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Abstract
For the study of infinite discrete systems on phase space, the three-dimensional
Lorentz algebra and group, so(2,1) and SO(2,1), provide a discrete model of
the repulsive oscillator. Its eigenfunctions are found in the principal irreducible
representation series, where the compact generator—that we identify with the
position operator—has the infinite discrete spectrum of the integers Z , while
the spectrum of energies is a double continuum. The right- and left-moving
wavefunctions are given by hypergeometric functions that form a Dirac basis
for �2(Z). Under contraction, the discrete system limits to the well-known
quantum repulsive oscillator. Numerical computations of finite approximations
raise further questions on the use of Dirac bases for infinite discrete systems.

PACS numbers: 02.20.Qs, 02.30.Mv, 02.60.Cb, 02.70.Bf, 03.65.Sq

1. Introduction

Our interest presently lies in building discrete Hamiltonian models, i.e. those where position is
a discrete variable, with equally spaced values, finite or infinite in number. The discrete models
should have the same geometry and dynamics, determined by their two Hamilton equations,
as the continuous models of quadratic Hamiltonian systems: the harmonic oscillator, the free
particle and the repulsive—or inverted—oscillator characterized by a potential barrier − 1

2x2.
By embedding the discrete and continuous models in the same Lie algebra, properties of the
latter are expected to have precise counterparts in the former.

The discrete harmonic oscillator [1, 2] is ruled by the unitary Lie algebra su(2) = so(3)
and answers questions on its discrete wavefunctions, such as finite signals and pixellated
images [3, 4]; their phase space (for one-dimensional signals) is a sphere. Next, infinite
discrete signals in a free system are ruled by the Euclidean algebra iso(2) [5], and their phase
space is a cylinder. In this paper, a discrete model of the repulsive oscillator is built with the
three-dimensional Lorentz algebra so(2,1) = su(1,1), within a representation of the principal
series; phase space should be a one-sheeted hyperboloid (to be explored in the next paper).
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The signals are functions of integer positions and can have a continuum of energies, both
above and under the potential barrier − 1

2x2. The treatment of infinite signals presents further
issues on representation, approximation and asymptotics that will be pointed as we proceed.

We regard a one-dimensional discrete Hamiltonian system as composed by the following
elements: a designated compact position operator X , whose spectrum {xm} is discrete, and
a Hamiltonian operator H. The Lie bracket of these two operators defines the momentum
operator through P := −i[H,X ]. We further propose that these three operators close into a
Lie algebra; here {X ,P,H} will close into the Lorentz algebra so(2,1). We shall show that
this provides a family of discrete analogues of the one-dimensional classical and quantum
repulsive oscillator.

From the theory of unitary irreducible representations of the algebra so(2,1) [6], we know
that the spectrum of the compact (timelike) generator is equally spaced and, according to the
Hilbert space chosen, are infinite m ∈ Z := {0,±1,±2, . . .} in the principal representation
series, and semi-infinite m ∈ Z±

k := ±{k, k+1, k+2, . . .} in the complementary series. (We
use the nomenclature of Naı̆mark and Gel’fand [7, 8] because in Bargmann’s designation
[6] they are called the ‘continuous’ and ‘discrete’ representation series, names that could be
confusing in our context.)

The quantum repulsive oscillator is rather well known; it was studied by G Barton in his
PhD thesis, published in [9], where travel and tunneling delay times are analyzed with coherent
states, and all important previous references are given. Balazs and Voros [10] analyzed the
phase space aspects of tunneling using the Wigner function. The construction of the quantum
wavefunctions can be found in [12] and [11, sections 7.5.11–15] among others, while modern
applications are considered in [13–17]. The properties of the classical and quantum models
are gathered in section 2. In section 3, we introduce the discrete model on the Lorentz Lie
algebra and recall the standard construction of its unitary irreducible representations. The
eigenfunctions of the discrete model are found in section 4 as overlaps between the position
and energy bases, and given by the solutions to a three-term difference equation that has
analytic solutions. In section 5, we offer some strategies to handle these infinite discrete
function bases in the necessarily finite numerical computations. In the concluding section 6,
we discuss some lines for future research.

2. Classical and quantum continuous models

Classical models regard the observables of position, momentum, energy and unit, {x, p, h, 1}
under Poisson brackets {·, ·}, while quantum models regard the corresponding self-adjoint
operators {X̂, P̂ , Ĥ , 1̂} under Lie brackets (here commutators [·, ·]) in the Hilbert space L2(R).
In these terms, the geometric and dynamic Hamilton equations of the repulsive oscillator are

Classical Quantum

Hamiltonian: h := 1
2 (p2 − x2), Ĥ := 1

2 (−d2/dx2 − x2),

geometric: {h, x} = −p, [Ĥ , X̂] = −iP̂ ,

dynamic: {h, p} = −x, [Ĥ , P̂ ] = −iX̂,

basic: {x, p} = 1 center, [X̂, P̂ ] = î1 center.

(1)

The three brackets define the Lie algebra wso(1,1) containing so(1, 1) boosts of phase space,
with a Heisenberg–Weyl ideal w. This is the Lie algebra that we intend to deform (or
‘precontract’) to so(2,1).
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Figure 1. Quantum mechanical eigenfunctions of the (continuous) repulsive oscillator ψη,+(x) in
(3), for x ∈ [−8, 8] and η ∈ {2, 1, 0.5, 0, −0.5,−1,−2}. Dashed, dotted and continuous lines
show the real, imaginary and absolute values of the function.

The spectrum and eigenfunctions of the Hamiltonian of the quantum repulsive oscillator
are known to be [12]

Ĥ ψη,±(x) = η ψη,±(x), ψη,+(x) = ψη,−(−x), η, x ∈ R, (2)

ψη,±(x) = exp[i14π(12 − iη)]

23/4π
�

(
1

2
−iη

)
D− 1

2 +iη(±ei3π/4
√

2 x), (3)

where D− 1
2 +iη(z) = U(−iη, z) is the parabolic cylinder function [18, vol 2, p 119], [19,

chapter19]. These functions are plotted in figure 1 for various values of the energy η (see [11,
figure 7.11]), where we can see that solutions (3) multiplied by the phase exp(−iηt) represent
the time evolution of right-moving waves over the potential barrier (η > 0), because the real

3
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and imaginary parts of the function are off by approximately 1
4 -cycle; the absolute values are

time invariant. Below the barrier (η < 0) and to its left (x < 0), the absolute values develop a
series of maxima and come very close to zero; this indicates ‘almost-standing’ waves produced
from the interference between the incoming waves and those reflected off the potential barrier;
the part that tunnels through continues to be a small right-moving wave. Finally, we note
that they have a chirping asymptotic behavior, ψη,±(x) ∼ eix2/2/

√|x| for |x| → ∞ [19,
equation 19.8.1], and are Dirac-orthonormal.

3. Discrete systems based on so(2,1)

We postulate that the three classical observables, x, p, λ, of position, momentum and a
displaced or proportional energy λ ∝ η + constant (that we will call pseudo-energy), are
the spectra of the generators of an so(2,1) algebra. This algebra is defined by the abstract
commutation relations between its three generators, L0, L1 and L2, as follows:

[L0,L1] = −iL2, [L1,L2] = +iL0, [L2,L0] = −iL1. (4)

The + sign in the second commutator stresses that the L0-axis has a different metric from that
of L1- and L2-axes.

We propose the following correspondences between the classical observables and the
so(2,1) generators:

position x ↔ X = L0, (5)

momentum p ↔ P = L1, (6)

pseudo-energy λ ↔ L = L2. (7)

Then, from (4), they will satisfy the commutation relations

[L,X ] = −iP, [L,P] = −iX , [X ,P] = −iL, (8)

where we recognize that the first two brackets are the geometric and dynamic Hamilton
equations in (1), while the third is the ‘nonstandard’ basic commutator that determines the
deformation to our discrete model.

We proceed now to repeat succinctly the construction and classification of the abstract
so(2,1) algebra irreducible representations [6, 20] with the raising and lowering operators

L↑ := L2 + iL1, L↓ := L2 − iL1. (9)

(Other authors such as [21] use a 1
2π -rotated version of these, L1 ±iL2; at the end, however, (9)

will lead to simpler wavefunctions with a single hypergeometric function.) Their commutators
are

[L0,L↑↓] = ±L↑↓, [L↑,L↓] = −2L0, (10)

the invariant Casimir operator is

C := L2
1 + L2

2 − L2
0 = L↑↓L↓↑ − L0(L0 ∓ 1), (11)

and the eigenvalues γ of C will determine the distinct self-adjoint representations of so(2,1).
But while in su(2) the value of the Casimir operator suffices to determine uniquely the
representation and eigenvalue ranges of all generators [22], in so(2,1) there can be more than
one irreducible representation in certain ranges of γ .

The states of the discrete repulsive oscillator model are the discrete wavefunctions,
or signals fm ≡ f (xm), m ∈ Z , which live in the Hilbert space �2(Z) of square-
summable sequences with the usual inner product (f, g) := ∑

m∈Z f ∗
mgm = (g, f )∗ and

4
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norm |f | = √
(f, f ). In this space, the generators (5)–(7) and the Casimir operator (11)

should be self-adjoint—and their spectra real—while the raising and lowering operators in
(9) are the adjoints of each other. There is a natural Kronecker basis for �2(Z) given by the
simultaneous eigenvectors of position xm = m and of the Casimir operator,

L0f
γ
m = mf γ

m , m ∈ Z, Cf γ
m = γf γ

m , γ ∈ R, (12)

that correspond to infinite column vectors of 0’s with a single 1 in position m. From so(2,1)
theory [6], we know that for the compact generator L0 to have integer eigenvalues, the
exponentiated Lie group must be SO(2,1); its two-fold cover SU(1, 1) has also half-integer
values, and its universal cover SO(2, 1) can have any equally spaced spectra.

Because of the first of (10), the raising and lowering operators (9) acting on f
γ
m will yield

another eigenvector of L0 corresponding to the eigenvalue one unit above and below,

L↑↓f γ
m = c

γ

↑↓mf
γ

m±1, (13)

up to normalization constants c
γ

↑↓ m that must be found, but whose phase is arbitrary. The
constraints on the ranges of γ and m are found through a well-known line of reasoning [6]:

0 �
∣∣cγ

↑↓ m

∣∣2(
f

γ

m±1, f
γ

m±1

) = (
L↑↓f γ

m ,L↑↓f γ
m

) = (
f γ

m ,L↓↑L↑↓f γ
m

)
(14)

= (
f γ

m ,
[
C + L2

0 ± L0
]
f γ

m

)
= (γ + m2 ± m)

(
f γ

m , f γ
m

)
, (15)

�⇒ ∣∣cγ

↑↓m

∣∣2 = γ + m2 ± m � 0. (16)

Hence, if some c
γ

↓ mmin
= 0, the equally spaced spectrum of X = L0 will be bounded from

below by mmin (positive complementary series); if c
γ

↑ mmax
= 0, it is bounded from above by mmax

(negative complementary series). The former were used in [23] to discretize the square-radius
coordinate of a polar array of ‘sensor-points’ on a plane with constant angular number. Here,
however, the case of our interest requires that cγ

↑↓ m never be zero, so that the position spectrum
will be m ∈ Z .

It is convenient to now introduce the Bargmann representation index k [6], related to the
Casimir eigenvalue γ by

γ = k(1 − k),

(
k−1

2

)2

= 14−γ, k = 1

2
±

√
14 − γ , (17)

equation (16) ⇒ |cγ

↑↓ m|2 =
(

m ± 1

2

)2

−
(

k − 1

2

)2

� 0. (18)

The replacement (17) entails a square root that allows us to extract the two series of so(2,1)
representations of our present interest determined by γ ∈ R: the principal and the (positive)
complementary representation series (in Bargmann’s nomenclature, the continuous C0

γ and
discrete D+

k series). The structure of so(2,1) representations is richer than what is presented
here—we exclude negative complementary and exceptional representation series—and forego
the general theory, which is adequately covered in [6, 24]. We divide the solutions of (18) into
these two series:

Principal: γ � 14, k = 1
2 +iκ, κ ∈ R, m ∈ Z, (19)

Complementary: γ < 14, k ∈ {1, 2, . . .}, m ∈ Z+
k . (20)

5
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Within each, the spectra of the three operators (5)–(7) are [24, 25]

Principal C0
γ (k) Complementary D+

k

Spectrum of C: γ = 14+κ2, κ ∈ R, γ = k(1−k), k ∈ Z+

Spectrum of X : xm = m ∈ Z, xm = m ∈ Z+
0 + k

Spectra of L (and P): λ ∈ R ⊕ R, λ ∈ R
Spectra of X±P: ξ ∈ R, ξ ∈ R+.

(21)

We restrict ourselves henceforth to the principal series k = 1
2 + iκ of SO(2,1) in (19), where

m ∈ Z . In this case, the action of the raising and lowering operators on the Kronecker
eigenbasis of position is written as

L↑↓f k
m =

√(
m ± 1

2

)2

+ κ2f k
m±1. (22)

To conclude this section, we contract our discrete repulsive oscillator model to the classical
and quantum models (1). In the principal series representation determined by κ ∈ R, we rescale
and shift the so(2,1) operators through

Xκ := X /
√

κ, Pκ := P/
√

κ, Lκ := L + κ1. (23)

When κ → ∞, the geometric and dynamic Hamilton equations in (8) between X κ ,Pκ ,Lκ

remain invariant, while the third becomes the Heisenberg commutator, weakly in the space of
wavefunctions of finite energy,

[X κ ,Pκ ] = 1

κ
[X ,P] = − i

κ
(Lκ−κ1) −→

κ→∞ i1. (24)

To recover the form of the quantum repulsive oscillator Hamiltonian in (1), we write the
Casimir operator (11), C = γ 1, with γ = 1

4 + κ2 to find its limit when κ → ∞,

(14 + κ2)1 = P2 + L2 − X 2 = κP2
κ + (Lκ − κ1)2 − κX 2

κ

= κ
(
P2

κ − 2Lκ − X 2
κ

)
+ L2

κ + κ21, (25)

�⇒ P2
κ − 2Lκ − X 2

κ = (
141 − L2

κ

)/
κ −→

κ→∞ 0, (26)

�⇒ lim
κ→∞Lκ − 1

2

(
P2

κ − X 2
κ

) = 0. (27)

We thus identify the pseudo-energy generator Lκ for κ → ∞ with the repulsive oscillator
Schrödinger Hamiltonian through

Ĥ = 1

2
(P̂ 2 − X̂2) ↔ lim

κ→∞Lκ = L + lim
κ→∞ κ. (28)

On the left we have the quantum operator whose spectrum is the energy η ∈ R, which we thus
relate to the previous ‘pseudo-energy’ eigenvalues λ of L by

η = λ + κ (energy), (29)

and we assume this identification for all values of κ ∈ R.

4. Difference equation and analytic solutions

In (12) we defined the Kronecker eigenbasis of position, and now we introduce the eigenbasis
of energy. The simultaneous eigenstates of the pseudo-energy operator L and of the Casimir

6
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operator (12) in the principal series representation labeled by κ (for k = 1
2 +iκ and γ = 1

4 +κ2)
are

Lhκ
λ,σ = λhκ

λ,σ , λ ∈ R, Chκ
λ,σ = (14+κ2)hκ

λ,σ , κ ∈ R, (30)

with σ an extra dichotomic index that will distinguish between the two R’s in (21).
The overlap between the eigenbases of position {f κ

m}m∈Z in (12), and of energy {hκ
λ,σ }λ∈R,

recalling (29), defines the wavefunctions of the discrete repulsive oscillator as

�κ
λ,σ (m) = (

f κ
m, hκ

λ,σ

)
. (31)

These wavefunctions satisfy a recurrence relation obtained from (9) and (22):

λ�κ
λ,σ (m) = (

f κ
m,Lhκ

λ,σ

) = 1

2

(
[L↑ + L↓]f κ

m, hκ
λ,σ

)
(32)

= 1

2

√(
m+

1

2

)2

+ κ2�κ
λ,σ (m + 1) (33)

+
1

2

√(
m−1

2

)2

+ κ2�κ
λ,σ (m − 1), (34)

and this leads to the three-term real difference equation in position m ∈ Z ,√(
m+

1

2

)2

+κ2 �κ
λ,σ (m+1) − 2λ�κ

λ,σ (m) +

√(
m−1

2

)2

+κ2 �κ
λ,σ (m−1) = 0. (35)

As for second-order differential equations, the difference equation (35) has two
independent solutions, to be labeled by σ . These solutions can be produced by giving two
sets of ‘initial’ values, say at �κ

λ (0) and �κ
λ (1) with different ratios. Solutions corresponding

to distinct eigenvalues λ will be Dirac-orthogonal, as can be seen using the argument familiar
from the adjunction of operators in �2(Z) on the difference equation (35), which implies that
(λ − λ′)(�λ,�λ′) = 0. However, the resolution of the two solutions by σ is left open. One
criterion, definite parity under reflections across the center m = 0, can be used to produce two
orthogonal solutions: odd ones from �κ

λ,−(1) = −�κ
λ,−(−1) and �κ

λ,−(0) = 0, and even ones
from �κ

λ,+(1) = �κ
λ,+(−1) = λ�κ

λ,+(0)/
√

γ , so that (�λ,+, �λ,−) = 0. However, parity has
not been the choice in the continuous case (3) in figure 1.

Using previous results on the SO(2,1) mixed-basis representations [24, equation (4.14)],
we can identify analytic special functions that satisfy the difference equations (4)–(35), through
the change of functions:

�κ
λ,σ (m) = iσm

∣∣� (
1
2 + iκ + σm

) ∣∣
�(1 − iλ + σm)


κ
λ,σ (m), σ = ±1. (36)

We can then verify that 
κ
λ,σ (m) satisfies one of the three-term Gaussian relations of the

hypergeometric function 2F1
[

a, b

c
; z

]
in the parameter c for z = 1

2 [26, equation 9.137.1]. We
can thus declare the discrete repulsive oscillator wavefunctions to be

�κ
λ,σ (m) = cκ

λ iσm

∣∣� (
1
2 +iκ+σm

) ∣∣
�(1−iλ+σm)

2F1

[ 1
2−iκ−iλ, 1

2 +iκ−iλ

1−iλ+σm
; 1

2

]
, (37)

where cκ
λ are normalization constants that are independent of the space coordinate m, to be

determined up to a phase. We note the following relations between the wavefunctions:

�κ
λ,+(m) = �−κ

λ,+(m) = �κ
λ,−(−m). (38)

7
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1
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−2

0

κ = 2 κ = 25 κ = 49

−20 20 −40 40 −56 56

= 2η

Figure 2. Discrete repulsive oscillator wavefunctions, �κ
λ,+(m) in (37). Columns: representations

κ = 2, 25 and 49. Rows: energies η = λ + κ = 2, 1, 0.5, 0, −0.5, −1 and −2, as in the previous
figure. Dashed, dotted and continuous lines join the real, imaginary and absolute values of the
function between integer points. In the last two columns, the ranges of positions m ∈ Z are [−8, 8]
scaled by the factor

√
κ (i.e. 5 and 7 respectively) so that as κ grows, the discrete wavefunctions

contract to the continuous repulsive oscillator ones in [−8, 8] shown in the previous figure.

In figure 2 we show the discrete repulsive oscillator wavefunctions for various energies
η = λ + κ . And again we can resort to the argument we made for figure 1 that they represent
right-moving waves.

Although we cannot identify the discrete repulsive oscillator wavefunctions (37) with
any named special function, we should point out that when in the three-term difference
equation (35) the Bargmann index k is restored, the radicands become (m ± k)(m ∓ k ± 1);
when k > 1

2 , the solutions will belong to the complementary series, with lower- and upper-
bound discrete positions m. A model where this is the spectrum of a radial variable was
elaborated in [23] and written in terms of Meixner polynomials Mn(ξ ; 2k, γ ), where n ∈ Z+

0
counts the energy levels and is the degree of the polynomial in the discrete radial coordinate
ξ ∈ Z+

0 , and γ ∈ [0, 1) is a contraction parameter. The hypergeometric function (37) at z = 1
2 ,

written in terms of two hypergeometrics at 1/(1 − z) = 2, yields expressions which can be
compared with the result in [23]: the degree n of the Meixner polynomial is here iλ − 1

2 ± iκ ,
the discrete radial position ξ appears now as −σm − 1

2 ± iκ—not polynomials, but analytic
extensions of them, 2k = 1 ± 2iκ as expected—and γ = −1. Alternatively, writing the
hypergeometric in the argument z−1 = 2, we find two hypergeometrics that can be identified
as Kravchuk functions Kn(x; 1

2 ; 2j) of the finite harmonic oscillator model of 2j points [1].

8
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 −2

 2

 −2

 2 

−40 40 −40 40

η

m m

η

Figure 3. Density plots of the real (left) and imaginary (right) values of the (finite) discrete
repulsive oscillator sub-basis �25

λi ,+
(m) for 25 positions m ∈ {−12,−11, . . . , 12}, and 25 energies

{ηi} equally spaced between −2 and 2. We see the waves transmitted and reflected by the potential
barrier ∼ − 1

2 m2.

In this case, the relations involve the finite oscillator energy number n, now − 1
2 +i(κ+λ), the

integer position x now σm and the representation index j now −k, k−1, corresponding to the
finite-dimensional non-unitary representations of so(2,1). The full account of these analytic
extensions [27] is quite arduous, so we deem it sufficient to only point them out.

5. Computational issues

The functions in figure 2 should be compared with their continuous counterparts in figure 1.
We shall explain now why the vertical axes bear no scale and the horizontal axes have different
ranges, and also examine their asymptotic behavior, which lies of course outside the range of
the figure.

First, regarding asymptotics we noted under (3) that the continuous repulsive oscillator
wavefunctions become at large distances |x| → ∞ a critically decreasing quadratic chirp
∝ exp(i 1

2x2)/
√|x| independent of energy, which is indicative of their Dirac normalization.

Correspondingly, in the functions (37) of the discrete model, for far-away points |m| � κ, λ,
the hypergeometric factor becomes unity while the ratio of �’s from Stirling’s formula behaves
as ∝ 1/

√|m|. Chirps are not possible onZ , but examining the limit |m| → ∞ of the recurrence
relation (35) we see that the λ-term tends to zero, so that �κ

λ,±(m+1) ≈ −�κ
λ,±(m−1). Thus,

instead of a chirp, one has asymptotically a sign alternation between the points m and m ± 2,
and thus a wavelength of 4 units.

Regarding the scale for normalization in figure 2, we considered that if these discrete
functions are to be used for numerical analysis and synthesis of finite N-point signals, the
norm should be computed over the actual range of positions that is being considered, instead
of the Dirac norm over �2(R). Correspondingly, instead of a continuum of energies, we
should decide on N convenient values {ηi} chosen to provide and label a basis of N linearly
independent N-vectors. We represent this basis (for N = 81) in figure 3 through a density
plot of the normalized vectors (as we did in [28] for the finite harmonic oscillator). Contained
in figure 3 is the assertion that in the expression (37) there is no phase depending on κ − λ.
Yet, we cannot expect this basis (and that of left-moving waves) to be orthogonal; to evince
its departure from orthogonality, in figure 4 we show the density plot of the N × N matrix of
overlaps |(�κ

λ,+, �
κ
μ,+)|, normalized as described above.

9
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  −2  2
2

−2

η

η'

Figure 4. Non-orthogonality of the finite (N = 25) discrete repulsive oscillator wavefunctions,

seen through their overlaps
∣∣∣(�25

λi ,+
, �25

λj ,+

)∣∣∣ between the 25 basis vectors, for the 25 equally

spaced energies ηi , ηj ∈ [−2, 2] of the previous figure.

The horizontal scales in figure 2 have been chosen to show the increasingly good match
of �κ

λ,+(m/
√

κ), as κ grows, to ψλ,+(x) in figure 1, where the range is x ∈ [−8, 8], under
the contraction (23). The range of points m in the last two columns of the figure has been
thus chosen to be [−8

√
κ, 8

√
κ]. (The first column of the figure corresponds to a small

value of κ , where no contraction is intended, and where the range of m’s is adjusted so that
the number of maxima be the same as that of the other two columns of discrete functions,
and of the continuous functions.) We note that although the absolute values of the discrete
wavefunctions (37) in figure 2 clearly tend to the continuous ones (3) in figure 1, the phases
that are due to the cκ

λ’s in (37) do not; the question of the proper choice of phases for the limit to
(3) is mathematically relevant but will not be pursued here. In any case, the multiplication of
these discrete wavefunctions by phases exp(−iηt) will reproduce the features of transmission
and reflection that we noted for the continuous repulsive oscillator below (3).

Finally, we should point out that the difference equation (35) relates the values of the
solution not only between integer coordinates m, but on any unit-spaced set of points along the
continuous coordinate m ∈ R. The ‘discrete’ wavefunctions (37) are actually smooth functions
of real m when we reinterpret iσm �→ exp(iσ 1

2πm) and in (38) and (−1)m �→ exp(−iσπm).

6. Conclusions

Why should we expect that the discrete repulsive oscillator wavefunctions will resemble the
continuous ones? The same question was asked for the discrete harmonic oscillator in [1]. The
answer lies in that both systems obey the same geometric and dynamic Hamilton equations,
and that the discrete system contracts to the continuous one. However, there are important
differences between the harmonic and repulsive oscillators. In the harmonic case, the su(2)
representation j ∈ Z+ determines the dimension N = 2j + 1 of the discrete system and shifts
the ground energy through ηn = j +λn + 1

2 , for integer λn ∈ [−j, j ] being the discrete pseudo-
energy. By contrast, in the repulsive case, the contraction (23) does not assign any geometric
or dynamical meaning to the representation label κ ∈ R other than providing the origin of
energy through η = κ + λ. It seems that the only role of κ is to be a contraction parameter
for a family of discrete models. In any case, the conclusion supported by the figures is that
the functions (37) do provide a good discrete approximation—better the larger κ is—to the
left- and right-moving repulsive oscillator quantum wavefunctions outside the chirp regions,
which have additionally a well-behaved analytic extension.
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Evidently, the finite position ranges of the computed discrete functions (37) cannot support
a Dirac basis for �2(Z) labeled by the continuous energy or pseudo-energy index; figure 4
confirms this statement showing that the overlaps have a rather broad peak along the diagonal,
which translates into very small angles between the N-vectors close in energy. The matrix of
the basis {�κ

λ (m)} for N points m and N energies η = κ + λ in the ranges explored in this
paper has a vanishingly small determinant, and the dual basis (amid numerical noise) hardly
bears any resemblance to transpose conjugate of the original, as is the case in the mathematical
�2(Z) formalism. In the finite harmonic oscillator, where approximate bases (such as that
of sampled Hermite–Gauss functions [29–31]) can be subject to a Schmidt orthogonalization
process from the ground state up, a discrete repulsive oscillator basis may be orthogonalized
over selected discrete energies ηn � 0 for right-moving free states to form a Gaussian-like
packet, or ηn � 0 for states that collide, reflect and transmit through the potential barrier.
Whether this process is satisfactory or not depends on the application of the model.

Finally, following the lead of su(2) systems, whose phase space is a sphere [32, 33], we
expect that the phase space of infinite discrete systems will be a one-sheeted hyperboloid; and
there, an so(2,1)-covariant Wigner function can be set up. These and other questions will be
developed in a forthcoming paper.
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