
area-preserving transformations of the surface of the sphere. The geometric optical
classification and compounding of aberrations serves in Section 9 to define a new
factored-product parametrization of U(N) ⊃ U(2) into ‘paraxial’ and ‘aberration’
parameters. The identification of the sphere as the proper phase space for finite
Hamiltonian systems is done in Section 10 by constructing a covariant Wigner
function to represent graphically the action of aberrations on a discrete rectangle
signal. The concluding Section 11 puts these developments in comparison with
infinite discrete systems and other algebras used recently for signal analysis and
the processing of pixellated images.

2. Discrete quantization

The strategy of discrete quantization from a classical system to a matrix real-
ization of the corresponding discrete system is the following:

(i) We start with the well-recognized classical observables of position and momen-
tum x, p with a Lie bracket that is their Poisson bracket (skew-symmetric, linearly
distributive, with Leibniz rule),

(2.1) basic: {x, p} = 1,

and {x, 1} = 0, {p, 1} = 0. Thus x, p, 1 are a basis for the Heisenberg-Weyl Lie
algebra w [1].

(ii) With these quantities we build the quadratic Hamiltonians

(2.2) h(σ) := 1
2 (p

2 + σx2), σ =

⎧⎨
⎩

+1, harmonic oscillator,
0, free particle,

−1, repulsive oscillator.
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FINITE HAMILTONIAN SYSTEMS ON PHASE SPACE 3

(iii) The two Hamilton equations,

geometric: {h(σ), x} = −p,(2.3)

dynamic: {h(σ), p} = σx,(2.4)

together with (2.1), form semidirect products of w with rotations so(2) for σ = +1,
translations iso(1) for σ = 0, and Lorentz boosts so(1, 1) for σ = −1.

(iv) The crucial step now is to deform these three four-parameter Lie algebras to
a direct sum of the central generator 1, with

so(3) for the harmonic oscillator (σ = +1),(2.5)

iso(2) for the free particle (σ = 0), and(2.6)

so(2, 1) for the repulsive oscillator (σ = −1),(2.7)

where position is chosen to be a compact generator in each algebra.

(v) Lastly, we choose a self-adjoint irreducible representation of each of these alge-
bras, where the generators are represented as matrices and the Lie bracket is their
commutator, to produce a discrete model for each of the three systems.

We postulate the following correspondence between classical observables and
Lie algebra generators, setting up the notation

position x ↔ X ≡ L0,(2.8)

momentum p ↔ P ≡ L1,(2.9)

(pseudo) energy h ↔ K ≡ L2,(2.10)

and 1 ↔ 1 being the central generator of each algebra. We called K the pseudo-
energy because its eigenvalues may (will) be displaced by some amount γ from
the usual quantum-mechanical energies that are found from (2.2) through the
Schrödinger quantization. The commutation relations to consider are thus

[K,X ] = −iP , (geometric Hamilton equation),(2.11)

[K,P] = iσX , (dynamic Hamilton equation),(2.12)

[X ,P] = −iK, (basic nonstandard commutator).(2.13)

The quantization from Poisson brackets to commutators is through {u, v} = w ↔
[U, V ] = iW , so that with (2.8)–(2.10) the two Hamilton equations (2.3) and (2.4)
translate to (2.11) and (2.12), consistently with the classical Hamiltonians (2.2)
becoming the standard Schrödinger Hamiltonians. In the standard cyclic-index
form, these Lie algebras are characterized by

(2.14) [L0,L1] = −iL2, [L1,L2] = −iσL0, [L2,L0] = −iL1.

Finally, the invariant Casimir operator of these algebras is

(2.15) C := σX 2 + P2 +K2 = σL2
0 + L2

1 + L2
2 = γ1 ,

where γ determines (not quite) uniquely an irreducible representation of the algebra,
in each of the three cases. This γ will be used to relate the energy-numbers to the
pseudo-energy eigenvalues, below.

We now show that under contraction γ → ∞, we recover the Schrödinger
operators of each system. Let

(2.16) X γ := γ−1/4X , Pγ := γ−1/4P, Kγ := K + γ1/21 .
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When γ → ∞, the geometric and dynamic Hamilton equations in (2.11) and (2.12)
between X γ ,Pγ ,Kγ remain invariant, as they should. Meanwhile (2.13) becomes
the Heisenberg commutator,

(2.17) [X γ ,Pγ ] =
1√
γ
[X ,P] = − i√

γ
(Kγ−

√
γ1 ) −→

γ→∞ i1 ,

where the limit is weakly valid in the space of functions with bounded energy [i.e.,
(f, K2f) < ∞ with the inner product defined below in (3.1)]. Such proviso is also
required when contracting finite to integral Fourier transforms (see e.g. [4, Sect.
3.4.5]). Next we write the Casimir operator (2.15), C = γ1 , which is

γ1 =
√
γP2

γ + σ
√
γX 2

γ + (Kγ −√
γ1 )2

=
√
γ(P2

γ + σX 2
γ − 2Kγ) +K2

γ + γ1 ,(2.18)

=⇒ Kγ = 1
2 (P

2
γ + σX 2

γ) +
1

2
√
γ
K2

γ ,(2.19)

with the same condition of validity.
The relation between the energy eigenvalue η of Kγ in (2.19), and the pseudo-

energy eigenvalue λ of K obtained with Kγ = K+ 1
√
γ can be assumed to hold for

all γ’s, not necessarily in contraction. Thus, for each of the three algebras (2.5)–
(2.7), although the expression for γ is slightly different, the relation between energy
and pseudo-energy can have the generic form

(2.20) η ≈ λ+
√
γ + constant.

3. Ranges for discrete positions

Discrete systems are characterized by difference equations, rather than the
differential ones of continuous mechanics. These equations stem from the algebra
when we ask for the discrete eigenfunctions of its generators, and thus determine
that their spacing be unity. The discrete wavefunctions (that we may also call
signals, or states of the system) are fm ≡ f(xm), with the argument xm = m
running over the integer spectrum of the position operator, Σ(X ). These states live
in complex Hilbert spaces of square-summable sequences �2(Z), or �2(Z+

0 ), or CN

when the space is of finite dimension N . They are endowed with the usual inner
product and norm,

(3.1) (f, g) :=
∑

m∈Σ(X )

f∗
m gm = (g, f)∗, |f | := √

(f, f).

In these spaces, the generators (2.8)–(2.10) and the Casimir operator (2.15) should
be self-adjoint, and thus their spectra real. In particular, the compact position
X = L0, has a natural Kronecker basis of eigenvectors in these Hilbert spaces given
by the simultaneous eigenvectors of position and of the Casimir operator,

(3.2) L0 f
γ
m = mfγ

m, m ∈ Z, C fγ
m = γ fγ

m.

We can picture them as finite or infinite column vectors of 0’s with a single 1 at
position m.

The algebraic relations leading to the difference ‘Schrödinger’ equations are
known for the three algebras (2.5)–(2.7), but we shall rederive them succintly, One
defines the raising and lowering operators

(3.3) L↑ := L2 + iL1, L↓ := L2 − iL1,
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which are adjoints of each other and whose commutators are, from (2.14),

(3.4) [L0,L�] = ±L�, [L↑,L↓] = 2σL0.

The role of these operators is to shift the Kronecker wavefunctions up or down by
one unit,

(3.5) L↑↓ f
γ
m = cγ↑↓m fγ

m±1,

up to normalization constants cγ↑↓m that must be found. This is done using the

invariant Casimir operator (2.15),

(3.6) C := L2
1 + L2

2 + σL2
0 = L↑↓ L↓↑ + σL0(L0 ∓ 1 ),

which constrains the ranges of γ and m through a well-known line of reasoning [5]:
since the absolute square of the coefficients in (3.5) must be positive,

0 ≤ |cγ↑↓m|2(fγ
m±1, f

γ
m±1) = (L↑↓ f

γ
m,L↑↓ f

γ
m)

= (fγ
m,L↓↑ L↑↓ f

γ
m)

= (fγ
m, [C − σL0(L0 ± 1 )] fγ

m)

= [γ − σm(m± 1)] (fγ
m, fγ

m),

=⇒ |cγ↑↓m|2 = γ − σm(m± 1) ≥ 0.(3.7)

It follows that if some cγ↓mmin
= 0, the equally-spaced spectrum of X = L0 will be

bounded from below by mmin, while if some other cγ↑mmax
= 0, its spectrum will be

bounded from above by mmax. Note carefully that (3.7) determines the coefficients
cγ↑↓m only up to a phase, which we are completely free to choose, although standard

conventions exist; e.g., see Ref. [5, p. 35].
From (3.7) and the condition that the m’s of position be integer, one can

identify its ranges and those of the representation index γ for the three algebras
(2.5)–(2.7) distinguished by their value of σ,

so(3)

σ=1

γ = j(j + 1), j ∈ Z+
0 , |m| ≤ j,

representation of dimension N = 2j + 1;
(3.8)

iso(2)

σ = 0

γ = l2, l ∈ R, m ∈ Z,
infinite-dimensional representation;

(3.9)

so(2, 1)

σ = −1

γ = k(1− k) < 1
4 , k ∈ Z+, m ∈ ±{k, k+1, . . .},

complementary series D±
k ,

(3.10)

γ = k(1− k) ≥ 1
4 , k = 1

2+iκ, κ ∈ R, m ∈ Z,
principal series C0

κ.
(3.11)

This is a simplified list, because so(2, 1) representations have further structure in

the exceptional interval 0 ≤ k ≤ 1, and because the algebras so(3) and so(2, 1)
also generate the 2:1 covering groups SU(2) and SU(1, 1) where m runs over half-
integers, while ISO(2) and SO(2, 1) also have infinite covers, where the m’s are not
integer but spaced by 1.
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4. Difference and Schrödinger equations

Beside the Kronecker basis of definite position, there are the energy eigenbases
of K ≡ L2 in (2.10), —implicitly distinguished by σ ∈ {+1, 0,−1} for the three
systems,

(4.1) K hγ
λ = λhγ

λ, λ ∈ Z or R, C hγ
λ = γ hγ

λ,

plus the proviso that in (3.11) for so(2, 1) there is an extra dichotomic index to
distinguish between two degenerate λ’s in that spectrum.

Now, the overlap between the eigenbases of position {fγ
m} in (3.2), and of

the energy {hγ
λ} in (4.1), defines the discrete eigenfunctions of the corresponding

system,

(4.2) Ψγ
λ(m) := (fγ

m, hγ
λ).

These functions satisfy the recurrence relation obtained from (3.3) and (3.5):

(4.3)

λΨγ
λ(m) = (fγ

m, K hγ
λ)

= 1
2 ([L↑ + L↓] f

γ
m, hγ

λ)

= 1
2c

γ ∗
↑mΨγ

λ(m+1) + 1
2c

γ ∗
↓mΨγ

λ(m−1).

To turn this recurrence into a difference equation, we must decide on the phases of
the coefficients cγ�,m to obtain the correct contraction limit below,

(4.4) cγ ∗
↑m = ϕ↑

√
γ − σm(m+1), cγ ∗

↓m = ϕ↓
√
γ − σm(m−1),

with |ϕ↑| = 1 = |ϕ↓|. Then (3.7) leads to a three-term difference time-independent
‘Schrödinger’ equation in discrete position,

(4.5)
ϕ↑

√
γ − σm(m+1)Ψγ

λ(m+1) + 2λΨγ
λ(m)

+ ϕ↓
√
γ − σm(m−1)Ψγ

λ(m−1) = 0.

The contraction (2.16)–(2.20) of the difference equation (4.5) recovers the usual
quantum Schrödinger equations for the three systems with ϕ↑ = 1 = ϕ↓. Indeed,
following the first of Eqs. (2.16), denote the eigenvalues of X by m, those of X γ by

x := γ−1/4m, and re-define the function ψ(x) = ψ(γ−1/4m) := Ψγ
λ(m). Then, for γ

sufficiently large and δ := γ−1/4 we can expand (4.5) to order δ2 with up-to-second
x-derivatives of ψ(x),

Ψγ
λ(m± 1) = ψ(x± δ) ≈ ψ(x) ± δ ψ′

(x) + 1
2δ

2 ψ′′
(x),(4.6) √

γ − σm(m±1) ≈ √
γ − 1

2σx
2 ∓ δ σx− 1

8δ
2 x4.(4.7)

This yields, upon replacement into (4.5) and truncation to second order in δ,

(4.8) 1
2 (−ψ′′

(x) + σx2 ψ(x)) = (λ+
√
γ)ψ(x) = η ψ(x)

plus terms of order δ2, which vanish as γ → ∞.
Starting from the next section our main interest will be on finite signals within

so(3); thus we present only the following brief description of results in the other
two cases: iso(2) and so(2, 1).

The iso(2) free system was developed in Ref. [6]. The difference equation (4.5)
simplifies with

√
γ = l being the representation label; its solutions are trigonometric

functions sin or cos mθ with m ∈ Z, cos θ = λ/l, and energy η = λ + l ∈ [0, 2l].
Hence, this case reduces essentially to Fourier series, which transform unitarily
between Fourier coefficients in �2(Z) and periodic functions in L2(−π, π]. Phase
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space a cylinder; coherent and cat states —with their smiles— are shown graphically
in [6]. The time evolution kernel between initial points m and final points m′ is
given by a Bessel function inJ|m−m′|(lt).

In Ref. [8] we used the complementary series of the algebra so(2, 1) [7] to
describe the radial part of a two-dimensional discrete system, following a polar
pixellation of the plane. The radial coordinate rm ∝ √

m, m ∈ Z+
k , k ∈ Z+, turns

out to be the Bargmann index k which is related to the Casimir eigenvalue (3.2)
by γ = k(1 − k). (In Bargmann’s classification [9] the complementary series is
called discrete series, D+

k ; but using this name could here cause confusion.) The
discrete radial oscillator wavefunctions are written in terms of Meixner polynomials
in �2(Z+

0 ); their contraction k → ∞ limits to the well-known Laguerre-exponential
functions.

Another so(2, 1) discrete system we have studied is the discrete repulsive os-
cillator [10]. It is based on the principal series of representations of the algebra
(in Bargmann’s nomenclature, they are called the continuous representation series
C0

κ). The continuous counterpart of this system is the quantum repulsive oscillator,
which is characterized by having a potential barrier ∼ − 1

2x
2. The Casimir eigen-

value (3.2) is in this case γ = 1
4+κ2 or, in terms of the Bargmann index, k = 1

2 +iκ,
κ ∈ R. The energy spectrum is continuous, η = λ + κ ∈ R, and double: there are
left- and right-moving solutions, which are separated by a dichotomic index. The
eigenfunctions of the system are given with Gauss hypergeometric functions (not
polynomials), which provide a Dirac basis for �2(Z). An interesting feature is that
the asymptotic chirp behavior of the quantum repulsive oscillator, ∼ exp(i 12x

2), is
replaced by an upper oscillation frequency with period 4. One can see the distinct
behavior of the wavefunctions that pass over (for η > 0), or partially penetrate and
partially reflect from the repulsive barrier (for η < 0). Computational issues with
infinite Dirac-orthonormal vectors remain to be resolved satisfactorily.

5. The case of so(3): finite signals

Both iso(2) and so(2, 1) are the Lie algebras of noncompact Lie groups; the only
compact case is ruled by so(3); the discrete harmonic oscillator is thus the only
choice for the analysis of complex N -point finite signals f ∈ CN . For dimension
N = 2j + 1, the SO(3) transformations will belong to the representation of ‘spin’
j ∈ Z+

0 , whose Casimir eigenvalue is γ = j(j + 1), and there will be N integer
pseudo-energies −j ≤ λ ≤ j. The difference equation (4.5) with |ϕ↑| = 1 = |ϕ↓|
becomes the standard difference so(3) relation [5, Eq. (3.84)],1

(5.1)

√
(j−m)(j+m+1)Ψ

j(j+1)
λ (m+1) + 2λΨ

j(j+1)
λ (m)

+
√
(j+m)(j−m+1)Ψ

j(j+1)
λ (m−1) = 0,

1Our L’s differ by a sign from the standard Biedenharn-Louck so(3) commutators [5], written
as J × J = iJ .
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whose normalized solutions are the Wigner little-d functions (5.7),

Ψj
n(m) = djλ,m( 12π) n := λ+ j ∈ [0, 2j](5.2)

=
(−1)n (2j)! 2F1(−n, −2j−m; −2j; 2)

2j
√
n! (2j−n)! (j+m)! (j−m)!

(5.3)

=
(−1)n

2j

√(2j
n

)( 2j

j+m

)
Kn(j+m; 1

2 , 2j),(5.4)

where the integer n is the energy number and η = n + 1
2 ≈ λ +

√
γ is the energy

(2.20) of the finite oscillator model [11], the values of the position coordinate are
−j ≤ m ≤ j, and

(5.5) Kn(j+m; 1
2 , 2j) = 2F1(−n, −2j+m;−2j; 2) = Kj+m(n; 12 , 2j)

is a symmetric Kravchuk polynomial [12, 13] of degree n in the position coordinate
m. These N wavefunctions are real, orthogonal and complete in CN , and normalized
to satisfy

(5.6) (Ψj
n,Ψ

j
n′)so(3) :=

j∑
m=−j

Ψj
n(m)

∗ Ψj
n′ (m) = δn,n′ .

For future reference we write explicitly the Wigner little-d functions [5, Eq. (3.72)]
for the generic rotation angle β,

(5.7)

djm,m′(β) =
√
(j +m)! (j −m)! (j +m′)! (j −m′)! (sin 1

2β)
2j

×
∑
s

(−1)j−m′−s(cot 1
2β)

m+m′+2s

s! (j −m− s)! (j −m′ − s)! (m+m′ + s)!
.

A picture is worth a thousand words: the finite oscillator wavefunctions (5.2)–
(5.4) are shown in Figure 1. Foremost we note that the lowest energy states resem-
ble the Hermite-Gauss functions of the continuous quantum oscillator, while the
highest-energy states reproduce the lowest, but for a change of sign between ev-
ery two neighboring points, Ψj

2j−n(m) = (−1)n+mΨj
n(m) due to identities between

little-d functions in (5.2). The expression (5.4) for Ψj
n(m) contains the square root

of a binomial distribution in the position m; when we contract j → ∞ through
x = m/

√
j [14], this factor becomes the standard Gaussian bell ∼ exp(− 1

2x
2). Un-

der the same contraction, Kravchuk polynomials in m become Hermite polynomials
in x. The ground state of the finite oscillator is

(5.8) Ψj
0(m) = dj−j,m( 12π) =

1

2j

√
(2j)!

(j+m)! (j−m)!
,

and will serve below as the stationary coherent state. Out of translation in position
and momentum we shall define below the manifold of coherent states of this model.

6. SO(3)-linear transformations of finite signals

To examine the dynamics we exponentiate the so(3) algebra of observables
X , P , K to the Lie group SO(3) of all rigid rotations of a sphere. The ‘z-’ or ‘time’
evolution of discrete systems described by the Lie algebra so(3) in (2.11)–(2.13)
is generated by K (plus

√
γ1 , which generates only a phase), while translation in
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10 20 30

0.5

n = 64

63

62

32

2

1

n = 0

m

m
102030

0.5

Figure 1. Finite oscillator wavefunctions Ψj
n(m) in (5.3) for N =

65 points. From bottom to top, n = 0, 1, 2, . . . , 32, . . . , 62, 63, 64 =
2j. The ground state is Ψj

0(m) in (5.8); the top state Ψj
2j(m) =

(−1)mΨj
0(m) is the highest-energy waveform that the system can

carry.

position and momentum (x, p) are generated by P and −X respectively. When we
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write the generic element of so(3) as

(6.1) A(x, p, z) = xX + pP + κK,

then its K-evolution is

(6.2) exp(−iαK)A(x, p, κ) exp(+iαK) = A(x(α), p(α), κ(α)),

producing a right-hand rotation of the sphere x2 + p2 + κ2 = r2 constant around
the ‘vertical’ κ-axis by α,

(6.3)

⎛
⎝x(α)

p(α)

κ(α)

⎞
⎠ =

⎛
⎝ cosα sinα 0
− sinα cosα 0

0 0 1

⎞
⎠

⎛
⎝x
p
κ

⎞
⎠ .

Similarly, ‘translations’ along the compact x and p coordinates are here rotations
around the −p and x axes, and are generated by −P and X . Thus, generic N -
point signals are transformed by the unitary irreducible representation matrices of
the SO(3) group, known as Wigner Big-D matrices Dj

m,m′(R), where R is a 3× 3

orthogonal matrix of unit determinant, such as (6.3), which can be conveniently
parametrized with the Euler angles (α, β, γ) around the κ-p-κ axes, or with the
polar parameters (ρ, n̂(θ, φ)) of rotation by the angle ρ around the axis n̂(θ, φ) on
the unit sphere.

The κ-evolution generated by F (α) := e−iαj exp(−iαK) on the space of N -point
signals (N = 2j+1), multiplies the discrete oscillator wavefunctions (5.2) by phases
e−iα(j+λ) = e−iαn. This is the N ×N fractional Fourier-Kravchuk transform [11].

Due to (5.6), its matrix elements Fj
(α) = ‖F j

m,m′ (α)‖ are given by the bilinear
generating function,

(6.4) F j
m,m′ (α) :=

2j∑
n=0

Ψj
n(m) exp(−iαn)Ψj

n(m′
)
∗
.

The matrices Fj( 12π) are N × N unitary fourth roots of unity. This was called
Fourier-Kravchuk transform [11]; although this is not the discrete Fourier trans-

form (DFT) matrix ‖e−2πimm′/N/
√
N‖, it is ‘close’: when N → ∞, (6.4) be-

comes the Namias expression for the canonical fractional Fourier integral kernel
[15]. The fractional Fourier-Kravchuk transform of the number eigenstate Ψj

n(m)

is thus exp(−iαn)Ψj
n(m), and the absolute values |Ψj

n(m)| are invariant under the
finite oscillator Hamiltonian evolution.

7. Finite coherent states

Waveforms that are covariant with the classical oscillator motion must have
a parameter that evolves with a factor ∼ exp(±iωt). These are the coherent

states, defined as the ground state Ψj
0(m) in (5.8) and all its rotations by SO(3)

group elements. In the Euler parametrization of rotations around successive axes,
R(α, β, γ) = Rκ(α)Rp(β)Rκ(γ), the rightmost factor multiplies Ψj

0(m) only by a
phase, which in this context is unimportant. The middle factor rotates the ground
distribution around the p-axis, raising the bottom pole of the sphere (x2+p2+κ2 =
r2 at κ = −r) up along the meridian containing the x-axis, and determining thus
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the circle of discrete, finite coherent states for −j ≤ m ≤ j and −π < β ≤ π,

Υj(m;β) :=
(
Rp(β)Ψ

j
0

)
(m)(7.1)

=

j∑
m′=−j

(
exp(iβP)

)
m,m′

dj−j,m′( 12π)(7.2)

= dj−j,m( 12π+β)(7.3)

=

2j∑
n=0

(−1)ndjj,j−n(β)Ψ
j
n(m).(7.4)

In (7.2) the coherent state is recognized as a Wigner little-d function of angle
1
2π + β. If we picture the ground state Υj(m; 0) as a bell distribution centered at

the bottom pole of the sphere, Υj(·;β) can be pictured as this distribution centered
at the colatitude π − β in the direction of the x-axis. The form (7.4) expresses the
coherent states as finite generating functions of Ψj

n(m), summing over n ∈ [0, 2j],
with coefficients that are obtained from (5.7),

(7.5) (−1)ndjj,j−n(β) = (cos 1
2β)

2j

√(2j
n

)
(tan 1

2β)
n.

This account of coherent states should be compared with that in continuous quan-
tum mechanics, where a generating function similar to (7.4) is formed with coeffi-
cients cn/

√
n! over n ∈ Z+

0 . In the finite case we can identify the power-n coefficient
to be c ∼ tan 1

2β.
Lastly, the Euler rotationRκ(α) multiplies each n-summand in (7.4) by exp(−iαn);

incorporating these phases into the coefficients (7.5) results in a factor (e−iα sin 1
2β)

n.
Based on this we can identify the parameter undergoing harmonic motion un-
der the action of the finite oscillator Hamiltonian K as the coefficients c(α, β) :=
e−iα tan 1

2β. The finite coherent states (7.1)–(7.4) thus exhibit the harmonic motion
resulting from the multiplication of c(α, β) by the phase exp(iτ ). This is shown in
Figures 2.

We can also speak of ‘Jx-ground’ and ‘Jx-top states as the column N -vectors
(0, . . . , 0, 1)T and (1, 0, . . . , 0)T , which are particular cases of coherent states, namely:

Υj(m;± 1
2π) = dj−j,m(±π) = δm,j , the latter is shown at the top right of Fig. 2 that

we picture on the sphere as a vector pointing along the −x-axis; its momentum
and energy distributions now have the form (5.8) save for phases. Similarly, the
‘Jp’-extremal momentum states will occur for β = 1

2π and α = ± 1
2π, and their

position and energy distributions will have the form (5.8).

8. Linear transformations and aberrations

Position, momentum and (pseudo)-energy are now represented by N ×N ma-
trices belonging to the representation j of so(3), X = ‖Xm,m′‖, P = ‖Pm,m′‖, and
also K = ‖Km,m′‖, with elements obtained from (3.2) and (3.5),

Xm,m′ = mδm,m′ , m, m′ ∈ {−j, −j+1, . . . , j},(8.1)

Pm,m′ = −i 12
√

(j−m)(j+m+1) δm+1,m′ + i 12
√

(j+m)(j−m+1) δm−1,m′ ,(8.2)

Km,m′ = 1
2

√
(j−m)(j+m+1) δm+1,m′ + 1

2

√
(j+m)(j−m+1) δm−1,m′ .(8.3)
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Figure 2. Quarter-cycle motion (top to bottom) of the coherent
states Υj(m;β) in a finite oscillator of N = 33 points. Columns
show these states for β = 30◦ = 1

6π, 60
◦ = 1

3π and 90◦ = 1
2π. In

the top right corner, the coherent state is an extreme-x Kronecker
state.

These matrices are hermitian, traceless, satisfy the so(3) commutation relations,
and their sum of squares (2.15) is j(j+1)1. They multiply the column N -vectors f
whose elements are the values of the signal. The position operator X is represented
by the diagonal matrix X in (8.1); the momentum matrix P in (8.2) has the action
of −i times a weighted central difference. And the pseudo-energy matrix K in (8.3)
is real and symmetric. If we interpret the latter as the Hamiltonian matrix of a
linear mechanical lattice of 2j + 1 mass points joined by springs, its sub-diagonal
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elements are the interaction forces between the mass number m and its two nearest
neighbors m±1 [4, Part I], and have the form

√
(γ−m(m±1)). This is (minus) the

discrete gradient of an ‘equivalent potential’ function on m ∈ [−j, j], which indeed
has the parabolic bowl-shape characteristic of oscillator-like discrete systems (cf.
the Harper discrete potential ∼ 1−cos 2πm/N [18]). Since the ground state has no
zeros, the equivalent potential can also be defined from the finite oscillator ground
state (5.8), as its normalized second-difference ΔΨj

0(m)/Ψj
0(m) [17].

The exponentiation of the linear combinations (6.1) of theN×N matrices (8.1)–
(8.3) and 1, generates a unitary irreducible representation the group SO(3)⊗SO(2).
In the polar coordinates (ρ, n̂(θ, φ); τ ) of this group, the matrices are

(8.4) R(ρ, θ, φ; τ ) = exp−i(uX+ vP+ wK) e−iτ ,

⎧⎨
⎩

u = ρ sin θ sinφ,
v = ρ sin θ cosφ,
w = ρ cos θ.

These are the Wigner Big-D matrices [5], written with polar rather than Euler
parameters; they carry the linear action of the group SO(3) on the space of N -
point signals [11, 13, 19].

In geometric optics, the paraxial regime comprises all linear transformations of
phase space (x, p) ∈ R2. These are generated by the Poisson operators {A2, ◦} of
quadratic functionsA2(x, p) (that form the noncompact symplectic algebra sp(2,R)).
The metaxial regime lies beyond the paraxial r’egime: it is generated by polyno-
mials An(x, p) of homogeneous degree n in x and p, called aberrations of order
Ac = n − 1, for n ∈ {2, 3, . . .}; the transformations are nonlinear in phase space
(x, p) ∈ R, shown as a tower in Figure 3 [20, Fig. 13.1]. For discrete N -point Hamil-
tonian systems we propose that these nonlinear transformations be built out of the
universal enveloping algebra so(3) that contains all sums, powers and products of
the so(3) generators {X , P, K}, with the commutator Lie bracket that obeys the
Leibniz rule, and within the representation j of so(3) determined by the Casimir
operator (2.15). We use the last condition to reduce the count of powers of K to 0 or
1 only. The correspondence between the classical variables and the non-commuting
matrices of the discrete model will be made through their Weyl ordering [1]. Thus,
for k ∈ { 1

2 , 1, . . . ,
1
2 (N−1)} we define the matrices

Ak,μ;0 := {Pk+μXk−μ}Weyl, μ ∈ {−k,−k+1, . . . , k},(8.5)

Ak,μ;1 := {Pk− 1
2+μXk− 1

2−μK}Weyl, μ ∈ {−k+ 1
2 ,−k+ 3

2 , . . . , k−
1
2}.(8.6)

The Weyl order of a monomial of matrix powers {XaYbZc}Weyl sums all permu-
tations of the a + b + c individual matrices, and divides by (a + b + c)!. These
matrices include the so(3) generators of linear transformations A1/2,−1/2,0 = X,
A1/2,1/2,0 = P, A1/2,0,1 = K and phases A0,0,0 = 1; beyond, are the aberrations
of orders A := 2k. The order is so defined because [Ak,μ;c, ◦], acting on the so(3)
generators returns polynomials of homogeneous degree 2k in these variables. There
are N2 independent hermitian matrices that generate of the N × N unitary Lie
algebra u(N); hence in N -point Hamiltonian systems there are aberration orders
0 < A = 2k ≤ N−1 = 2j only. In the contraction limit j → ∞ to geometric optics,
the k = 0 pyramid grows and we recover the infinite tower of aberrations in Fig. 3,
while the k = 1

2 pyramid withers between functions of finite energy. The aberration
orders, counted with Poisson brackets, are A c = 2k − 1, k ∈ {2, 3, . . .}.
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Figure 3. Tower of linear transformations and aberrations of clas-
sical phase space (x, p), generated by the exponentiated Poisson
operators exp(τ{pk+μxk−μ, ◦}). The rungs in the tower are classi-
fied by integer aberration order Ac := 2k−1 ≥ 0 and weight μ, for
|μ| ≤ k. The unit map is at the top; translations along x and p
correspond to Ac = 0. The linear transformations are marked with
Ac = 1; in paraxial geometric optics they are free propagation,
(inverse) magnification, and a Fresnel lens. There follow the aber-
rations of orders Ac = 2, 3, 4, 5 . . .. In geometric optics, aligned
systems produce only odd-order aberrations; for Ac = 3 these are
named spherical aberration, coma, astigmatism/curvature of field,
distorsion and pocus.

It is useful to present the concrete case of N = 5-point systems [16], where
the Lie algebra u(5) has 52 = 25 independent generators. Four of these are the
generators of the u(2) subgroup of linear transformations, A = 0, 1; the rest can be
organized into two pyramids for aberrations of orders A = 2, 3, and 4. We write
their classical expressions (to be read with x → X, p → P, κ → K and Weyl order)
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as follows:

Ak,μ;0(x, p):
A = 0 1 k = 0

1 p x 1
2

2 p2 px x2 1
3 p3 p2x px2 x3 3

2
4 p4 p3x p2x2 px3 x4 2

μ = 2 3
2 1 1

2 0 − 1
2 −1 − 3

2 −2,

(8.7)

Ak,μ;1(x, p, κ):
A = 1 κ k = 1

2
2 κp κx 1
3 κp2 κpx κx2 3

2
4 κp3 κp2x κpx2 κx3 2

μ = 3
2 1 1

2 0 − 1
2 −1 − 3

2 .

(8.8)

There are 15 entries in the first pyramid (8.7), matching those shown in Figure
3, while the second pyramid (8.8) repeats the pattern with an extra κ and has 10
entries. These sum to the 25 generators of u(5). We shall call (x, p, κ) ∈ R3 the
meta-phase space of SO(3) systems.

9. Paraxial / aberration parameters of U(N)

The N×N hermitian matrices (8.5)–(8.6) are the N2 generators of the N -dim-
ensional self-adjoint representation of the Lie algebra u(N). They have been nat-
urally separated into the four ‘paraxial’ generators of the subalgebra u(2) ⊂ u(N),
and the N2−4 ‘aberration’ generators of orders A = 2k ∈ {2, 3, 4, . . . , N−1}. The
commutatior of two aberration generators of orders A1 and A2 is of aberration order
A = A1+A2− 1 modulo N . The generators of each aberration order form an ideal
under commutation with the ‘paraxial’ u(2) generator matrices (8.1)–(8.3); indeed
they form multiplets (bases for irreducible representation subspaces) of dimension
2A+1 and transform between themselves as the solid spherical harmonics do under
the rotation group [5]. Meanwhile, in the continuous model of geometric optics [20,
Part 4], the aberrations form finite-dimensional multiplets under linear canonical
transformations generated by the symplectic algebra sp(2,R). Thus, since the al-
gebras are different, the commutators between the aberration generator matrices
will differ from their geometric-optical counterparts. A pending task is to examine
in detail this contraction of unitary to symplectic transformations when N → ∞.

The hermitian matrices (8.5)–(8.6) of u(N) are exponentiated to unitary ma-
trices in U(N), where one-parameter subgroups are

(9.1) Uk,m;c(α) := exp(−iαAk,m;c) ∈ U(N), c ∈ {0, 1}.
The hermitian matricesAk,m;c that are pure imaginary (containing only odd powers
of P) will generate real orthogonal matrices, forming the subgroup SO(N) ⊂ U(N)
that leaves real signals real. Thus we obtain a coordinate system for U(N) that sepa-
rates into coordinates of SO(N) and coordinates of the space of cosets U(N)/SO(N)
(cf. [21]).

The ‘paraxial’ subgroup U(2) ⊂ U(N) in (8.4) includes phases and linear
transformations of the sphere, and serves as the ‘core’ for the factored-product

155



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

16 KURT BERNARDO WOLF

parametrization of U(N). (Cf. the factored-product parametrization that uses
the symplectic group Sp(2,R) of paraxial geometric optics as the core for the in-
principle infinite aberration expansion [22, 23]). The ideal of aberration order
a = 2k ≥ 1 has dimension 2a + 1 = 4k + 1 and generates the manifold of unitary
matrices

(9.2) Uk(Ak) := exp
[
− i

( k=a/2∑
μ=−k

A0
k,μA

k,μ;0 +

k=(a−1)/2∑
μ=−k

A1
k,μA

k,μ;1
)]

,

parametrized by the ‘aberration’ parameters Ak := {A0
k,μ, A

1
k,μ}kμ=−k. In this

notation and using (8.4), we write the factored-product parametrization of U(N)
as

(9.3) UN (A) = UN−1(AN−1)×UN−2(AN−2)××U2(A2)×R(ρ, θ, φ; τ ),

where in the rightmost factor, the four coefficients {A0
1,1, A

0
1,0, A

0
1,−1; A

1
0,0} are

related to {ρ, θ, φ; τ} through (8.4).
The factored-product parametrization is distinct from that derived with the

more usual chain of Gel’fand-Tsetlin coset decomposition U(k+1)/U(k) [24], for
k = N−1, . . . , 1 [25, 26]. The factored-product parameters are taylored for the
analysis of one-dimensional finite discrete signals under parallel processing by op-
tical systems with aberrations; the prototipical model we have in mind is that of a
linear array of N leds emitting a phase-controlled wavefield into a two-dimensional
micro-optical device, whose output is sensed by a similar linear array of sensors.
Since we have already characterized the optical elements of compound devices by
their Hamilton-Lie aberration coefficients in [20, Sect. 14.5], their finite quantiza-
tion should yield N × N matrices which will produce a corresponding output for
every input signal. This can be applied to fractional Fourier transformer devices
[27], three of whose configurations (with a lens, a mirror, or a waveguide) are given
in Ref. [20, Chap. 15] with their aberration coefficients to order seven. How will
they work and approximate the ordinary N -dimensional Fourier matrix of a mi-
croscopic array of leds? The matrices (9.3) have been manipulated numerically;
we have not endeavored to find the generic relation between the set of aberration
parameters A and the matrix elements of U(A); commercial symbolic manipulation
programs are quite efficient in multiplying and exponentiating arbitrary matrices.

10. The phase space of finite systems

We favor graphical images to see the effect of aberrations on a phase space suited
for finite signals, such as those in Figure 3 for continuous models. So once again
we condense the construction of the SO(3)-covariant Wigner function proposed in
Ref. [28, 29] on the corresponding phase space. For classical phase space we know
that when acted upon by the exponentiated Poisson operators expα{A, ◦} of the
aberration monomials Ak,μ(x, p) := pk+μxk−μ, will deform along the lines of flow
Ak,μ(x, p) = constant. For finite systems a similar analysis can be made to find the
lines of flow of rigid (linear) and nonrigid deformations (aberrations) of the surface
of the sphere x2 + p2 + κ2 = r2. At the bottom pole κ = −r, this sphere is tangent
to the classical phase space plane (x, p) ∈ R2, to which it limits when j → ∞,
as in (2.17)–(2.19), and the lines of flow on the sphere will osculate those on the
plane. To exploit this correspondence we use the so(3) Berezin brackets between
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commuting functions of x, p, κ, which are defined by

(10.1) {x, p}B = κ, {p, κ}B = x, {κ, x}B = p.

They obey the same distributivity and Leibniz rule as the Poisson brackets, and
generate a classical realization of the group SO(3) as (8.4), replacing X ↔ {x, ◦}B,
etc.

The invariant surfaces in (x, p, κ) ∈ R3 under any {A(x, p, κ), ◦}B are the
spheres x2 + p2 + κ2 = r2 and A(x, p, κ) = constant itself. Now consider corre-
sponding (8.5)–(8.6) with the classical aberration generator monomials Ak,μ;0

(x, p)
and Ak,μ;0

(x, p, κ), which are of the form xapbκc, a+b+c = A, with c = 0 or 1. The
aberrations (k, μ; 0) in the first pyramid (8.7) will thus leave invariant the cylinders
Ak,μ;0

(x, p) = constant, whose intersection with each invariant sphere determines
the lines of flow in R3. As we see from (8.5), for μ = k these are planes normal
to the p-axis, and for μ = −k normal to the x-axis; for all other −k < μ < k,
the functions pk+μxk−μ = constant cut the sphere into quadrants bounded by
the planes x = 0 = p —refer to Figure 4— with four disjoint sets of closed and
nested curves which matchthe flows of Figure 3 at the bottom pole κ = −r. The
aberration functions (k, μ; 1) in the second pyramid (8.8), are linear in κ; hence
Ak,μ;1

(x, p, κ) = constant are cones which at every κ = constant slice reproduce
scaled the lines of flow of Ak−1/2,μ−1/2;0

(x, p). At the bottom pole they also match
the corresponding flows of Figure 3, but on the top pole κ = r the flow is in the
opposite direction. The aberrations in the second pyramid thus divide the flow on
the sphere into octants for −k < μ < k, since the previous quadrants are cut by
the κ = 0 invariant plane, and there are eight disjoint sets of closed and nested
curves. Finally, the cases μ = ±k exhibit four disjoint sets of curves. Thus the
classical aberrations on the phase plane correspond 1:2 with the transformations of
the surface of the sphere.

We now ask for covariance between the classical function on SO(3),

(10.2) Rcl(ρ, θ, φ;x, p, κ) := exp[−i(ux+vp+wκ)]

and the N × N matrix representation R(ρ, θ, φ) in (8.4). The polar SO(3) group
parameters g = {u, v, w} ≡ {ρ, θ, φ} given in that equation range over the manifold
of this group (leaving aside the U(1) phase τ ). Thus we build the matrix-valued
bilinear generating function between the classical and the finite hamiltonian systems
by integrating over the SO(3) group manifold,

(10.3)

W(x, p, κ) :=

∫
SO(3)

dHaar(ρ, θ, φ)R(ρ, θ, φ)Rcl(ρ, θ, φ;x, p, κ)
∗

=

∫
SO(3)

dHaar(ρ, θ, φ) exp i[u(x−X) + v(p−P) + w(κ−K)],

with the normalized Haar measure for polar coordinates,

(10.4) dHaar(ρ, θ, φ) = 1
|SO(3)|

1
2 sin

2 1
2ρ dρ sin θ dθ dφ,

where the group volume is |SO(3)| = 2π2. This N × N matrix function W of
meta-phase space (x, p, κ) ∈ R3 is in a sense the Fourier transform of the group,
and we call it the Wigner matrix because it plays the same role for N -point signals
on the classical sphere, as the well-known Wigner operator of quantum mechanics
on the phase space plane. We shall not elaborate on the many properties of the
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Figure 4. Top row : The Berezin classical space (x, p, κ) ∈ R3

and the lines of flow on the sphere produced by typical aberrations
−k < μ < k. Bottom row : Maps of the sphere (θ, φ) onto the
bounded patch of the plane 0 ≤ θ ≤ π, −π < φ ≤ π; the bottom
pole falls on the center of the rectangle, the left and right edges are
understood as contiguous, and the top and bottom edges represent
a single point each of the position x-axis. Left column: Aber-
rations Ak,μ;0

(x, p) in (8.5) belonging to the first pyramid (8.7),
divide the sphere into quadrants of closed, nested lines. Right col-
umn: Aberrations Ak,μ;1

(x, p, κ) in (8.6) belonging to the second
pyramid (8.8), divide the flow on the sphere into octants.

Wigner matrix (10.3), which include unitarity and self-adjointness, reality, ‘almost’-
positivity, idempotency and marginals. We find suggestive the following symbolic
form

(10.5) W(x, p, κ) “=” δSO(3)(x−X) δSO(3)(p−P) δSO(3)(κ−K),

as if the matrices were classical quantities too, with a ‘group-Dirac-δ’ that should
be properly defined. If true, we expect that the square radius of the sphere x2+p2+
κ2 = r2 correspond with the value j(j+1) of the Casimir operator (2.15), and that
the significantly nonzero part of W(x, p, κ) be in the range j < r < j+1 —which
in fact occurs [28].

For a given signal N -vector f = {fm}jm=−j , its SO(3) Wigner function is the
expectation value of the Wigner matrix W(x, p, κ) in the state f ; it is the bilinear
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form

(10.6) WSO(3)(f |x, p, κ ) := f† W(x, p, κ) f =

j∑
m,m′=−j

f∗
m W

(j)
m,m′(x, p, κ) fm′ ,

The Wigner matrix elements W
(j)
m,m′ (x, p, κ) contain the integral (10.3) over the

group manifold (ρ, θ, φ); this can be performed covariantly over the sphere (θ, φ)
using the Wigner little-d rotation matrices [28], and then we slice the function at
ρ = r so that the matrix elements are reduced to the form

(10.7) W
(j)
m,m′(r, θ, φ) = e−i(m−m′)φ

j∑
m̄=−j

djm,m̄(θ)W
(j)
m̄ (r) djm̄,m′(−θ),

where W
(j)
m̄ (r) are the elements of a diagonal matrix that is a function only of our

chosen r. This can be expressed as an integral [28],

(10.8)
W

(j)
m̄ (r) = (−1)2j+1π

2

j∑
m=−j

∫ π

0

sin θ dθ

× |djm̄,m(θ)|2 sin(2πr cos θ)

(r cos θ −m)[(r cos θ −m)2 − 1]
.

These N constants W
(j)
m̄ (r) we called the Wigner constants for each dimension

N = 2j + 1. The integral can be solved analytically, but we have found it more
convenient to calculate their values by computer and store them, so that the rest
of the algorithm consists of implementing (10.6)–(10.7) for any given signal f and
(θ, φ) over the sphere by the symbolic and graphics program. This is practical on
a pc up to about N ≈ 65, or j ≈ 32.

In Figures 5 and 6 we show the Wigner function for a discrete symmetric
rectangle signal (RectL(m) = 1 for −j < −L ≤ m ≤ L < j and zero elsewhere),
to be compared with its transformations under the first and second pyramid of
aberrations in (8.7)–(8.8). In the first pyramid, we can see that the features around
the center of the plot (the bottom pole of the sphere) transform consistently with
those in Fig. 3. Those in the second pyramid contain a factor of κ ↔ K, which
seems to introduce a rotation around the center. These figures have appeared also
in Ref. [16], although in a different format .

11. Conclusions

The exploration of discrete Hamiltonian systems is an ongoing process where
our primary aim has been to evince the phase-space properties of the three qua-
dratic systems: the harmonic and repulsive oscillators, and the free system —in
one dimension. The finite oscillator that we reviewed here is under the ægis of
SO(3), and can be said to be reasonably well understood [16]. Free systems under
ISO(2) were touched upon some time ago [6] regarding wavefunctions, evolution,
and Wigner function on a cylindrical phase space. The radius of this cylinder is
proportional to the wavenumber of the field, so a field which is a continuous su-
perposition of all wavelengths (colors) can be represented on a three-dimensional
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m

Figure 5. The first pyramid of aberrations up to order A = 4.
Top row : Rectangle function Rect4(m) shown left as an N = 21-
point signal and right by its Wigner function on the (β, γ) manifold
of the sphere, which projected onto the patch of the plane as in
the left side of the previous Fig. 4, where the flux lines separate
the sphere into quadrants. The marginal of the Wigner function,
integrated horizontally, will yield the (sinc-interpolated) absolute
square of the signal points [16, Eq. (A.6)]. Rows 2,3,4,5 : Aber-
rations of order A = 1 (corresponding to x- and p-translations,
A1/2,1/2;0 and A1/2,−1/2;0); order A = 2 (counterparts to the lin-
ear transformations in Fig. 3, A1,1;0, A1,0;0, and A1,−1;0); order
A = 3 (A3/2,μ;0, for μ = 3

2 ,
1
2 ,−

1
2 ,−

3
2 ), and order A = 4 (A2,μ;0,

2 ≥ μ ≥ −2). The contour lines are drawn to resolve the near-zero
values of the Wigner function: 0.0, ±0.0001, ±0.001, ±0.01, 0.02,
0.03, . . . , 0.15, 0.2, 0.3, . . . , 3.0, 3.1.

space of nested cylinders. The discrete repulsive oscillator model for infinite dis-
crete signals has been treated in Ref. [10]. Finally, for the paraxial regime of optics,
a Wigner function on an R3 space with a third axis of ‘color’ was introduced in
Ref. [30] on the Heisenberg-Weyl group.

Basing our construction on raising and lowering generators in Lie algebras im-
plies that the position operator will always have equally-spaced eigenvalues. If
instead we base our model on q-algebras we can obviate this limitation. Indeed,
with SUq(2), we obtained a model where the sensor points crowd towards the cen-
ter, allowing for a higher resolution of the signals in this region [32, 33]. In the
direction of applications we may compare the discrete with the continuous render-
ing of signals. For finite systems the comparison is made between the orthonormal
basis of Kravchuk functions (5.4) and —most common— the sampled Hermite-
Gauss functions used in wave optics [31]. Although with orthonormal bases we
can restore the N -point signal exactly, it turns out that the non-orthogonal bases
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Figure 6. The second pyramid of aberrations up to order A = 4.
Top row : Aberration of order 1; the same rectangle function
Rect4(m) of the previous figure under a 45◦ rotation (square root
of the Fourier-Kravchuk transform) generated by K = A0,0,1, and
its Wigner function. Second row : Effect of aberrations of order
2, A1/2,1/2;1 and A1/2,−1/2;1 (which are K-repeaters of the trans-
lations in the previous figure, A1/2,1/2;0 and A1/2,−1/2;0). Fol-
lowing rows : Aberrations of order 3, A1,1;1, A1,0;1, and A1,−1;1

(K-repeaters of the three SO(3)-linear transformations A1,μ;0 of
the previous figure), and order 4, A3/2,μ;0, for 3

2 ≥ μ ≥ − 3
2 ). Sig-

nals and their Wigner functions are laid out as in the previous
figure, and correspond to maps whose flow divides the sphere into
octants, as in the right of Fig. 4.

obtained by sampling gain the upper hand when we are interested in performing
an approximate mode analysis of the signal with fewer than N terms terms.

We have broached the subject of separation of discrete variables: two-dimensional
discrete systems can be built with sensor points arranged following either carte-
sian or polar coordinates [34, 35], corresponding with the group-subgroup chains
SO(4) ⊃ SO(2) ⊗ SO(2) or SO(4) ⊃ SO(3) ⊃ SO(2), respectively. Thus one finds
counterparts for the Hermite-Gauss and Laguerre-Gauss beams [36], which in turn
serve to rotate cartesian-pixellated images unitarily, and to map these onto polar-
pixellated images —also unitarily [37]. Among the unsolved problems that may
be addressed, we count the search for separating discrete coordinates of elliptic-
hyperbolic pixellations of the plane. We hope that this succint exposition of SO(3)
systems whets the reader’s interest in group-theoretical models of discrete systems.
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[18] L. Barker, Ç. Candan, T. Hakioğlu, A. Kutay, and H.M. Ozaktas, The discrete harmonic
oscillator, Harper’s equation, and the discrete fractional Fourier transform, J. Phys. A 33,
2209–2222 (2000).
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