
Finite signals in planar waveguides

Juvenal Rueda-Paz and Kurt Bernardo Wolf*

Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México,
Av. Universidad s/n, Cuernavaca, Morelos 62210, Mexico

*Corresponding author: bwolf@fis.unam.mx

Received August 26, 2010; revised January 14, 2011; accepted January 25, 2011;
posted February 15, 2011 (Doc. ID 134050); published March 25, 2011

We examine the evolution in phase space of an N-point signal, produced and sensed at finite arrays transverse to a
planar waveguide within the framework of the finite quantization of geometric optics. We use the Kravchuk co-
herent states provided by the finite oscillator model to evince the nonlinear transformations that elliptic-profile
waveguides produce on phase space by means of the SOð3ÞWigner function. © 2011 Optical Society of America

OCIS codes: 070.2025, 080.2720.

1. INTRODUCTION
Consider the optical system illustrated in Fig. 1: a signal pro-
duced by a finite linear array of N phase-controlled wavefield
sources that is transverse to a planar waveguide; propagating
along the waveguide, the output field is sensed at a similar
array of N discrete points. In geometric optics, this system
produces a rotation of phase space that is not rigid beyond
the paraxial regime, but involves aberrations [1]. The corre-
sponding finite model of this system, where signals consist
of N complex values assigned to equally spaced points, is ob-
tained through the “finite quantization” process [2]. This is a
unitary transformation whose “paraxial” regime is the rotation
group SOð3Þ, while aberrations belong to the group of N × N
unitary matrices UðNÞ. The purpose of this paper is to explore
the correspondence between the geometric and finite wave-
guide models on phase space, with the aim of applying the
results to compound optical setups, such as fractional Fourier
transformers ([3–7], Chapter 15 in [8]), acting on pure or en-
tangled states of light.

Finite quantization consists in “compactifying” the opera-
tors associated with the observables so that position x is as-
signed to a discrete spectrum. Geometric optics already has
compact momentum and Hamiltonian variables, which are
orthogonal projections of a vector on the Descartes circle
p2 þ h2 ¼ n2, where n≡ nðx; zÞ is the refractive index at
the point ðx; zÞ ∈ ℜ2; a waveguide is a medium where this in-
dex is independent of z. In Section 2, we remind the reader of
the case when the waveguide profile is nðxÞ2 ¼ ν2 − x2 ([8],
Section 2.3), since then the three quantities x, p, and h are
bound to the surface of a sphere of radius ν, and the ray tra-
jectory is given by the rotation of the sphere around the h axis
by angles proportional to z modulo 2π. If, instead, the refrac-
tive index profile has the form nðxÞ2 ¼ ν2 − μ2x2, with
0 ≤ μ ≤ ν, the surface ν ¼ constant will be an ellipsoid, and
its z evolution will not be rigid.

In Section 3, we introduce the Lie algebra SOð3Þ of posi-
tion, momentum, and (pseudo-)Hamiltonian operators, and
their N × N matrix representations. These matrices generate
the unitary transformations of our N -point signals (or act bi-
laterally on density matrices) and were introduced originally
to build the finite oscillator model [9,10]. Its Kravchuk coher-

ent states will serve us well here to follow the rigid rotation of
the phase space sphere in the μ ¼ 1 standard guide. In
Section 4, we consider the generic μ ≠ 1 case, which we place
within the algebra of generators of all unitary transformations.
The eigenstates of the generic elliptic-index profile waveguide
satisfy a difference (“Schrödinger”) equation that binds their
value at every point with its second neighbors; in effect, this
separates the system into two subsystems that are weakly
coupled to each other, except at and near the special cases
μ ¼ 0; 1. From the point of view of Lie theory, this is a scantly
explored territory, but symbolic computation is a powerful
tool to glean generic properties and solutions. In Section 5,
we let a Kravchuk coherent signal travel along a ðν; μÞ wave-
guide and examine its evolution on phase space by means of
the soð3Þ-covariant Wigner function [2,11,12], whose con-
struction and main properties are succinctly described in
Appendix A. We summarize some conclusions in Section 6.

2. GEOMETRIC EVOLUTION ALONG A
WAVEGUIDE
In the framework of two-dimensional geometric optics re-
ferred to as Cartesian coordinates ðx; zÞ ∈ ℜ2, a light ray
in a generic medium of refractive index n≡ nðx; zÞ is a line
in configuration space ~rðzÞ ¼ ðxðzÞ; zÞ⊤; its x coordinate mea-
sures the line chosen to be the screen, and its z coordinate is
the independent parameter measuring the optical axis. The
vector tangent to the ray, ~p≔d~r=dz ¼ ðpx; pzÞ⊤, is constrained
to a circle by the restriction j ~p j ¼ nð~rÞ. Its x component is the
optical momentum p≡ px ¼ n sin θ, where θ is the angle be-
tween the ray and the z axis, and its z component is the optical
Hamiltonian function [13,14]

hðx; p; zÞ ¼ −pz ¼ −nðx; zÞ cos θ ¼ ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðx; zÞ2 − p2

q
; ð1Þ

with the negative sign in theþz direction. The evolution of the
system is ruled by the Hamilton equations ([8], Chapters 1,2)

dx
dz

¼ ∂h
∂p

¼ −fh; xg ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 − p2

p ¼ tan θ; ð2Þ
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dp
dz

¼ −
∂h
∂x

¼ −fh; pg ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 − p2

p ∂n2

∂x
¼ 2

∂n
∂x

sec θ; ð3Þ

dh
dz

¼ ∂h
∂z

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 − p2

p ∂n2

∂z
¼ 2

∂n
∂z

sec θ; ð4Þ

where we recall the Poisson bracket fx; pg ¼ 1 of two func-
tions f 1, f 2 of phase space

ff 1; f 2gðx; pÞ≔
∂f 1
∂x

∂f 2
∂p

−
∂f 1
∂p

∂f 2
∂x

: ð5Þ

The z evolution of a ray is thus given by the solution
ðxðzÞ; pðzÞÞ to Eqs. (2)–(4).

In this paper, we consider only z-homogeneous waveguides
where n≡ nðxÞ, so ∂n=∂z ¼ 0, and principally those whose
refractive index profile is elliptic:

nν;μðxÞ≔þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2 − μ2x2

q
; ν ≥ 1; μ ≥ 0; jxj ≤ ν=μ: ð6Þ

Since solutions exist, for mathematical ease, we have adopted
the guide edges to be x� ¼ �ν=μ, corresponding to n ≥ 0. (Of
course, physically n ≥ 1, implying that the actual guide edges
are �

ffiffiffiffiffiffiffiffiffiffiffiffi
ν2 − 1

p
=μ, and with large-angle rays being lost to the

surrounding medium.) Thus, at the center of the guide
nð0Þ ¼ ν, while 1=μ estimates the width of the guide. The
Hamiltonian (1) in this medium has thus the form

hν;μðx; pÞ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2 − ðp2 þ μ2x2Þ

q
: ð7Þ

The z evolution of phase space in this waveguide can be then
obtained, according to Eqs. (2) and (3), through the exponen-
tial of the Poisson operator fhν;μ; ∘g, or in explicit matrix form,
as�

pðzÞ
xðzÞ

�
¼ expð−zfh; ∘gÞ

�
p
x

�
≔

X∞
n¼0

ð−zÞn
n!

fh; ∘gn
�
p
x

�
; ð8Þ

¼
�

cosðμz=hðx; pÞÞ −μ sinðμz=hðx; pÞÞ
sinðμz=hðx; pÞÞ=μ cosðμz=hðx; pÞÞ

��
p
x

�
; ð9Þ

where fh; ∘gn≔fh; fh; ∘gn−1g, fh; ∘g1≔fh; ∘g, fh; ∘g0≔1, and
h≡ hν;μ. The evolution of phase space will be that of an incom-
pressible fluid flowing along the ellipses p2 þ μ2x2 ¼ constant,
with minor half-axis 1 along p, and major half-axis 1=μ along x
(see Fig. 2). The center p ¼ 0 ¼ x corresponds to the standard
ray along the waveguide axis, while the boundary contains the
extreme rays that touch tangentially the jxj ¼ ν=μ edge.

Rays near to the standard ray, p2 þ μ2x2 ≪ ν2, allow the
paraxial approximation to Eqs. (8) and (9):

exp
�
−z
2ν fp

2 þ μ2x2; ∘g
�� p

x

�

¼
� cosðμz=νÞ −μ sinðμz=νÞ
sinðμz=νÞ=μ cosðμz=νÞ

�� p

x

�
: ð10Þ

This is equivalent to the time–z evolution of a particle of mass
ν in the harmonic oscillator potential 1

2 μ2x2=ν. Finally, in the
special case μ → 0 when the waveguide becomes a homoge-
neous medium, its evolution (9) is free flight:

�
pðzÞ
xðzÞ

�
¼

�
1 0

z=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2 − p2

p
1

��
p
x

�
¼

�
p

xþ zp=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2 − p2

p �
:

ð11Þ

In this case, forward rays (jθj < 1
2 π) have energies in the range

−ν < hν;0 < 0 and backward rays in the range 0 < hν;0 < ν.

3. FINITE QUANTIZATION AND
KRAVCHUK COHERENT STATES
The finite quantization of a classical system to a wave system
whose position spectrum is discrete and finite is based on the
Lie algebra soð3Þ and leads to the finite model of the harmonic
oscillator [10]. Both the classical and the finite models satisfy
the Hamilton equations of the harmonic oscillator. For the
classical model, they involve the Poisson brackets between

Fig. 1. Planar waveguide where a discrete signal is produced at one
end by a transverse linear array of phase-controlled LEDs and read at
the other end by a similar array of sensors.

Fig. 2. Top left, refractive index nν;μðxÞ of an elliptic-index profile
waveguide [Eq. (6)]; the mathematical boundary is nν;μ ¼ 0, while
the physical one is n ¼ 1. Top right, rays starting from the center
of the guide at various angles p ¼ ν sin θ < ν; these trajectories do
not reconvene at a single point, so this guide is dispersive. Bottom,
evolution of the phase space points ðpðzÞ; xðzÞÞ for 1

4 and 1
2 cycle of

the paraxial period [Eq. (10)], z ¼ ν=2πμ.
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position x, momentum p, and the classical oscillator Hamilto-
nian k≔ 1

2 ðp2 þ x2Þ:

fk; xg ¼ −p; fk; pg ¼ x: ð12Þ

On the other hand, for the finitely quantized model [10,15],
the Lie bracket is the commutator between operators of posi-
tion X , momentum P, and a pseudo-Hamiltonian K, for which
we assume no specific form. Corresponding to Eq. (12), the
two Hamilton equations are

½K;X � ¼ −iP; ½K;P� ¼ iX : ð13Þ

These operators are required to be self-adjoint in an appropri-
ate complex Hilbert space (below) such that the spectrum of
observable positions are a finite set of equally spaced values.
This requirement is met through deformation of the basic
Poisson bracket fx; pg ¼ 1 of the classical model into

½X ;P� ¼ −iK: ð14Þ

With this postulate, the three operators X , P, and K become
the generators of the Lie algebra soð3Þ, best known for its use
in quantum angular momentum theory.

The representations of the algebra soð3Þ by self-adjoint
operators can be completely reduced and characterized as
eigenspaces of the Casimir operator [16,17]:

C≔X2 þ P2 þK2 ¼ jðj þ 1Þ1; ð15Þ

whose eigenvalues (numbered by j ≥ 0) are integers and de-
termine the vector space to be of dimension N ¼ 2j þ 1. In
this way, the eigenvalues of all three operators, X , P, and
K, which we shall indicate by xm ≡m;ϖ and κ, respectively,
will range over the integers between −j and j. (For half-integer
js, one has the homomorphic algebra suð2Þ, but, because forN
even there will be no sensor at the center of the array x0 ¼ 0
nor a standard ray ϖ ¼ 0, we shall consider odd Ns only.)

The position, momentum, and pseudo-Hamiltonian in the
finite oscillator model are thus represented by N × N matrices
(N ¼ 2j þ 1) that belong to the representation j of soð3Þ:
x ∼ X ¼ ‖Xm;m0‖, p ∼ P ¼ ‖Pm;m0‖, and h ∼K ¼ ‖Km;m0‖.
Their elements are obtained [17] from the commutation
relations (13) and (14):

Xm;m0 ¼ mδm;m0 ; m;m0 ∈ f−j;−j þ 1;…; jg; ð16Þ

Pm;m0 ¼ −i
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj −mÞðj þmþ 1Þ

p
δmþ1;m0

þ i
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj þmÞðj −mþ 1Þ

p
δm−1;m0 ; ð17Þ

Km;m0 ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj −mÞðj þmþ 1Þ

p
δmþ1;m0

þ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj þmÞðj −mþ 1Þ

p
δm−1;m0 ; ð18Þ

and are well known as the soð3Þ irreducible representation
matrices. They are Hermitian and traceless, and their sum
of squares [Eq. (15)] is a multiple of the unit matrix

C≔X2 þ P2 þK2 ¼ jðj þ 1Þ1: ð19Þ

The proper Hilbert space for finite models is thus CN , consist-
ing of N -component column vectors f ¼ ff mgjm¼−j whose ele-
ments are the complex values of the N -point signals, endowed
with the usual sesquilinear inner product and norm:

ðf; gÞ≡ f†g ¼
Xj

m¼−j

f �mgm ¼ ðg; fÞ�; jfj ¼ pðf; fÞ: ð20Þ

Position is represented by a diagonal matrix X in Eq. (16);
momentum P in Eq. (17) is −i times a weighted central differ-
ence, and the pseudo-Hamiltonian matrix K in Eq. (18) is real
and symmetric. They all have orthogonal eigenbases, two of
which are of immediate interest: the position (Kronecker) ba-
sis fxmgjm¼−j and the (pseudo-)energy basis fkκgjκ¼−j , which
satisfy

Xxm ¼ xmxm; Kkκ ¼ κkκ: ð21Þ

Their overlaps are the finite oscillator wave functions [9,18]

Φj
nðxmÞ≔ðxm;kn−jÞ ¼ djn−j;m

�
1
2
π
�
; ð22Þ

ðxm;KΦj
nÞ ¼ κΦj

nðxmÞ; ð23Þ

where n≔κ þ j, nj2j0 , and mjj−j , and djκ;mðθÞ is the well-known
Wigner little-d function ([18], Section 3.6) of angle 1

2 π on the
Casimir sphere (15) between X and K, and κ ¼ n − j. The ex-
plicit expression of Φj

nðmÞ is the square root of a binomial
distribution times a Kravchuk polynomial of degree n ¼
κ þ j in m [19–21]. We called them the Kravchuk oscillator
functions [9]:

Φj
nðxmÞ ¼

ð−1Þn
2j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2j
n

��
2j

j þm

�s
Kn

�
j þm;

1
2
; 2j þ 1

�

¼ Φj
mðxnÞ: ð24Þ

Please note that these functions are eigenfunctions of K and
not of 1

2 ðP2 þ X2Þ; yet, for j → ∞, they limit to the standard
Hermite–Gauss functions [22].

The one-parameter Lie group generated by K rotates the
real three-dimensional space ðu; v;wÞ ∈ ℜ3 of coefficients
of the generic Lie algebra element uXþ vPþwK around
thew axis; it is the group SOKð2Þ⊂SOð3Þ. In the Hilbert space
CN , this group is represented by N × N unitary matrices
known from standard results of angular momentum theory
[17,23]:

UKðzÞ≔ expðizKÞ ∈ UðNÞ; ð25Þ

UK
m;m0 ðzÞ ¼ im−m0

djm;m0 ðzÞ ¼ e−ijz
X2j
n¼0

Φj
nðxmÞeinzΦj

nðxm0 Þ

ð26Þ

with z modulo 2π and n ¼ κ þ j as before. In fact, Eq. (26) are
the matrix elements of the Fourier–Kravchuk transform
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kernel introduced in [9] and further analyzed and compared
with other discrete fractional Fourier transforms in [23].
The z evolution of the Kravchuk functions Φj

nðxmÞ in
Eq. (22) multiplies them by the phase einz.

In particular, the n ¼ 0 Kravchuk ground and n ¼ 2j top
states of Eq. (22) are

Φj
0ðxmÞ ¼

1
2j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
2j

j þm

�s
¼ ð−1ÞmΦj

2jðxmÞ > 0: ð27Þ

The set of CN vectors that exhibit the classical oscillator mo-
tion under Eq. (25) are the Kravchuk coherent states, defined
in [10] as the ground state Φj

0 in Eq. (27), rotated over the
sphere x2 þ p2 þ κ2 ¼ r2. A selection of these states is shown
in Fig. 3. Rotations around the p axis will raise the “bottom
pole” κ ¼ −r up along the meridian in the x–κ plane by angles
θjπ0 ; this yields the family of coherent states

ϒj
θðxmÞ≔

Xj

m0¼−j

ðexpðiθPÞÞm;m0Φj
0ðxm0 Þ ¼ dj−j;m

�
1
2
π þ θ

�
;

ð28Þ

with Υj
0ðxmÞ ¼ Φj

0ðxmÞ. Under the SOKð2Þ rotations gener-
ated by K, the sphere will rotate by angles ϕ ¼ z modulo
2π, carrying around the coherent state, and thus associating
one Kravchuk coherent state Υj

ðθ;ϕÞðxmÞ to every point
ðθ;ϕÞ of the sphere in Fig. 3.

The purpose of this section is to present the finite harmonic
oscillator model [10] in the robes of the Kravchuk guide, using
the fact that, from Eq. (19), we can write the matrix K in the
form

K ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðj þ 1Þ1 − ðP2 þ X2Þ

q
: ð29Þ

Comparing with Eq. (7), we see that this Kravchuk guide cor-
responds to a classical guide where ν ¼ 1 ¼ μ. This will be our
reference guide for all other elliptic-profile nν;μðxÞ guides
[Eq. (6)]; it will serve also for generic nðxÞ profile waveguides
(1) to be investigated later. Still, only the Kravchuk coherent
states in their guide [Eq. (29)] will recover their exact initial
form under UKð2πÞ ¼ 1. Note carefully that this harmonic mo-
tion is the result of the rotation of the sphere, rather than of
the dynamics of a mechanical oscillator. In Fig. 4, we show the
SOKð2Þ evolution of a θ ¼ 1 radian Kravchuk coherent state
over one cycle zj2π0 . The transformation of this signal is dis-
played most visibly by its SOð3Þ–Wigner function on the phase
space of the finite system, whose definition and properties are
condensed in Appendix A.

4. FINITE WAVEGUIDE MODELS
The correspondence between classical systems and their
finite-quantized counterparts is postulated to result from
the association between functions Fðx; pÞ in the former, with
Weyl-ordered [2] matrices F ¼ FðX;PÞWeyl in the latter. The
elliptic-profile waveguide Hamiltonian hν;μðx; pÞ in Eq. (7) will
be thus finitely quantized to an N × N Hermitian matrix of the
form (29)

Hν;μ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2C − ðP2 þ μ2X2Þ

q
¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðν2 − 1ÞC − ðμ2 − 1ÞX2� þK2

q
;

ð30Þ

where we note that between brackets in Eq. (30) is a diagonal
matrix, and that the Weyl ordering is not really needed here—
provided that a cogent square-root operation for the radicand
is used, since, at least for the Kravchuk case, the resultingK ¼p
K2 has both positive and negative eigenvalues.
To make proper sense of the square root in Eq. (30) [24], we

should first examine the square Hamiltonian H2 ≡ ðHν;μÞ2. We
indicate is normalized eigenfunctions and eigenvalues by

H2Ψn ¼ ðηnÞ2Ψn; ΨnðxmÞ ¼ ðxm;ΨnÞ; ð31Þ

with nj2j0 ,mjj−j as before, and ðν; μÞ implied. We clarify first the
matter of scales in position and energy. Because the eigenva-
lues of X range in xm ≡mjj−j , while the classical coordinate x
ranges in jxj ≤ ν=μ, if we set x↔xm=j ≡m=j, the points of the
sensor array will be measured by x ∈ ½−1; 1�. When μ < ν, the
array fits inside the ellipse of the refractive index in Fig. 2;
when μ ¼ ν, it spans the full mathematically allowed range,
and, finally, if μ > ν, the array would stick into imaginary
nðxÞ regions and this model would be unphysical. We should
thus restrict the waveguide parameters to 0 ≤ μ ≤ ν ≥ 1.

Concerning energy h in Eq. (7), we saw that its classical
range is hj0−ν for forward rays − 1

2 π < θ < 1
2 π (and hjν0 for back-

ward rays 1
2 π > θ > 3

2 π). The lowest value h ¼ −ν charac-
terizes the standard ray θ ¼ 0 along the center of the guide,
and h ¼ 0 corresponds to the extreme rays that are tangent
to the guide boundary jxj ¼ ν=μ. In the Kravchuk guide
[Eq. (29)], where μ ¼ 1 ¼ ν, the ground and top states
[Eq. (27)] are degenerate underK2 with eigenvalue ð∓jÞ2. (We
can easily generalize to ν ≥ 1 because only a constant is
added.) In the special case μ ¼ 1, the ground and top states
of ðHν;1Þ2 in Eq. (31) have eigenvalues ðη0Þ2 ¼ ðη2jÞ2 ≈ ðνjÞ2
for large j, so the scale in Eq. (30) is consistent. However,

Fig. 3. Sphere ofKravchuk coherent statesϒj
ðθ;ϕÞðxmÞ in Eq. (28). This

is also the phase-space representation of the finite system, with the
axes of position x, momentum p, and pseudoenergy κ (see
Appendix A). At the bottom pole, κ ¼ −r is the ground state
ϒj

0ðxmÞ ¼ Φj
0ðxmÞ, and, at the top pole, κ ¼ r is the top state

ϒj
πðxmÞ ¼ Φj

2jðxmÞ. At theþx pole, the stateϒj
π=2ðxmÞ is the Kronecker

state ð0;…; 0; 1Þ; at theþp pole, it is the z evolution of the latter after a 1
4

cycle, z ¼ 1
2 π.
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we must be careful to assign the negative sign to the ground
state, so η0 ≈ −νj, and the positive one for the top η2j ≈ νj. The
other special case is μ ¼ 0, where the nondiagonal part of the
radicand, K2 in Eq. (30), is now −P2; the ground state then
corresponds to the zero-momentum state ϖ ¼ 0 whose en-
ergy, h ¼ −ν, identifies the only nondegenerate state.

The matrices fX;P;Kg, in addition to hermiticity across the
main diagonal, also exhibit symmetry f−;þ;þg under reflec-
tion across their antidiagonals, and hence so do their squares.
Thus, H2 − ν2C is symmetric across both diagonals, with j
pairwise degenerate eigenvalues. Moreover, since K and P
are bidiagonal (having nonzero matrix elements at
m ¼ m0 � 1), it follows that H2 will be tridiagonal (nonzero
at m ¼ m0 and m ¼ m0 � 2), its off-diagonal elements being
independent of ν; μ, with a checkerboard of zeros for all
odd m −m0. Lie theory is well acquainted with recursion rela-
tions, such as implied by Eq. (23), which become the differ-
ence equation satisfied by the Kravchuk functions Φj

nðxmÞ
in Eq. (22), that bind the values of the eigenfunctions at three
neighboring points xm and xm�1 [with Φj

nðx�ðjþ1ÞÞ≡ 0]. Thus,
H2 in Eq. (31) yields a step-two difference equation:

1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj −m − 1Þðj −mÞðj þmþ 1Þðj þmþ 2Þ

p
Ψηðmþ 2Þ

þ
�
jðj þ 1Þ

�
ν2 − 1

2

�
−m2

�
μ2 − 1

2

�
− η2

�
ΨηðmÞ

þ 1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj þm − 1Þðj þmÞðj −mþ 1Þðj −mþ 2Þ

p
Ψηðm − 2Þ

¼ 0:

ð32Þ

This is, in effect, a pair of difference equations: one for the
points xm with even ms and one for odd ms. Since both
are invariant under m↔ −m, their solutions for �η can be
chosen to have definite parities.

We recall that, in the Kravchuk guide μ ¼ 1 ¼ ν, the 2j þ 1
eigenvalues fκ2g of K2 contain one nondegenerate midstate
κ ¼ 0 and j degenerate pairs, each with the positive eigenvalue
ð�κÞ2. Their square roots, being the eigenvalues of K, will dis-
entangle the pairs by a sign: negative for the lower states, and
positive for the higher ones. In Fig. 5, we show the computed
eigenvalues fðην;μÞ2g of ðHν;μÞ2, 0 ≤ μ ≤ ν, for the Kravchuk
case ν ¼ 1 and for ν ¼ p

2, the latter being a representative
of the generic case. The spectra of the square operators show
j degenerate pairs at μ ¼ 0 and μ ¼ 1; in between, the partners
are exchanged. We observe that the largest square eigenvalue,
max0≤n≤2j η2n, corresponds to the ground state η0 with a nega-
tive sign, the second-highest square eigenvalue corresponds to
the top state η2j with a positive sign, the third-highest square
eigenvalue gives η1 again with a negative sign, the fourth-high-
est is η2j−1, etc., alternating signs thereafter down to the mid-
state ηj . In Fig. 5, we show the spectra ofHν;μ constructed with
the square roots of the former and the same alternating-sign
scheme. The fact that the eigenvalue lines do not cross gives
credence to the consistency of this scheme.

Let us now turn to the eigenvectors, with the caveat that
several conclusions are based on numerical computation
rather than analytic proof. The real orthogonal matrix of ei-
genvectors of ðHν;μÞ2, Ψ≔fΨnðxmÞg satisfying Eq. (32) shows
a quick but continuous transition from the matrix of Kravchuk
functionsΦ≔fΦnðxmÞg for μ ¼ 1, developing a checkerboard
of very small elements. Indeed, for j ¼ 10, ν ¼ p

2 when jμ −
1j > 0:1 and also when μ > 0:4; all of these elements have
magnitude<1:5 × 10−4, so the matrix of eigenvectors has prac-
tically a checkerboard of zeros. However, this means, in
turn, that plots of these finite waveguide modes will have a

Fig. 4. Evolution under UKðzÞ of the coherent stateΥj
θðmÞ for j ¼ 10

and θ ¼ 1 radian. Top to bottom, z ¼ 1
3 πn, n ¼ 0; 1;…; 6. Left, each

signal on a vertical xm axis; right, the corresponding SOð3Þ–Wigner
function (see Appendix A). For visibility, the real, imaginary, and ab-
solute values of the discrete signal points are joined by dashed, dotted,
and continuous curves, respectively.
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“porcupine” appearance, being very close to zero at every
even or every odd point. In particular, corresponding to the
two highest η2n values (the ground and top states), the two ei-
genvectors Ψj∓jðxmÞ have the characteristic bell-shaped en-
velope of the ground state Φ0ðxmÞ, one near zero at odd
ms and the other at the even ms. Yet, as we show in Fig. 6,
their sum and difference,

~Ψ0ðxmÞ≔Ψ0ðxmÞ þΨ2jðxmÞ; ð33Þ

~Ψ2jðxmÞ≔Ψ0ðxmÞ −Ψ2jðxmÞ; ð34Þ
resemble most closely the Kravchuk ground and top states.
Wemay call them pseudo-ground and pseudo-top states. Thus,
we have the remarkable situation that, in the generic finite

waveguide, the ground and top states are actually superposi-
tions of two eigenfunctions with slightly different eigenvalues
of square energy.

To finish our quest for the Hamiltonian matrix Hν;μ in
Eq. (30), we use the matrix of eigenvectors Ψ ¼ fΨnðxmÞg
to diagonalize H2 to D2, take the square root of the latter’s
elements (with the proper sign according to the previous
scheme) to build D, and, finally, use the inverse of the same
eigenvector matrices on thisD to restore the matrix toH in the
position basis ðxm; xm0 Þ. Thus,
Ψ†H2Ψ ¼ D2; Hν;μ≔ΨDΨ†; Hν;μΨn ¼ ηnΨn: ð35Þ

It is straightforward to compute these matrices numerically,
and again we note that they contain a checkerboard of near-
zero elements in the ranges detailed above, which effectively

Fig. 5. Eigenvalues of the Hamiltonian matrices and their squares for 0 ≤ μ ≤ ν. Top row, ν ¼ 1 (the Kravchuk guide); bottom row, ν ¼ p
2 for

j ¼ 10 (N ¼ 21 points). Left column, squared eigenvalues fðην;μÞ2g of the squared matrices ðHν;μÞ2. Right column, eigenvalues fην;μg of the matrices
Hν;μ with the sign assignment scheme given in the text. The ground state eigenvalues ðην;μ0 Þ2 and ην;μ0 are marked with a heavy curve. Note that, once
separated by the sign, the ην;μn curves do not cross. Only the Kravchuk case ν ¼ 1 ¼ μ has equally spaced eigenvalues.

Fig. 6. Left, pseudoground states ~Ψ0ðxmÞ in Eq. (33) for j ¼ 10, ν ¼ p
2 (for visibility, point values are joined by straight lines), and values of

μ ¼ 0:4; 0:5;…; 1:3, and μ ¼ p
2 marked with a heavy line. Right, pseudotop states ~Ψ2jðxmÞ in Eq. (34) for the same values of the parameters.

Kravchuk ground and top states lie at μ ¼ 1. Note that widths grow as the waveguide becomes wider (μ decreases).
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separate the matrix elements of the finite ð2j þ 1Þ-dimensional
waveguide system into two independent subsystems, of di-
mensions j þ 1 for the odd m points fxmg and j for the even
m ones. Whether this feature can be dynamically justified or is

an artifact of the square-root operation is among the questions
we defer to future work. In Section 5, we use the matrix Hν;μ

found in Eq. (35) to generate the evolution of signals provided
by the finite waveguide model.

Fig. 7. Evolution of the Kravchuk coherent state ϒj
θðmÞ for θ ¼ 1 radian and j ¼ 10 under the waveguide Hamiltonian Hν;μ in Eq. (30) for ν ¼ p

2
and μ ¼ 1

2

p
2. Markings for the signals and its Wigner functions are the same as in Fig. 4. In the left column, we show one approximate cycle for

z ¼ 1
3 πcn, n ¼ 0; 1;…; 6, with the scale factor c ¼ 2:8284. After several oscillations, in the right column, we show a sequence of two- and three-

component catlike states for z ¼ 1
16 315π þ 3

16 πn.
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5. EVOLUTION ALONG DISCRETE GUIDES
The evolution of an N -point signal in the model that we have
pursued in this paper is given by the one-parameter group of
N × N unitary matrices

Uν;μðzÞ≔ expðizHν;μÞ ∈ UðNÞ; ð36Þ

generated by Hν;μ in Eq. (35) with ν; μ in the appropriate
ranges. Within the N2-dimensional real manifold of UðNÞ, this
is a line parametrized by z ∈ ℜ. Since the eigenvalues of Hν;μ

are generally incommensurable for 0 < μ < ν, the subgroup
line is a Lissajous figure in that manifold, and no proper period
can be defined; only for the Kravchuk guide does this line
close into a circle.

Note that, when we act with Eq. (36) on the matrices of the
soð3Þ algebra as Uν;μðzÞXUν;μð−zÞ, etc., we produce Hermitian
matrices that are not linear combinations of those soð3Þ gen-
erators. Indeed, the transformation Eq. (36) represents a non-
linear map of the algebra soð3Þ that spills over into the algebra
uðNÞ of all Hermitian N × N matrices. On the N -point signal
vectors, this represents aberrations. For finite systems, there
are only N2 − 4 aberrations, which have been classified in [2],
but await application. Figure 4 depicts the evolution of a
Kravchuk coherent states under the Kravchuk guide, which
was a purely group-theoretical construction. This can be now
compared with the evolution of the same Kravchuk coherent
state under the elliptic-profile waveguide [Eq. (36)] in Fig. 7,
shown with its Wigner function. We notice the same general
circular movement, but soon enough the peak smears until it
reaches its tail and starts interfering with itself to produce
Schrödinger catlike states. These are most readily resolved
with the SOð3Þ Wigner function on phase space, but would
be difficult to identify by looking only at the signal.

6. CONCLUSIONS AND EXTENSIONS
The square-root form of the waveguide Hamiltonian (30) indi-
cates that the analysis of the finite system under consideration
differs in crucial aspects from the previously studied systems:
the finite oscillator on soð3Þ [9,10], the discrete-free particle
[15,25] on isoð3Þ, and the discrete repulsive oscillator on
soð2; 1Þ [15,26], whose Hamiltonians are elements of their al-
gebras. A consequence of the square-root operation is the
need to assign signs to the eigenvalues. Had we not done so
in Eq. (35), the eigenvectors would have their signs reversed

at odd m sensor points, and the unitary evolution matrix (36)
would suffer complex conjugation at those points. Although in
a very different context, the Dirac equation resolves the
square root of an operator through unfolding the Hilbert space
of wave functions into four copies of itself. An important con-
clusion of our work is that the classical property of canonicity
in Eq. (8) became that of unitarity of Eq. (36) on the space CN

of N -point complex signals.
We would like to put our endeavours in the context of op-

tical systems used to transform finite N -point signals and de-
tect or correct aberrations. The elliptic refractive index profile
ν2 − μ2x2m in Eq. (1) was chosen in this paper for its parametric
proximity to the soð3Þ Kravchuk guide, but nðxÞ can be given
any shape when represented by a diagonal matrix of elements
nðxmÞ for mjj−j , including discrete rectangular or two-channel
profiles. Further, two waveguides with different profiles
placed end to end with a flat interface will perform as the pro-
duct of their evolution matrices, ordered from left to right.
Free flights in a finite system are μ ¼ 0 guides, and should
not be too long if they are to mimick the Fresnel transform
[27]. To incorporate other elements, such as lenses, thin or
with geometric aberrations, a parallel strategy can be fol-
lowed [2], replacing the ordered product of exponentiated
Poisson operators that characterize such elements ([8],
Chapter 14) by their soð3Þ Weyl-ordered counterparts, with
the same aberration coefficients.

APPENDIX: PHASE SPACE AND WIGNER
FUNCTION FOR FINITE SYSTEMS
The Wigner function of the signal does not contain more in-
formation than the complex signal itself, but reveals its struc-
ture better, as Figs. 4 and 7 suggest. The construction of the
standard Wigner function [28,29] can be made through asking
for the covariance under phase-space translations between
the classical function F ¼ expðξxþ ηpÞ and the operator
F ¼ exp iðξX þ ηPÞ. The corresponding Wigner operator is
then obtained by integrating their product F�F over the mani-
fold ðξ; ηÞ ∈ ℜ2. The expectation value of this operator in a
state ψðxÞ is the Wigner function Wðψ jx; pÞ.

For the rotation group SOð3Þ, we [11,13] ask for covariance
between the classical function on this group, written in polar
coordinates ðρ; θ;ϕÞ:

Rðρ; θ;ϕ; x; p; κÞ≔ exp½−iðuxþ vpþwκÞ�;

×

8><
>:

u ¼ ρ sin θ sinϕ;
v ¼ ρ sin θ cosϕ;
w ¼ ρ cos θ;

ðA1Þ

and the N × N unitary matrix function on the same group,

Rðρ; θ;ϕÞ≔ exp½−iðuXþ vPþwKÞ�; ðA2Þ

which produces a rotation through the angle ρ around the axis
n̂ðθ;ϕÞ. The matrices representing Eq. (A2) are given by
Wigner Big-D matrices [17], which carry the linear action of
SOð3Þ on the space of N -point signals [9,10,23].

To introduce covariance between Eqs. (A1) and (A2), we
build their bilinear generating function, integrating R�R over
fρ; θ;ϕg ∈ SOð3Þ with the appropriate invariant measure.
This yields the “Wigner matrix” function

Fig. 8. Left, polar coordinates ðβ; γÞ of the sphere refer to the x axis
of positions. Right, projection of the coordinates ðβ; γÞ of the sphere
onto the rectangle ð0 ≤ β ≤ π;−π < γ ≤ πÞ. In this projection, the bot-
tom pole ð12 π; 0Þ is at the center of the rectangle, the x axis of positions
is vertical; the boundary ð0; γÞ represents the single point xj and ðπ; γÞ
represents x−j . The p axis of momenta is horizontal, with its left and
right boundaries identified, so the top pole corresponds to
ð12 π; πÞ≡ ð12 π;−πÞ. The heavy lines divide phase space into octants.
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Wðx; p; κÞ≔
Z
SOð3Þ

dðρ; θ;ϕÞ

× exp i½uðx − XÞ þ vðp − PÞ þwðκ −KÞ�; ðA3Þ

which is unitary and self-adjoint. We called ðx; p; κÞ ∈ ℜ3 the
metaphase space of SOð3Þ. The result separates into a factor
depending only on the square radius of the sphere x2 þ p2 þ
κ2 ¼ r2 and a factor depending only on the spherical coordi-
nates ðβ; γÞ of this space, given by

p ¼ r sin β sin γ; κ ¼ r sin β cos γ; x ¼ r cos β: ðA4Þ

Note that, since we decided to have position diagonal, the x
axis took the role of the “north z pole” that is traditional for
polar coordinates, as shown in Fig. 8.

The squared radius r2 in Eq. (A4) corresponds to the Casi-
mir operator [Eq. (15)] whose value is jðj þ 1Þ. This implies
that the significant range is j < r < j þ 1, and that we can
fix r to some value in that interval (we chose j þ 1

2) and remain
with a Wigner matrix function of ðβ; γÞ [11]. For a given signal
N -vector f ¼ ff mgjm¼−j , the SOð3Þ–Wigner function will be the
expectation value of Eq. (A3) in that state:

WSOð3Þðfjβ; γÞ≔f†Wðβ; γÞf ¼
Xj

m;m0¼−j

f �mWm;m0 ðβ; γÞf m0 : ðA5Þ

The integral that gives the matrix elements Wm;m0 ðβ; γÞ in
Eq. (A3) can be performed over the sphere ðθ;ϕÞ using known
properties of the Big-D Wigner rotation matrices [11], and re-
duced to the form

Wm;m0 ðβ; γÞ ¼ e−iðm−m0Þγ Xj

�m¼−j

djm; �mðβÞ �Wj
�md

j
�m;m0 ð−βÞ; ðA6Þ

where �Wj
�m is a diagonal matrix, whose elements are calcu-

lated through an integral [11] that can be solved algebraically
or numerically. These N constants we have called the Wigner
constants need to be found once and for all in each dimen-
sion N ¼ 2j þ 1.

Drawing functions on spheres is inconvenient, especially
since the interesting part occurs around the lowest energy re-
gion κ ≈ −r, where the sphere is tangent to the classical phase
space ðx; pÞ ∈ ℜ2, i.e., at the bottom pole of Fig. 8. For this
reason, we project the sphere onto a rectangle ðβ; γÞ, as shown
in Figs. 4 and 7. We note that the integration over the γ coor-
dinate of the rectangle will yield the marginal that reproduces
the absolute squares of the signal points [11].

The standardWigner function [29] has the property of being
in general slightly negative in small regions of phase space,
except for Gaussian coherent states, when it is strictly posi-
tive. This property does not hold for the SOð3Þ–Wigner func-
tion; for the Kravchuk coherent states on the sphere, it has
small negative values in a region around the antipode, which
becomes smaller as j grows. For the concrete case of the sig-
nal ð0; 0;…; 0; 1Þ, namely Υj

π=2ðxmÞ, whose phase-space max-
imum is at the β ¼ 0 x pole, only the matrix element Wj;jðβ; γÞ
in Eq. (A5) needs calculation; in Eq. (A6), this is done in terms
of the Wigner coefficients �Wj

�m. At the antipode β ¼ π, the va-
lue of the Wigner function is simply given by �Wj

−j . Numerical

computation for j ¼ 5; 10; 15 yields values −7:8260 × 10−5,
−5:5235 × 10−6, −1:1366 × 10−6 in a smoothly decreasing trend.
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