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Abstract
The group Sp(2,�) of symplectic linear canonical transformations has an
integral kernel which has quadratic and linear phases, and which is realized by
the geometric paraxial optical model. The discrete counterpart of this model
is a finite Hamiltonian system that acts on N-point signals through N × N

matrices whose elements also have a constant absolute value, although they do
not form a representation of that group. Those matrices that are also unitary
are Hadamard matrices. We investigate the manifolds of these N ×N matrices
under the Sp(2,�) equivalence imposed by the model, and find them to be on
two-sided cosets. By means of an algorithm we determine representatives that
lead to collections of mutually unbiased bases.

PACS numbers: 02.10.Ud, 02.10.Yn, 03.65.Wj

1. Introduction

One of the reasons to be interested in Hadamard matrices is because they define Weyl pairs
of observables, where complete knowledge of one is paired with complete indeterminacy of
the other. The classical example is provided by F , the Fourier integral transform: under this,
a function whose position is exactly determined —a Dirac δ(x − xo)— is transformed into a
function of momentum ∼ e−ixop, whose probability is equally spread over the full real line �.
This transform has a natural finite-dimensional counterpart F, the discrete Fourier transform
(DFT), represented by the N × N Fourier matrix F = ‖Fm,n‖, with elements

Fm,n = 1√
N

exp

(
−i

2πmn

N

)
, (1)

where m, n range over the integers modulo N, namely {0, 1, . . . , N−1}. Here also, every
Kronecker δm,mo

is paired through the DFT matrix with a phase ∼ e−2π i mon/N ; the former are
orthogonal under the common sesquilinear inner product of N-vectors, and so are the latter
because the matrix is unitary. All elements of the DFT matrix (1) have an absolute value
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1/
√

N ; such matrices are called complex Hadamard matrices. Originally, only real matrices
were considered [1], and with this definition many interesting mathematical properties were
found. Studies in quantum computation are using these matrices to characterize measurements
that will yield complete knowledge of a quantum state [2, 3].

In this paper, we provide a source of Hadamard matrices based on a discretized model of
plane paraxial geometric optics, where the group Sp(2,�) of 2 × 2 real symplectic matrices
of linear canonical transforms (LCTs) is associated with a manifold of N × N matrices: the
discrete LCTs (DLCTs). Although these matrices do not represent Sp(2,�) faithfully —all
optical magnifiers are represented by the unit matrix—their elements are complex, have an
absolute value 1/

√
N (exc. magnifiers) and are natural candidates to be Hadamard matrices.

In section 2, we remind the reader of the role of LCTs in linear optical and quantum systems,
and in section 3 of their discrete N × N matrix counterparts, where certain submanifolds are
unitary and hence Hadamard matrices. Each of these matrices H represents an optical system
which acts on N-point signals, transforming an input orthonormal basis {ei}Ni=1 into an output
{fi}Ni=1, which is also an orthonormal basis, and said to be mutually unbiased with respect to
the first, because their CN inner product Hi,j := (ei, fj ) is such that |Hi,j | = 1/

√
N . One

of the issues in quantum tomography is to find maximal sets of such mutually unbiased bases
(MUBs), modulo equivalences of phase and row permutation.

The model of paraxial optics limits the equivalence between Hadamard matrices [4] to
those that can be achieved with (discrete counterparts of) lenses and free flights that carry
quadratic phase transformations. Thus, permutations of the rows and columns of the N × N

matrices cannot be realized. Considering equivalence within Sp(2,�), we characterize the
submanifolds of Hadamard matrices as two-sided cosets in section 4. We have privileged
the group-theoretical context of linear systems that could harbor possible optical or quantum-
mechanical realizations, as well as an associated fast computer algorithm [5, 6]. In section 5,
we determine the parametric form of collections of Hadamard matrices {Hi}ki=1, such that
H

†
i Hj is equivalent to a matrix in the same linear space; also, we provide an algorithm to find

sets of such partners, which yields collections of MUBs for any dimension N, although we
claim completeness (i.e. a collection of size N) only for the case of N odd prime. We are aware
of the copious literature searching for complete sets of Hadamard matrices for composite N
(in particular N = 6), but we regard this problem to be outside our present concerns. In
section 6, we relate the DLCT Hadamard matrices with the quadratic DFTs introduced by
Kibler [7, 8], and with a form of discrete fractional Fourier matrices. We add some comments
in section 7.

2. Linear canonical integral transforms

LCTs in a two-dimensional phase space (x, p) ∈ �2 are determined by the 2 × 2 real

matrices M =
(

a

c

b

d

)
that are symplectic; in the 2 × 2 case this condition reduces to

det M = ad − bc = 1. These were first investigated by Moshinsky and Quesne [9] in
the context of quantum mechanics and by Collins [10] in paraxial optics; they provide a
two-fold cover of the symplectic group Sp(2,�) realized by unitary integral transforms on the
Hilbert space L2(�) of the Lebesgue square-integrable functions space. Their integral kernel,
with a stringent specification of phase, is

(CMf )(x) =
∫

�
dx ′CM(x, x ′)f (x ′), (2)

CM(x, x ′) = KM exp

(
i
dx2 − 2xx ′ + ax ′2

2b

)
= CM−1(x ′, x)∗, (3)

2
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KM := 1√
2π ib

:= e−iπ/4 exp
( − i 1

2 arg b
)

√
2π |b| . (4)

In the submanifold b = 0 they limit to a Dirac distribution:

CM(x, x ′) = δ(x − x ′/a)
1√
a

exp

(
i
cx2

2a

)
, (5)

and thus C1 = 1 is the Sp(2,�) group unit.
The product of two canonical transforms follows that of the Sp(2,�) matrices (up to a

sign as we explain below):

CM1CM2 = ±CM1M2 . (6)

The LCT contains the Fourier transform F = eiπ/4C�, corresponding to the matrix

Φ :=
(

0
−1

1
0

)
. Indeed, it provides its fractional powers as a one-parameter subgroup:

Fν = eiπν/4CΦν , Φν :=
(

cos 1
2πν sin 1

2πν

− sin 1
2πν cos 1

2πν

)
, (7)

with ν mod 4. The two-fold cover of LCTs over the Sp(2,�) matrices can be seen here: since
F4 = 1, the phase i 1

4πν shows that the fourth power of the LCT operator is C4
� = −1. Due to

the square root, the LCT realization covers the fractional Fourier subgroup twice, bearing the
onus of the sign in (6). See [11, chapter 9] and [12, sections 9.4 and C.2].

LCT transforms act on the classical and quantum-mechanical Schrödinger operators of
position X [X f (x) = x f (x)] and momentum P [P f (x) = −i d f (x)/dx]:

CM

(
X
P

)
C−1

M = M−1

(
X
P

)
. (8)

The inverse of the matrix on the right ensures that the LCT product (6) is in the correct order.
Paraxial optics provides an attractive interpretation of various basic one-parameter subgroups
of LCTs [13], that we quote as follows:

Free propagation by
distance or time

}
z � 0, CFr(z) = C

(
1 −z

0 1

)
, (9)

Lens of Gaussian power
x2-potential jolt of strength

}
g, CL(g) = C

(
1 0
g 1

)
, (10)

Magnifier by the factor μ, CM(μ) = C
(

μ 0
0 1/μ

)
, (11)

Waveguide evolution
harmonic oscillator

}
by z � 0, Cwav(z) = e−iπz/4F−z. (12)

Out of the products of elements in the first two subgroups, one can recover the full Sp(2,�),
while the last three provide its modified Iwasawa decomposition [12, section 9.5].

3
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3. Discrete LCTs

In models where measurements are made through a linear array of N sensors, the LCT integral
kernel is replaced by an N × N matrix that must be invertible if no loss of information is
desired, and unitary if we demand that orthogonal signal bases remain orthogonal. Generally,
they are called DLCTs.

Consider a field f (x) sensed at an input screen (or initial time) z = 0; after having passed

through a system characterized by the 2 × 2 symplectic matrix M =
(

a

c

b

d

)
∈ Sp(2,�),

ad − bc = 1, the output field is (CMf )(x). When the field is sensed at N points placed at
xm ≡ m integers, the input signal is represented by the N-vector f in = {

f in
m

}N

m=1 and the output

by fout = {
f out

m

}N

m=1 multiplied with the N × N matrix W(M) given by

fout = W
(

a b

c d

)
f in, (13)

which depends on three independent parameters of the group Sp(2,�). The discretization
of the LCT integral kernel (2)–(5) that we adopt follows [6]. These DLCT matrices
W(M;N) ≡ W(M) ≡ WM have elements

W

(
a b

c d

)
m,n

:= 1√
N

exp
( iπ

bN
(am2 − 2mn + dn2)

)
, (14)

all of whose absolute values are 1/
√

N —except for b = 0, where we adopt

W

(
a 0
c 1/a

)
m,n

:= δm,n exp(iπcn2/aN). (15)

Because the elements are generally not periodic modulo N, we count rows and columns by the
integers m, n ∈ {1, 2, . . . , N}.

To compute the matrices W(M) efficiently, most often the 2 × 2 matrix M is decomposed
into a product of lower-triangular matrices, whose W’s are diagonal, and the Fourier factor
Φ := ( 0

−1
1
0

)
, whose DLCT is W(Φ) = F. For the latter, the fast Fourier transform (FFT)

algorithm is available to radically reduce the complexity of the computation. This process has
been studied extensively in [14–17]. Alternatively, one may decompose W(M) in a fashion
comparable to the FFT [5, 6].

Although for b 
= 0 the absolute value of all elements (14) is 1/
√

N , not all DLCT matrices
are unitary. Unitarity is important for us, so we determine that for which M’s W†

MWM = 1
holds. The matrix elements of this product are

(
W†

MWM

)
k,n

= 1

N

N∑
m=1

exp
( iπ

bN
(2km − dk2 − 2mn + dn2)

)

= 1

N
exp

(
iπd

bN
(n2−k2)

) N∑
m=1

exp

(−2iπ

bN
m(k−n)

)
. (16)

The WM ’s will thus be unitary when the sum over m in (16) yields Nδk,n. This occurs when the
summands form a ‘balanced’ set of points in the complex plane (we say a set of point masses
on a circle is balanced when their center of mass is at the center of the circle). This happens
when 1/bN is a fraction 1/N, 2/N, . . . , (N−1)/N , excepting those where 1/bN = 1/N ′

for the integer N ′ that is a divisor of N—because then the summands would be periodic in k−n
mod N ′ = N/No for some other integer No, the matrix would then contain two equal columns,
and thence det WM = 0. We thus conclude that the DLCT matrices W

(
a

c

b

d

)
are unitary when

b = 1/B, B integer mod N, gcd(B,N) = 1, (17)

4
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i.e., it is sufficient that the b-parameter be the inverse of an integer B relatively prime to N. For
low dimensions we thus have

N = 3, B ∈ {1, 2}, total: 2
4, {1, 3}, 2
5, {1, 2, 3, 4}, 4
6, {1, 5}, 2
7, {1, 2, 3, 4, 5, 6}, 6
8, {1, 3, 5, 7}, 4
9, {1, 2, 4, 5, 7, 8}, 6

10, {1, 3, 7, 9}, 4.

(18)

For N prime there will be N − 1 acceptable values of B.
Which of the group properties of LCTs, action (8) and multiplication (6), are inherited by

the N × N DLCTs? Evidently the unit is W(1) = 1 from (15) and, provided (17) holds, the
explicit form (14)–(15) of the unitary N × N W-matrices also respects Hermitian inversion:

W
((

a b

c d

)−1)
=

(
W

(
a b

c d

))†
= W

(
d −b

−c a

)
. (19)

On the other hand, unlike (6), the unitary W(M) matrices do not form a group. A well-known
theorem states that a noncompact Lie group, such as Sp(2,�), cannot be represented faithfully
by finite unitary matrices [18]. So we note that due to (15), all diagonal Sp(2,�) matrices
are represented by the N × N unit matrix, W

(
a

0
0

1/a

) = 1; there are no DLCT magnifiers.
We also note that lower-triangular Sp(2,�) matrices correspond to diagonal N × N matrices
W

(
a

c

0
1/a

) = W
( 1

c/a

0
1

)
with quadratic phases ∼ exp(icm2/a). These represent thin lenses of

Gaussian power c/a. And generally W(M1) W(M2) 
= W(M2M1). (The inversion of the
order of the factors is due to (8) and (13).)

4. DLCT matrices that are Hadamard

In the current literature, an N × N matrix H = ‖Hm,n‖ is called complex Hadamard when it
is unitary and all its elements have the same absolute value |Hm,n| = 1/

√
N . Thus, all unitary

DLCT matrices that satisfy (17) are Hadamard matrices. Commonly, two Hadamard matrices
H1 and H2 are said to be equivalent if there exist two diagonal phase matrices DA, DB and
two permutation matrices PA, PB such that [4]

H2 = PADAH1DBPB. (20)

Since we are interested in the realization of Hadamard transformations by Sp(2,�)
homogeneous linear systems, we cautioned above that diagonal DLCT matrices can only
bear quadratic phases eim2γ δm,n (corresponding to thin lenses or ∼ x2 potential jolts) at
the input and output z-planes, we exclude linear phase matrices eimαδm,n (corresponding to
misalignments or prisms, or free-fall ∼ x potential jolts). Permutation matrices must also be
excluded because they do not correspond to any paraxial optical or quantum setup (except
in Talbot optics, where an N-cycle permutation can be corresponded with translations of the
cyclic position coordinate [19]). We note that the DLCT matrices are all equivalent to the
Fourier matrix using the normal definition of equivalence.

The Hadamard equivalence (20) will thus be reduced and characterized as an equivalence
between Sp(2,�) 2 × 2 matrices. Consider elements of the subgroup (10) placed at the input
and output planes:

L(γ ) =
(

1 0
γ 1

)
∈ L, γ ∈ �, (21)

5
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and the equivalence relation that determines its two-sided cosets [18] within Sp(2,�):

M′ ≡ L(γ )ML(γ ′), γ, γ ′ ∈ �. (22)

(
a′ b′

c′ d ′

)
=

(
1 0
γ 1

)(
a b

c d

) (
1 0
γ ′ 1

)
(23)

=
(

a + bγ ′ b

c+γ a+dγ ′+γ bγ ′ γ b + d

)
. (24)

From (24) we see that each value of b ∈ � determines one two-sided coset in L\Sp(2,�)/L,
whose union is Sp(2,�), and whose intersection is null—since they are disjoint equivalence
classes. The manifold of each two-sided coset is two dimensional and can be parametrized
by (γ, γ ′) ∈ �2. When b = 1/B satisfies the unitarity condition (17), with B integer and
relatively prime to N, all W(M(b))’s in that (γ, γ ′) plane are equivalent Hadamard matrices.
When in (22)–(24) we fix γ ′ = 0, the matrices

(
a

c+γ a

b

γ b+d

)
, γ ∈ �, will form left cosets

L\Sp(2,�), which are lines parametrized by γ , and each left coset is characterized by two
parameters, (a, b) ∈ �2 − {0, 0}. On the line of each left coset we can choose a matrix to be
representative of that coset. In particular, we set γ = −d/b (b 
= 0) and regard the unitary
matrices

M(a, b) :=
(

a b

−1/b 0

)
,

a ∈ �,

b ∈ (17).
(25)

W(M(a, b))m,n = 1√
N

exp
(

iπ
am2 − 2mn

bN

)
. (26)

Their manifold is the set of lines a ∈ �, b = 1/B, gcd(B,N) = 1. (A similar construction
can be made for right cosets Sp(2,�)/L by setting γ = 0, and using (b, d) to characterize
each right coset.)

5. Mutually unbiased bases of DLCTs

The definition of a collection of MUBs of Hadamard matrices is the following [20]. If H is
the set of N × N Hadamard matrices, a collection of k MUBs {Hi}ki=1 ∈ H is such that their
‘Hadamard’ product remains within H, i.e.

1√
N

H†
i Hi ′ ∈ H. (27)

We proceed to show that the sets of left coset representative matrices (26) contain collections
of MUBs. We look for conditions on the parameter a that allow for (27) to hold; denoting
by M1 and M2 two matrices of the form (25), we compute the Hadamard product of their
corresponding DLCT matrices (with Bi = 1/bi):

H(1,2) := W(M1)
†W(M2), (28)

H
(1,2)
k,n = 1

N

N−1∑
m=0

exp
iπ

N

[(
a2

b2
− a1

b1

)
m2 + 2

(
k

b1
− n

b2

)
m

]
(29)

= G

(
1

2

(
a2

b2
− a1

b1

)
,

(
k

b1
− n

b2

)
, N

)
(30)

6
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= 1√
N

εN eiϕJ

(
1

2
(a2B2 − a1B1)

∣∣∣N
)

. (31)

In (30), G(α, β,N) is the generalized quadratic Gauss sum [21]; J (α | N) in (31) is the Jacobi
symbol [22], which is defined for integer arguments α only, and when N is odd and relatively
prime to α 
= 0, it is a sign. And finally, εN is a sign and exp iϕ(a, b) is also a phase; these we
also disregard because we are interested in the absolute value

∣∣H(1,2)
k,n

∣∣. We thus conclude that

W(M(a1, 1/B1))
†W(M(a2, 1/B2)) ∈ H

when 1
2 (a2B2−a1B1) is an integer not congruent to 0 mod N.

(32)

We proceed to show how many collections of N MUBs exist for N ×N DLCT matrices of
the form (25) and (26). For prime N, the following algorithm will generate a random collection
of N MUBs from the space of all possible collections of this type.

(1) Select a real number 0 � ao < 2.
(2) Enumerate the sets of points (a, B), with a mod 2N so 0 � a < 2N , and

B ∈ {1, 2, . . . , N−1} with gcd (B,N) = 1, such that aB = ao + 2n mod 2N , for
n ∈ {0, 1, 2, . . . , N−1}. When N is prime, these points will be

(ao+2n, 1),(ao+2n

2
, 2

)
,

(ao+2n+2N

2
, 2

)
,

(ao+2n

3
, 3

)
,

(ao+2n+2N

3
, 3

)
,

(ao+2n+4N

3
, 3

)
,

...
...

. . .(ao+2n

N−1
, N−1

)
,

(ao+2n+2N

N−1
, N−1

)
, . . . ,

(ao+2n+2(N−2)N

N−1
, N−1

)
.

(33)

(3) Randomly choose N points—one from each column—such that the N values aB are
distinct, i.e. one point for each choice of n. These N points (a, B) yield a collection of
MUBs of N × N matrices W(M(a, 1/B)) ∈ H.

We now prove that the algorithm given above always generates a collection of MUBs.
From equation (32), we know that two DLCT Hadamard matrices, M1(a, b) and M2(a, b),
multiply to produce a third Hadamard matrix, M3(a, b), if and only if a2B2 − a1B1 = 2n,
where n is an integer and 2n is not congruent to zero modulo 2N . Any two points in (33)
have a1B1 = ao + 2p1 mod 2N and a2B2 = ao + 2p2 mod 2N , for the integers p1 and p2,
p2 
= p1. Thus, a2B2 − a1B1 = 2(p2−p1) mod 2N . As p2 
= p1, 0 � p2, p1 < N , and
−2N < p2−p1 < 2N , so 2(p2−p1) is not congruent with zero modulo 2N .

The choice of ao selects from a continuum, and each choice is unique. Changing ao simply
shifts the points in the a-direction modulo 2N (accounting for some wrapping effects). Hence
there are infinitely many collections of MUBs. For a given ao we can calculate how many such
collections exist: for N prime, step 2 generates N sets of 1 + 2 + 3 + · · · + N−1 = 1

2 (N−1)N

Hadamard matrices. Every combination of one of these elements from each set is a collection
of MUBs, giving a total of ( 1

2 (N−1)N)N for each choice of ao. In figure 1 we show the points
generated by choosing ao = 1 and N = 5.

We note that the algorithm is constrained to the case of N odd prime. As collections
of MUBs for non-primes are of interest in the literature, we will comment briefly on them.
Modifications are possible for non-prime N; however, these produce fewer points than the
prime cases. For example, if N = pm, with p an odd prime and m integer, the algorithm works

7
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x

x x

x x x

x x x x

1 2 3 4 5 6 7 8 9 10

1

2

3

4

B

a

Figure 1. The (a, B) plane of N × N Hadamard DLCT matrices W(M(a, 1/B)) for N = 5
and B = 1/b ∈ {1, 2, 3, 4}. We arbitrarily select ao = 1; then our algorithm produces, for
n ∈ {0, 1, 2, 3, 4}, the points where aB ≡ 1 mod 10 (•), aB ≡ 3 mod 10 (×), aB ≡ 5 mod 10
(�), aB ≡ 7 mod 10 (�), and aB ≡ 9 mod 10 (�). Any combination of one of these five types of
points constitutes a collection of MUBs.

as for primes except for the points where n is of the form (1 + 2qp), for the positive integer q.
For example, for N = 9, a0 = 1, the points (1,1), (3,1), (5,1), (9,1), (11, 1), (15, 1), (17, 1),
form a collection of seven MUBs. For such non-prime N’s our algorithm produces collections
of fewer than N MUBs, though not necessarily much fewer. We note that algorithms are
known which produce larger collections of MUBs for this case. Finally, it must be said that
the 2 × 2 matrices M(a, 1/B) do not show any recognizable group properties yet.

6. Quadratic and fractional Fourier matrices

In [7, 8] Kibler introduced the quadratic Fourier transform matrices

(Fr,s)m,n = 1√
N

exp
[ iπ

N

(
m(N−m)s + m[2n−(N−1)r] + 1

2 (N−1)2r
)]

, (34)

for r ∈ � and s ∈ {0, 1, . . . , N−1}; the case r = 0 = s corresponds to the DFT matrix (1).
We can relate (34) with the DLCT matrices modulo phase factors:

(Fr,s)m,n = exp

[
iπ

1

2

(
N − 2 +

1

N

)
r

]
exp

[
iπm

(
s −

[
1− 1

N

]
r

)]
W

(
s −1
1 0

)
m,n

. (35)

The first and second factors are a constant and a linear phase. According to the stronger
equivalence relation (20), the Hadamard matrices (34) are thus equivalent to the DLCT MUBs
W

(
an

1
−1
0

)
given above.

The N × N DFT matrix (1) is considered to be the prototype of a Hadamard matrix. In
the Sp(2,�) group of continuous LCTs, its fractionalization is Fν = eiπν/4C(Φν), with the
matrix (7) and ν mod 4. From what we saw above, the corresponding DLCT matrices W(Φν)

in (14) will be unitary, and hence Hadamard matrices when (17) holds, namely for powers

ν = 2

π
arcsin

1

B
, B ∈ {1, 2, . . . N−1}, gcd(B,N) = 1. (36)

Yet, these N × N matrices do not satisfy condition (32) so they do not lead to a collection of
MUBs, nor do they form a discrete subgroup of Sp(2,�).
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7. Concluding remarks

Motivated by the possibility of physical realization through optical or quantum mechanical
systems, we have shown that certain discrete, N-point linear canonical transformations are
represented by Hadamard matrices. The equivalence criterion for these matrices had to
be correspondingly strengthened due to the impossibility of producing row and column
permutations, or impressing arbitrary phases with such systems. In this context we have
provided an algorithm to find Hadamard matrices that form maximal collections of MUBs for
N prime. We do not assert to have found maximal collections of MUBs Hadamard matrices
for non-odd-prime dimensions, nor to have resolved any of the long-standing problems related
to these matrices that are found in the mathematical literature.

For the continuum limit N → ∞, the integer sensor points m count coordinates of
distance q := m u

√
(2π/N), with u a unit such as the reduced wavelength λ/2π in wave

optics, q = u
√

(2π/N) → 0 is the distance between adjoining sensors and the size of the
array grows as N q → ∞. The DLCT summation kernel (14)–(15) then converges weakly
to the LCT integral kernel (2) with a phase factor. However, the free-flight parameter (9) in
these units becomes z = u b = u/B, which in optical setups is too small for a true paraxial
model to be valid. Quantum mechanical devices that act in time as Hadamard systems may be
much different, but we dare not suggest concrete physical realizations for them. The objective
achieved here has been to relate Hadamard systems with elements of the symplectic group of
linear canonical transformations.
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