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The measurement of continuous wave fields by a digital (pixellated) screen of sensors can be used to assess the
quality of a beam by finding its formant modes. A generic continuous field Fðx; yÞ sampled at an N × N Cartesian
grid of point sensors on a plane yields a matrix of values Fðqx; qyÞ, where ðqx; qyÞ are integer coordinates. When the
approximate rotational symmetry of the input field is important, one may use the sampled Laguerre–Gauss func-
tions, with radial and angular modes ðn;mÞ, to analyze them into their corresponding coefficients Fn;m of
energy and angular momentum (E-AM). The sampled E-AM modes span an N2-dimensional space, but are not
orthogonal—except for parity. In this paper, we propose the properly orthonormal “Laguerre–Kravchuk” discrete
functions Λn;mðqx; qyÞ as a convenient basis to analyze the sampled beams into their E-AM polar modes, and with
them synthesize the input image exactly. © 2011 Optical Society of America

OCIS codes: 070.2025, 100.0100.

1. INTRODUCTION: LAGUERRE–GAUSS
FUNCTIONS
Two-dimensional sensor arrays are customarily used to re-
ceive and analyze acoustic or phase-controlled optical beams,
interpreting the data to resolve their formant modes. Assume
the field is recorded by sampling its continuous complex
function Fðx; yÞ on an N × N equally spaced square of points
ðx; yÞ ¼ sðqx; qyÞ, for integer qx; qyjj−j ∈ □—with N ¼ 2j þ 1
odd so that ð0; 0Þ is the center point of the array □—and
an appropriate scale factor s to be determined. Out of this ma-
trix of N × N data values fFðqx; qyÞgqx;qy∈□, we want to find
the coefficients of modes characterized by their number of
nodal circles and radial lines. We should end up with N2 coef-
ficients out of which we could reconstruct the beam through a
similar array of points acting as field emitters with controlled
intensity and phase.

The set of Laguerre–Gauss eigenfunctions of the 2-dim
quantum harmonic oscillator of energy En ¼ nþ 1
(n ∈ f0; 1;…g) and angular momentumm are well known [1]:
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where Ljmj
ν ðrÞ is the associated Laguerre polynomial in the

radius r ≥ 0, and where the quantum numbers ðn;mÞ have
the integer ranges

nj∞0 ; m ∈ f�n;�ðn − 2Þ;…;�1 or 0g: ð2Þ

We change coordinates to x ¼ r cos θ, y ¼ r sin θ, and the
sampled values of Eq. (1) at the sensor points of a centered

N × N square array with intersensor distance s, with
σm ≔ signm, are written as
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where An;mðsÞ are normalization factors in the complex N2-
dimensional vector space V of N × N matrices (N ¼ 2j þ 1)
F , G, whose inner product and norm are

ðF;GÞ□ ≔
X

qx;qy∈□

Fðqx; qyÞ�Gðqx; qyÞ; jF j≔pðF; FÞ: ð4Þ

Since there are onlyN2 values provided by the sensor array,
there cannot be more than N2 linearly independent discrete
functions ΦðsÞ

n;mðqx; qyÞ among the ðn;mÞ in Eq. (2) to form
a basis for V. We may conjecture that some subset bound from
above by energy could provide them, but the number of states
up to some En is 1þ 2þ � � � þ nþ 1 ¼ 1

2 ðnþ 1Þðnþ 2Þ, which
does not fit the square N2. One is faced thus with the dilemma
of choosing among various subsets ðn;mÞ of N2 E-AM modes.
Only parity ðqx; qyÞ↔ð�qx;�qyÞ separates the states into four
orthogonal subspaces. But generally, beyond the lowest n, the
sampled Laguerre–Gauss functions of Eq. (3) form angles un-
der Eq. (4) that become vanishingly small with growing n, so
the computation of coefficients obtained from their dual basis
becomes very unstable.

The orthonormal Laguerre–Kravchuk functionsΛn;mðqx;qyÞ
are introduced in Section 2; they form a basis complete in V
for indices ðn;mÞ in a range ⋄ that we characterize in that
section. This is a proper discrete E-AM basis in which we
propose to perform the analysis and restore the original
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signal on N × N arrays of sensor points. Some of their prop-
erties have been explored in [2–5]. In the case of one-di-
mensional arrays, the comparison between the use of
sampled Hermite–Gauss versus Kravchuk functions was
made in [6]; a similar comparison will be made here for
the two-dimensional case of pixellated images. In Section 3
we settle the issue of the scale factor s in Eq. (3) by choos-
ing the best fit of the sampled ground state ΦðsÞ

0;0ðqx; qyÞ to
the lowest mode Λ0;0ðqx; qyÞ.

There are three analyses of an input field that we consider
in Section 4: the expansion coefficients obtained by integra-
tion of the image with the Laguerre–Gauss functions, the
sum of pixel data with the sampled functions, and the ortho-
normal expansion into Laguerre–Kravchuk functions. Since
the sampled basis cannot be trusted for numerical reasons,
in Section 5 we propose a successive projection algorithm that
competes favorably with the inversion of their matrix. In Sec-
tion 6 we conduct some numerical experiments on “discontin-
uous” and smooth input images, knowing that only the
Laguerre–Kravchuk basis can restore the original digital
images exactly. Some conclusions are offered in Section 7.

2. KRAVCHUK AND LAGUERRE–
KRAVCHUK FUNCTIONS
The Laguerre–Kravchuk functions on the discrete array
qx; qy ∈ □ were built out of linear combinations of two Krav-
chuk functions of qxjj−j and of qyjj−j in [2]; the latter [7] are ei-
genfunctions of an N -point discrete oscillator model [8,9], and
bases for irreducible representations of the Lie algebra soð3Þ
[10,11]. Let us denote the generators of this algebra by J1, J2,
and J3; then, finite rotations are generated by their Lie expo-
nentials, expðiθJiÞ, acting on N -vectors through N × N ma-
trices. The matrix elements of expðiθJ2Þ are the well-
known Wigner “little-d” functions of djm;m0θ, N ¼ 2j þ 1 [10].
The overlap between the eigenfunctions of J1 with position
eigenvalue qjj

−j , and the eigenfunctions of the orthogonal J3

with displaced-energy eigenvalue n − j, or mode number
nj2j0 , is djn−j;qð12 πÞ: the finite oscillator wavefunctions [8]. They
are expressible in terms of the square root of a binomial (dis-
crete counterpart of the Gaussian), and a symmetric Kravchuk
(id. for Hermite) polynomial [7,11–13]:
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The Kravchuk functions in Eq. (6) are real, orthonormal
bases for N ¼ 2j þ 1-dimensional vector spaces; under reflec-
tions q↔ − q their parity is ð−1Þn. These have been used in 1-
dim signal analyses [6,13], that we now extend to 2-dim
images. For a two-dimensional array, the direct product of
two Kravchuk bases yields the Cartesian modes:

Ψj
nx;ny

ðqx; qyÞ≔Ψj
nx
ðqxÞΨj

ny
ðqyÞ: ð8Þ

These are shown in Figure 1(a), in a rhomboidal arrangement
indicated by ðnx; nyÞ ∈ ⋄, of digital (pixellated) screens
ðqx; qyÞ ∈ □. The total mode number is n≔nx þ ny ∈

f0; 1;…; 4jg, and the energy is En ¼ nþ 1 as before. These
functions form a complete and orthonormal basis for V, the
N2-dimensional space with the inner product from Eq. (4).

The Laguerre–Kravchuk E-AM basis Λj
n;mðqx; qyÞ of V is

now defined by importing [14] the relation between the con-
tinuous Hermite–Gauss and Laguerre–Gauss modes, which is
given by a Wigner little-d function, and entails the linear com-
bination of all modes with the same total mode number n. It is
a unitary gyration [3] of the Cartesian basis of Eq. (8), defined
by

Λj
n;mðqx; qyÞ≔ ð−1Þðjmj−mÞ=2 X

nxþny¼n

ð−iÞnydn=21
2ðnx−nyÞ;12m

ð12πÞ

×Ψj
nx;ny

ðqx; qyÞ: ð9Þ

They are orthonormal under the inner product of Eq. (4) of V,
the N2-dimensional space of all digital screen functions,

ðΛj
n;m;Λj

n0;m0 Þ□ ¼ δn;n0δm;m0 : ð10Þ

The set of Laguerre–Kravchuk functions in Eq. (9) is also
complete in V, and its indices ðn;mÞ provide the basis for a
dual space ~V, whose inner product we denote by

ð~F; ~GÞ⋄ ≔
X

ðn;mÞ∈⋄

~F�
n;m

~Gn;m; ð11Þ

where the range of ðn;mÞ ∈ ⋄ is determined by the range of
ðnx; nyÞ ∈ ⋄, and falls into two triangular subsets of indices

lower▿: nj2j0 ; m ∈ f�1 or 0;…;�ðn − 2Þ;�ng; ð12Þ

upper▵: nj4j−22j ; m ∈ f�1 or 0;…;�ð4j − n − 2Þ;
� ð4j − nÞg; ð13Þ

that overlap for n ¼ 2j þ 1 ¼ N . Under this inner product, the
Laguerre–Kravchuk states are also orthonormal:

ðΛjðqx; qyÞ;Λjðq0x; q0yÞÞ⋄ ¼ δqx;q0xδqy;q0y ; ð14Þ

and thus provide the matrix transform kernel between V
and ~V.

The lower triangle in Eq. (12) contains the ground and
lower modes, while the upper triangle in Eq. (13) contains
highly oscillating functions. We show these E-AM modes in
Figure 1(b). Since for m ≠ 0 the angular factor in Eq. (9) is
complex, it is convenient to plot the real functions:

Λj
n;jmj;þðqx; qyÞ ¼

1p
2
ðΛj

n;mðqx; qyÞ þΛj
n;−mðqx; qyÞÞ;

Λj
n;jmj;−ðqx; qyÞ ¼

1
i
p
2
ðΛj
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n;−mðqx; qyÞÞ: ð15Þ
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We note that the lower states ðm;nÞ ∈ ∇, including the
ground state ð0; 0Þ, multiplied by a checkerboard of alternat-
ing signs, yield the higher states inΔ through reflection across
their horizontal boundary, including the highest state ð4j; 0Þ.
We have thus also resolved the dilemma posed in Section 1
regarding which sampled E-AM modes ðn;mÞ we should in-
clude to match the N2 data points of the sensor grid.

3. CALIBRATION OF SCALE FOR MODE
EXPANSION
To calibrate the scale factor s in Eq. (3), we assume that the
sensor array is fixed, and that the ground mode Φ0;0ðx; yÞ ¼
Ψ0;0ðx; yÞ of the physical source of the beam can be centered;
then it can be magnified or reduced to achieve a best match
with the ground Laguerre–Kravchuk function Λj

0;0ðqx; qyÞ in
Eq. (9). The input beam is sensed by the array as
ΦðsÞ

0;0ðsqx; sqyÞ, so we ask for the norm of their difference to
be minimized:

Dj
0ðsÞ≔ jΛj

0;0 −ΦðsÞ
0;0j; Dj

0ð�sÞ≔min
s
Dj

0ðsÞ; ð16Þ

finding thus the optimal scale factor �s for each array size
N ¼ 2j þ 1. This minimum is unique because both functions
have a single central positive bulge.

In [6] we compared the 1-dim sampled Hermite–Gauss
ground states (for j ¼ 7 and 15) to find the optimal values
of �s for each j and showed graphically that this value does

not change much with growing n; it only differs significantly
for the highest values n ≈ 2j. In two dimensions, the ground
state is the product of two 1-dim ground states in the x
and y directions, so the same value of �s can be found here
by scanning the ðqx; 0Þ or the ð0; qyÞ lines. In that reference,
for 31 × 31 sensor arrays (j ¼ 15) we determined that the mini-
mum of the ground state difference, D15

0 ðsÞ occurs at
�s ¼ 0:258253. With this value, we can compute all other differ-
ences Dj

n;mð�sÞ≔ jΛj
n;m −Φð�sÞ

n;mj, which grow slowly with n (as
in the 1-dim case in [6]), up to the top of the rhombus of states
in Figs. 1.

4. THREE EXPANSIONS IN E-AM MODES
A continuous image field, �Fðx; yÞ; ðx; yÞ ∈ R2, can be synthe-
sized from the infinite basis of continuous, normalized
Laguerre–Gauss functions, Φ°

n;mðr; θÞ≡ �Φn;mðx; yÞ in Eq. (1),
with radial and angular mode coefficients f�Fn;mg obtained
through integration over R2, as

�Fðx; yÞ ¼
X∞
n¼0

Xn
m¼−n

ð2Þ�Fn;m
�Φn;mðx; yÞ; ð17Þ

�Fn;m ¼
ZZ

R2
dxdy �Φn;mðx; yÞ� �Fðx; yÞ; ð18Þ

where the sum overm is understood to be in steps of 2, and by
overlines we identify the continuous field and its integral
E-AM coefficients. These integral coefficients will be

Fig. 1. (a) Two-dimensional Cartesian modesΨj
nx;ny

ðqx; qyÞ; ðqx; qyÞ ∈ □, nxj2j0 ; nyj2j0 , given by Eq. (8) for j ¼ 8 (N ¼ 17). At bottom is the ground
state ð0; 0Þ and at the top is the highest state ð2j; 2jÞ that can be registered by the sensor array. (b) E-AM modes Λj

n;jmj;�ðqx; qyÞ; ðn;mÞ ∈ □,
obtained by the importation of symmetry [Eq. (9)] from linear combination of all states with total energy n ¼ nx þ ny, and angular momentum
m, given by Eqs. (9) and (15). Form < 0, we show the “sine”modesΛj

n;jmj;−, and form ≥ 0 the “cosine”modesΛj
n;jmj;þ. At the bottom is the ground

state Λj
n;jmj;þ ¼ Ψj

0;0 and at the top is the highest energy state Λj
4j−2;9;þ ¼ Ψj

2j;2j .
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compared with their approximations obtained for the set of
N2 data obtained from the digital screen of sensors.

To implement such algorithms on N2 × N2 matrices and
N2 vectors, we require a numeration convention to assign a
single index q to the pair ðqx; qyÞ, to be denoted by
qjN2

1 ↔ðqx; qyÞ ∈ □; and another convention for the E-AM pair
of indices, νjN2

1 ↔ðn;mÞ ∈ ⋄. These are established and de-
tailed in Appendix A.

The synthesis and analysis of a digital image vector
fFqg↔fFðqx; qyÞg ∈ V in terms of a matrix formed by the
nonorthogonal basis of sampled Laguerre–Gauss functions,
Φð�sÞ

n;m in Eq. (3), with coefficients fFL
ν g↔fFL

ðn;mÞg, is

Fq ¼
X
ν
Lq;νFL

ν↔Fðqx; qyÞ ¼
X

n;m∈⋄

Lðqx;qyÞ;ðn;mÞFL
n;m; ð19Þ

FL
ν ¼

X
q

ðL−1Þν;qFq↔FL
n;m ¼

X
qx;qy∈□

ðL−1Þðn;mÞ;ðqx;qyÞFðqx; qyÞ;

ð20Þ

where Lq;ν↔Lðqx;qyÞ;ðn;mÞ ≔Φð�sÞ
n;mðqx; qyÞ: ð21Þ

Since the N2 × N2 L ¼ ‖Lk;k0‖ contains rows of sampled La-
guerre–Gauss functions that form very small angles among
themselves, its determinant is very near to zero, as was noted
in the 1-dim case studied in [6], where, for N ¼ 31,
detL ≈ 2:33 × 10−41.

On the other hand, the finite digital image may be readily
expanded in terms of the orthonormal and complete La-
guerre–Kravchuk functions in Eq. (9), Λj

νðqÞ↔Λj
n;mðqx; qyÞ,

with the same assignments q≔ ðqx; qyÞ and ν≔ ðn;mÞ as
above. It reads

Fq ¼
X
ν
Kq;νFK

ν ↔Fðqx; qyÞ ¼
X

n;m∈⋄

K ðqx;qyÞ;ðn;mÞFK
n;m; ð22Þ

FK
ν ¼

X
q

K�
ν;qFq↔FK

n;m ¼
X

qx;qy∈□

K�
ðqx;qyÞ;ðn;mÞFðqx; qyÞ; ð23Þ

where Kq;ν↔K ðqx;qyÞ;ðn;mÞ ≔Λn;mðqx; qyÞ: ð24Þ

The determinant of the matrix K ¼ ‖Kk;k0‖ is 1.
We should not discard the sampled Laguerre–Gauss func-

tions for not forming an orthonormal basis, with an inverse
transform matrix from Eq. (21) that is unstable. As in [6], this
basis can used with a different algorithm that we now proceed
to describe.

5. SUCCESSIVE PROJECTION ALGORITHM
Understanding that the sampled basis does not have a good
dual basis, we give an algorithm that successively projects
out the lowest and then the higher modes. First one asks
for the overlap of the signal with the optimally sampled

Fig. 2. First and second columns, four continuous fields Fðqx; qyÞ and their sampled digital images on a 31 × 31 (j ¼ 15) grid ðqx; qyÞ ∈ □: a
circular drum function �F°ðr; θÞ ¼ 1 for r ≤ 7:5 and zero otherwise; a rosetta with eight spokes of 1 pixel width; a letter Q, whose “tail” partially
breaks rotational symmetry; the smooth field �F ¼ −Φ°

2;0 −Φ°
3;3 −Φ°

3;−3 þΦ°
4;0. Third column, integral E-AM coefficients �Fn;m of the images in the

first column, obtained from the integration in Eq. (18), for ðn;mÞ ∈ ⋄. The numbers under each rhombus give the absolute maximum of the pixel
values; the gray tones were chosen to highlight the values near zero as explained in the text. The Q image has complex coefficients; the larger
rhombus shows the real part and the smaller one the imaginary part, both scaled by their common absolute maximum. Fourth column, Laguerre–
Kravchuk E-AM coefficients FK

n;m in Eq. (23), ðn;mÞ ∈ ⋄, of the digital images in the second column. Fifth column, sampled Laguerre–Gauss ex-
pansion coefficients f n;m obtained from Eq. (25), ðn;mÞ ∈ ⋄, of the same digital images.
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ground state Φð�sÞ
0 ðqÞ, and subtracts this component from the

signal; the remaining signal (now with no Φð�sÞ
0 component) is

then overlapped with the next higher sampled state, which is
again subtracted from the signal (having now noΦð�sÞ

ν , ν ¼ 0; 1
components); and so successively. This algorithm builds a se-
quence of difference vectors:

Δðνþ1ÞðqÞ ¼ ΔðνÞðqÞ − f νΦð�sÞ
ν ðqÞ;

Δð0ÞðqÞ≔FðqÞ; f ν ≔ ðΔðνÞ;Φð�sÞ
ν ÞN:

ð25Þ

In this way, the signal is analyzed into the sampled basis with
coefficients ff νgN2−1

ν¼0 as

FðqÞ ¼ f 0Φð�sÞ
0 ðqÞ þ f 1Φð�sÞ

1 ðqÞ þ � � � þ f N2−1Φ
ð�sÞ
N2−1

ðqÞ
þΔðN2ÞðqÞ; ð26Þ

where we note that there is no guarantee that the norm of the
remanent vector ΔðN2ÞðqÞ in Eq. (26) be zero. This algorithm
permits a fair approximation to the integral coefficients of the
continuous signal, but may fail to reconstruct the input signal
exactly.

The succesive projection algorithm must use an appropri-
ate numbering scheme to define ν≔ ðn;mÞ in the rhombus of
Fig. 1(b). This is important because it implies that, beyond the
ground state ð0; 0Þ ¼ 0, the more likely modes should have the

lowest numbers. In Appendix A, we decided to successively
project out states of increasing energy 0 ≤ n ≤ 4j and, at each
level, states of increasing angular momentum.

6. EXAMPLES OF ANALYSES AND
SYNTHESES
To appreciate the relative merits afforded by the finite
Laguerre–Kravchuk basis versus the sampled Laguerre–Gauss
functions, in Fig. 2 we confront the integral Laguerre–Gauss
coefficients �Fn;m obtained from Eq. (18) with the Laguerre–
Kravchuk coefficients FK

n;m in Eq. (23), and with the coeffi-
cients f n;m determined from the sampled functions in
Eq. (25) over the rhombus ðn;mÞ ∈ ⋄. Comparison of the dis-
crete coefficient sets with the integral ones, and the remanent
of the images reconstructed from the sampled set are shown
in Fig. 3.

Symmetry considerations are useful to interpret coefficient
patterns. Indicating by Xn;mðqx; qyÞ any of the three function
sets, Φ°

n;mðx; yÞ in Eq. (1), ΦðsÞ
ðn;mÞðqx; qyÞ in Eq. (3), or

Λj
n;mðqx; qyÞ in Eq. (9), their common properties under

complex conjugation and reflection across the screen coordi-
nate axes are

Xn;mðqx; qyÞ ¼ Xn;−mðqx; qyÞ�; ð27Þ

Fig. 3. First column, input digital images from the second column of Fig. 2. Second column, differences between the integral and Laguerre–
Kravchuk E-AM coefficients, �Fn;m − FK

n;m over ðn;mÞ ∈ ⋄; the numbers under each rhombus give their absolute maximum; for the Q image, real
and imaginary parts are shown as in the previous figure. With these coefficients, the synthesis of the input image will be exact. Third column,
differences between the integral and the sampled Laguerre–Gauss E-AM coefficients, �Fn;m − f n;m; the absolute maximum values are indicated as in
the previous column. Fourth column, reconstruction of the input image using the sampled Laguerre–Gauss E-AM coefficients found from the
successive projection algorithm in Eq. (25),

P
n;mf n;mΦ

ð�sÞ
n;mðqx; qyÞ, ðqx; qyÞ ∈ □. There appear Gibbs-like oscillations on the sharp boundaries.

Fifth column, remanents ΔðN2Þðqx; qyÞ in Eq. (26) of the differences between the input image and its reconstruction of the previous column; again,
absolute maxima are indicated, and real and imaginary parts occupy the large and small squares, respectively. It is evident that they are rather large.
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¼ ð−1ÞmXn;−mð−qx; qyÞ ¼ Xn;−mðqx;−qyÞ: ð28Þ

These relations are the same as for Fourier series expansions
in eimθ, but keeping in mind that, due to Eqs. (2), (12), and (13),
odd or even m occur only in rows of odd or even n,
respectively.

In order to display the coefficients in any of the three ex-
pansions (indicated generically by fξn;mgn;m∈⋄), we rescale
and shift their values so that X≔maxn;mjξn;mj corresponds
to 1 (white) and −X to −1 (black). Then, to highlight the small
values ξn;m ≈ 0 of most coefficients, we magnify them through
the map ξ0 ≔ ξ1=4 when ξ > 0, and ξ0 ≔−jξj1=4 when ξ < 0;
thus, the midgrays exaggerate the small differences from zero.

In any of the three basis expansions, real images Fðqx; qyÞ
will have E-AM coefficients related by ξn;m ¼ ξ�n;−m, and pure
imaginary images, ξn;m ¼ −ξ�n;−m. Images symmetric under
reflection qx↔ − qx will exhibit E-AM coefficients
ξn;m ¼ ð−1Þmξn;−m, while those symmetric under qy↔ − qy
have ξn;m ¼ ξn;−m. Hence, the real images symmetric under
both x and y reflections —such as the drum and rosetta in
Figs. 2 and 3—will have coefficients ξn;m that are real, and
zero for all oddm. The Q image breaks the symmetry and thus
acquires an imaginary part. Finally, having the E-AM coeffi-
cients ξn;m of an image Fðqx; qyÞ allows us to rotate the image
by an angle α through multiplying these coefficients by the
phases expðimαÞ [5].

In Fig. 2 we note the difference between the E-AM mode
content of the first three “discontinuous” images (drum, roset-
ta, and Q), and the analysis of the smooth function in the bot-
tom row. The drum and rosetta are real and symmetric under
x and y reflections, so their coefficients fFn;mg are real, and
those of odd m (in rows of odd n) must be zero. In the Q im-
age, this symmetry is broken and the coefficients become
complex. In the drum image, the m ¼ 0 coefficients are most
prominent, but other evenm are not strictly zero; the n line is
essentially the expansion of a step function into Laguerre
coefficients. In the rosetta image, the angular modes m ¼
�8 are most prominent, with an admixture of m ¼
0;�4;�12;… modes confined to lower energies. In the last
row, the image is smooth and the four formant modes
ðn;mÞ ¼ ð2; 0Þ; ð3;�3Þ and ð4; 0Þ stand out clearly, with no no-
ticeable difference between the integral and digital bases. All

three coefficient sets resemble each other in the lowest
modes, but, for the discontinuous cases, the highest modes
are considerably different.

Particularly relevant as a criterion for comparison between
the Laguerre–Kravchuk and sampled Laguerre–Gauss synth-
eses is the analysis of Fig. 3. As was the case of one dimension
[6], the sampled Laguerre–Gauss coefficients f n;m in Eq. (25)
show smaller departures from the “true” integral coefficients.
However, they cannot reconstruct the original image exactly,
except when it is very smooth, as in the bottom line of that
figure. In the last two columns, where we show the approx-
imation and remanents ΔðN2Þðqx; qyÞ of Eq. (26), we see a
Gibbs-like phenomenon at the edges of “discontinuity” of
the original image. This is to be expected, as was the case
for 1-dim signals in [6], Fig. 9. To further the comparison,
in Fig. 4 we show the qy ¼ 0 line of values of the reconstructed
image of the drum in the previous Fig. 3. The oscillations are
not small, but (for j ¼ 15) display an over- and undershoot of
≈28% of the discontinuities in the drum, and larger ones in the
rosetta and Q syntheses. In contrast, the Laguerre–Kravchuk
synthesis will reconstruct the original image exactly.

7. CONCLUSIONS
The context of this work is the approximation by finite to con-
tinuous models of optics. Finite Fourier analysis of digital
images is well understood and widely used. Analysis in terms
of modes of E-AM serves for beam quality control by square
(or rectangular) CCD arrays of sensors. We here analyzed
finite signals into their formant E-AM modes of Laguerre–
Kravchuk functions; these are eigenfunctions of Hamilton
equations [8] that translate the classical oscillator dynamics
to finite systems [2,4]. They have attractive group-theoretical
properties that are well known in the context of quantum
angular momentum and the rotation group [10].

Adapting this mathematical apparatus for image anal-
ysis and processing requires a comparison with the more
traditional use of sampled Laguerre–Gauss functions, where
usually only the lowest energy mode content of a beam is
of interest. Indeed, sampled Laguerre–Gauss functions with
E-AM coefficients found with the successive projection algo-
rithm in Eq. (25) approximate better image fields that are
smooth, containing only a few of the lowest modes. Where
our group-theoretical treatment has an edge is in the recon-
struction of images that present contrasted detail, because
it will be exact.

It may be that the arrangement of CCD sensors in Cartesian
arrays is not optimal when the purpose is to analyze a beam
into its E-AM components. The alternative would be an array
with concentric circles of sensors, such as proposed in [15,16],
where on radii r ¼ 0; 1; 2;…; 2j are placed 1; 3; 5;…; 4j þ 1
equidistant sensors. Such arrays have also N2 ¼ ð2j þ 1Þ2 sen-
sors, and are favored by the use of orthogonal and complete
bases of functions described in those references. The func-
tions turn out to be special Clebsch–Gordan coefficients
[15] given by Hahn polynomials. Exploring the relative merit
of image analysis with these and with sampled Laguerre–
Gauss functions is a natural sequel to the present work.

Fig. 4. Reconstruction [Eq. (26)] of the central pixel line of the drum
function with the sampled Laguerre–Gauss E-AM coefficients (small
black dots), compared with the original signal (large gray dots), which
is obtained with the Laguerre–Kravchuk analysis. There is an over-
shoot of ≈28% when the sampled function coefficients are used.

L. E. Vicent and K. B. Wolf Vol. 28, No. 5 / May 2011 / J. Opt. Soc. Am. A 813



APPENDIX A: NUMERATION PIXELS AND
MODES
In the successive approximation algorithm given in Section 5,
the assignment q≔ ðqx; qyÞ, qjN2

1 to find the expansion coeffi-
cients in Eq. (25) from the inner product in Eq. (4) is actually
immaterial; it could be q ¼ Nðj þ qxÞ þ j þ qy þ 1 to sum over
columns, or q ¼ j þ qx þ Nðj þ qyÞ þ 1 to sum over rows.

On the other hand, the assignment we use for ν≔ ðn;mÞ in
the successive projection algorithm follows from the assump-
tion that the lower values of the index ν will be the more pro-
minent in the images to be analyzed, namely, those of lowest
energy and lowest angular momenta. In Section 5, we counted
the index νjN2

0 as illustrated below for N ¼ 5 (namely j ¼ 2),
where nj80 and where, for each energy, the angular momenta
mjn−n are spaced by 2:

n ¼ 8
7
6
5
4
3
2
1
0

25
23 24

21 20 22
18 16 17 19

14 12 11 13 15
9 7 8 10

5 4 6
2 3

1
m ¼ −5 −4 −3 −2 −1 0 1 2 3 4 5

The index assignment algorithm first proceeds from n ¼ 0 up
to 2j (in∇⊂⋄); when n is even, then the angular momenta are
ordered by mi ¼ ð−1Þi2⌊ 1

2 i⌋ for i ¼ 1; 2;…; nþ 1 (where ⌊x⌋
is the integer part of x); when n is odd, then them are ordered
bymi ¼ ð−1Þiþ12⌊ 1

2 ði − 1Þ⌋þ 1, also for i ¼ 1; 2;…; nþ 1. For
mode numbers from n ¼ 2j þ 1 up to 4j (inΔ⊂⋄), the index i
above ranges from 1 to 4j − nþ 1.
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