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Abstract

The discrete Fourier transform (DFT) matrix has a manifold of
fractionalizations that depend on the choice of its eigenbases. One prominent
basis is that of Mehta functions; here we examine a family of fractionalizations
of the DFT stemming from q-extensions of this basis. Although closed
expressions are given, many results of our analysis derive from numerical
computation and display. Thus we suggest that the account of fractional Fourier
transformations applied on signals as presented by other authors—typically of a
centred rectangle function—may be biased because the support of the function
lies in the central part of the domain only. The phase and amplitude of the whole
fractional DFT matrices reveal the location of departures from the continuous
kernel of the fractional Fourier integral transform, whose phase and constant
amplitude are well known.

PACS numbers: 02.30.Nw, 02.20.Qs, 02.30.Em, 43.60.Uv

1. Introduction

The fractionalization of the Fourier integral transform (FIT) was defined in 1937 by Condon
[1] at the suggestion of von Neumann; since then, it has been rediscovered several times in the
context of paraxial wave optics [2] and quantum oscillator systems [3]. The fractional powers
of the FIT form a cyclic subgroup of the two-dimensional symplectic group represented by
canonical integral transforms [4, Part IV], whose integral kernel was expressed as a bilinear
generating function for Hermite–Gauss functions by Namias [5]. Fractional Fourier techniques
have been used as tools for image processing in time and frequency, and other pairs of phase
space coordinates [6]. To implement the fractional Fourier transform on finite data sets,
however, several forms of regression to the N × N discrete Fourier transform (DFT) matrix
have been marshalled to compute results so that the efficient FFT (fast Fourier transform)
algorithm can be used [7–9].
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Here we approach the fractionalization of the N × N DFT matrix by first recognizing
that there is a large manifold of solutions to this task, which are determined by the choice
of eigenbases of the DFT matrix. In [10] three bases were used to define fractional DFTs
(FrDFT): the sampled Hermite–Gauss vectors, the Mehta basis [11] and Harper’s basis [12].
The construction of generic FrDFTs is recounted in section 2. In this paper we extend the
previous results in two directions: first, we introduce the q-extension of the Mehta eigenbasis
of the DFT matrix [13] to define fractional discrete q-Fourier transform matrices (q-FrDFT);
these form a one-parameter cyclic group of powers ν modulo 4, that coincide with the DFT
matrices for integer ν. Second, we compare the q-FrDFTs with the FIT kernel itself, rather
than its action on coherent states as in [10], or its rendering on rectangle signals only [14, 15].
Orthogonal bases lead to cyclic groups of unitary q-FrDFTs, while non-orthogonal ones—such
as the original Mehta basis itself [16]—lead to groups of matrices that are unitary only for the
integer ν.

In section 3, we review the Mehta basis, which is properly periodic, has an analytic form
and possesses a natural q-extension that was recently proposed in [13]. In section 4, we
compare the q-FrDFT matrices as approximations to the FIT kernel, whose salient property
is to have an absolute value which is constant over the plane of its two coordinates, and
a quadratic phase that is constant over hyperbolas. We evaluate whether this desideratum
is furthered by the introduction of the q-parameter. Several conclusions in this regard are
collected in the concluding section 5.

2. The discrete Fourier transform

The N × N DFT matrix is defined as

F = ‖Fm,m′ ‖, Fm,m′ := 1√
N

exp

(
−i

2πmm′

N

)
, (1)

with elements that are periodic in m,m′ modulo N. This matrix is symmetric and unitary, so
its inverse is its complex conjugate and | det F| = 1. Importantly, F4 = 1, so the DFT is a
fourth root of unity; hence, its eigenvalues are (for N > 4) the four fourth roots of unity,

ϕ0 := 1, ϕ1 := −i, ϕ2 := −1, ϕ3 := i, (2)

i.e. ϕn = (−i)n for n = 0, 1, 2, 3. The multiplicities Nϕn
of these eigenvalues have the

following values for dimensions N depending on their residue modulo 4 [11]:

dimension multiplicities Nϕn

N= ϕ0 = 1 ϕ1 = −i ϕ2 = −1 ϕ3 = i tr F det F

4J J+1 J J J−1 1 + i −i(−1)J

4J+1 J+1 J J J 1 (−1)J

4J+2 J+1 J J+1 J 0 −(−1)J

4J+3 J+1 J+1 J+1 J −i i(−1)J ,

(3)

where N = ∑3
n=0 Nϕn

, tr F = ∑3
n=0 ϕnNϕn

and det F = ∏3
n=0(ϕn)

Nϕn .
There is a natural N-dimensional complex vector space CN of ‘discrete functions’ (column

vectors or ‘signals’) {fm}Nm=1 on which F and the FrDFT matrices act, describing the
states of a discrete and finite system. This space is endowed with the usual inner product
(f, g) := ∑N

m=1 f ∗
mgm and norm |f | := √

(f, f ). The DFT divides CN into its four
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eigenspaces CNϕn , of dimensions Nϕn
, which are mutually orthogonal through the four projector

matrices,

Pϕn
:= 1

4

3∑
k=0

ϕ−k
n Fk, Pϕn

Pϕn′ = δn,n′Pϕn
. (4)

From these, we can regain the DFT and its integer powers as

Fν =
3∑

n=0

ϕν
n Pϕn

, ϕν
n := exp

(
−i

1

2
πνn

)
. (5)

We shall now allow the powers ν in (5) to take arbitrary real values, noting that ϕ4
n =

exp(−2π in) = 1 implies that they are periodic modulo 4. These four projector matrices can
be built with complete sets of eigenvectors of F,

Fv(ϕn,j) = ϕnv(ϕn,j), v(ϕn,j) = {
v(ϕn,j)

m

}N

m=1 ∈ Cϕn , (6)

where ϕn ∈ {1,−i,−1, i} labels the orthogonal eigenspaces of F with n ∈ {0, 1, 2, 3}, and
j ∈ {0, 1, . . . ,Nϕ−1} labels the Nϕ vectors in each eigenspace.

Let us identify by V any basis that satisfies (6). It is not necessary that v(ϕn,j) ⊥ v(ϕn,j
′)

for j �= j ′, but only that there exists a dual basis of row N-vectors v(ϕ,j) = {
v(ϕ,j)

m

}N

m=1 ∈ CNϕ ,
such that

v(ϕ,j)v(ϕ′,j ′) = δϕ,ϕ′δj,j ′ ,

Nϕ−1∑
j=0

v(ϕ,j)v(ϕ,j) = Pϕ. (7)

To propose a discrete analogue we shall assign a single numeration for the N-vectors of
the bases by using the compound index k := 4j + n ∈ {0, 1, . . . , N−1}, which will serve
to interleave the four ϕn eigenvalues in the same order as the energy eigenfunctions of the
harmonic oscillator.

Following the construction with orthonormal bases in [10], we now build the FrDFT
matrix Fν

V using the V -basis vectors and their duals as

(
Fν

V

)
m,m′ :=

3∑
n=0

Nϕn −1∑
j=0

v(ϕn,j)
m exp

[
−i

1

2
π(4j+n)ν

]
v

(ϕn,j)

m′ . (8)

Due to (7), these matrices have the desired properties:

F
ν1
V F

ν2
V = F

ν1+ν2
V , F0

V = 1 = F4
V, F1

V = F. (9)

They form a one-parameter cyclic Lie group of matrices

Fν
V = exp

(
−i

1

2
πνNV

)
, (10)

with the generator

(NV)m,m′ =
3∑

n=0

Nϕn −1∑
j=0

v(ϕn,j)
m (4j+n)v

(ϕn,j)

m′ , (11)

which can be called the number matrix for V ∈ CN ,

NV v(ϕn,j) = (4j+n)v(ϕn,j). (12)

Let us call this subgroup of V -FrDFT matrices CV ⊂ SL(N, C).
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Figure 1. There is a manifold of bases V , each of which determines a circle of fractional Fourier
matrices Fν

V (depicted here as ellipses, since in two dimensions there is only one circle), passing
through the unit 1, the Fourier matrix F, and its integer powers. In the space of all complex N ×N

matrices of unit determinant, there are 2
∑

n N2
ϕn

− 1 real degrees of freedom in choosing the basis
V .

The trace of the number matrix (11) is independent of V , and thus in any basis,

trN =
3∑

n=0

Nϕn−1∑
j=0

(4j + n) =

⎧⎪⎪⎨
⎪⎪⎩

8J 2 − 2J + 1 for N = 4J,

8J 2 + 2J for N = 4J + 1,

8J 2 + 6J + 2 for N = 4J + 2,

8J 2 + 10J + 3 for N = 4J + 3,

(13)

and hence all FrDFT matrices (10) have the determinant

det Fν = exp
(− 1

2π i ν tr N
)
, i.e. | det F| = 1. (14)

For ν = 1, one recovers the values of det F in the four cases of (3), so that (13) and (14)
generalize the previously known results for any power ν of F.

We conclude that each complete basis V of the state space CN thus determines its cyclic
subgroup CV of N × NV -FrDFT matrices, parametrized by the power ν modulo 4. As
submanifolds, the CV’s are circles in the (2N2−1)-dimensional real space of SL(N, C). All
these circles pass through the unit 1 and the DFT matrix F, and consequently through its
integer powers F2 and F3 = F−1, but they are otherwise disjoint, as depicted in figure 1. The
tangent to these circles at 1 is the number matrix NV in (11). The degrees of freedom we have
to choose the circles is that of bases V , namely 2N2

ϕn
real parameters in each of the Fourier

eigenspaces, minus the restriction that their determinant be 1. The only common eigenvectors
of all CV matrices are the vectors of the basis V .

When the chosen basis V is orthonormal
(
self-dual, so v(ϕn,j)

m = v
(ϕn,j)∗
m

)
, then the number

matrix (11) is Hermitian and the V -FrDFT matrices Fν
V in (8) are unitary, lying entirely in

SU(N) ⊂ SL(N, C); when V is not self-dual, then all but the integer powers ν will be non-
unitary. When the vectors in an orthonormal basis V are also real, then the number matrix
and all V -FrDFT matrices in CV are symmetric. Other symmetries, such as those under
m ↔ N−m will be seen for the q-Mehta basis, to be introduced next.

3. The eigenbasis of q-Mehta functions

As was remarked in [10], the choice of the basis V for CN , and the numeration of its vectors
v(ϕn,j) by k := 4j +n, is in principle arbitrary. This brings to the fore the choice of ‘good’ bases,
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which should ensure that their V -FrDFTs have the same crucial properties as the continuous
fractional FIT for the Fourier angle φ := 1

2πν [4, 6],

Fνf (x) :=
∫ ∞

−∞
dx ′F(x, x ′; ν)f (x ′), (15)

F(x, x ′; ν) = 1√
2π i sin φ

exp i

(
−xx ′ csc φ+

1

2
(x2+x ′2) cot φ

)
(16)

=
∞∑

k=0

�k(x) e−iπν/2�k(x
′). (17)

The last expression is Namias’ bilinear generating form [5] with the Hermite–Gauss (HG)
eigenfunctions of the quantum harmonic oscillator,

�k(x) := exp
( − 1

2x2)Hk(x)
/√

2kk!
√

π, (18)

that are well known to be eigenfunctions of the FIT, F�k = (−i)k�k; their numeration by
k = 4j + n counts the energy quanta.

To propose discrete analogue of these formulae, one can consider HG functions sampled
at N equidistant points with various scale factors [14, 15], but these values do not form
eigenvectors of the DFT. Yet, Mehta [11] built eigenvectors of the N × N DFT through
summing an infinite number of displaced copies of the HG functions as

μk(x) :=
∑
�∈Z

�k(s(x+�N)) = μk(x+N),
s := √

2π/N,

k ∈ {0, 1, . . .}. (19)

These functions are periodic modulo N in the continuous parameter x, which served to give a
very elegant proof of this fact, expanding μk(x) in a Fourier series of {exp(is2nx)}n∈Z . The
Fourier coefficients are found to be �k(sn) times ik , due to the self-reproduction of �k(sx)

under the FIT. Then, writing n := �N+r , the series is divided into a sum over r ∈ {1, 2, . . . , N}
and a sum over � ∈ Z , which returns μk(r) in (19). The resulting expression at the integer
points x = m modulo N closes the proof that the μk(m)’s in (19) are eigenfunctions of the
DFT with eigenvalues (−i)k . Note that the Mehta functions are well defined and smooth
for complex x, Re x2 � 0. The Mehta functions (and the q-Mehta functions, below) inherit
the definite parity of the HGs, namely μk(−x) = (−1)kμk(x). It is sensible thus to choose
the periodicity interval of the vector component index m of all vectors and matrices to be
symmetric around m = 0, so that the properties under parity remain visible. Thus, for odd
N = 2K + 1,

μk(m), F ν
m,m′ , m ∈ {−K,−K + 1, . . . , 0, . . . , K} =: MN, (20)

while for even N = 2K , the values of m would be taken over the half-integers between
±(

K + 1
2

)
. For N odd, the Mehta N-vectors {μk(m)}N−1

k=0 are a linearly independent set; for N
even, k ∈ {0, 1, . . . , N−2, N} is an independent set, as Mehta correctly conjectured [11]. In
this paper we shall work with odd N’s only, not to duplicate many of the formulae.

The Mehta basis has recently been subject to deformation by the parameter q [13],
extending the Hermite polynomials in (18) to the q-Hermite Hk(x|q) [17] and q−1-Hermite
hk(x|q) [18] polynomials. These can be defined by the three-level recurrence relations

Hk+1(x|q) = 2xHk(x|q) − (1−qk)Hk−1(x|q), H0(x|q) = 1, H1(x|q) = 2x, (21)

hk+1(x|q) = 2xhk(x|q) + (1−q−k)hk−1(x|q), h0(x|q) = 1, h1(x|q) = 2x, (22)

5
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for k = 0, 1, 2, . . . and 0 < q � 1. These two polynomial families have the same lowest k = 0
and k = 1 members, and are related thereafter through hk(sinh y|q) = i−kHk(sin iy|q−1).
When q → 1−, they become the standard Hermite polynomials through the (not obvious)
limit relations

lim
q→1−

κ−kHk(sin κx|q) = Hk(x) = lim
q→1−

κ−khk(sinh κx|q−1), (23)

κ := √ (− 1
2 ln q

)
, q = exp(−2κ2). (24)

Their explicit polynomial form is

Hk(sin y|q) := i−k

k∑
n=0

(−1)n
[

k

n

]
q

eiy(k−2n), 0 < q � 1, (25)

hk(sinh y|q) :=
k∑

n=0

(−1)n
[

k

n

]
q

qn(n−k) ey(k−2n), 0 < q � 1, (26)

where the q-binomial and q-shifted factorials are [17][
k

n

]
q

:= (q; q)k

(q; q)n(q; q)k−n

, (a; q)k :=
k−1∏
n=0

(1 − aqn). (27)

For numerical computation we have found the recurrence relations (21)–(22) to be much
preferable to the direct computation by (25) and (26). With these q-Hermite polynomials we
now define two sets of functions, evaluated on the same discrete points x = sm,m ∈ MN and
the scale s2 = 2π/N as in (19), with a common Gaussian factor. These are [13]

�k(m|q) := exp
(− 1

2 (sm)2)Hk(sin (κsm)|q)
/√

2kk!
√

π, (28)

ψk(m|q) := ik exp
(− 1

2 (sm)2) hk(sinh (κsm)|q)
/√

2kk!
√

π, (29)

for 0 < q � 1. And then, as Mehta did, we build the sums of integer-displaced q-HGs:

Mk(m|q) :=
∑
�∈Z

�k(m+�N |q), μk(m|q) :=
∑
�∈Z

ψk(m+�N |q). (30)

We call this q-deformation of the HG harmonic oscillator wavefunctions (28) and (29) q-
HG functions, {�k(m|q)}N−1

k=0 and {ψk(m|q)}N−1
k=0 . They are two sets of functions that are

not separately eigenvectors of the Fourier transform, but instead exhibit the following very
important reciprocal relation with the DFT matrix (1) found by Atakishiyev [19, 20]:∑

m′∈MN

Fm,m′Mk(m
′|q) = qk2/4μk(m|q), (31)

∑
m′∈MN

Fm,m′μk(m
′|q) = (−1)kq−k2/4Mk(m|q). (32)

As in the case of the original Mehta functions, these relations stem from corresponding Fourier
integral transform relations satisfied by (28) and (29). Fourier eigenvectors can be now built
as

�k(m|q) := 1
2

(
q−k2/8Mk(m|q) + i−kq+k2/8μk(m|q)

)
. (33)

6
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These we call q-Mehta functions of number 0 � k � N−1, defined on the points m ∈ MN ,
and extendable to regions of the complex plane where the sums converge. They are real
functions, periodic in m modulo N, with definite parity �k(−m|q) = (−1)k�k(m|q), and are
eigenvectors of the DFT matrix,∑

m′∈MN

Fm,m′�k(m
′|q) = (−i)k�k(m|q). (34)

We note that these functions are neither orthogonal nor normalized over CN (yet).
The q-Mehta functions (33) provide the vector bases to build the fractional q-Fourier

transforms (q-FrDFTs). The q-Mehta bases are conjectured to be complete; this is surely true
for N odd, where numerical computation confirms intuition; it may be true or not when N is
even.

To understand the structure of such non-orthogonal bases, we have found it very convenient
to use density plots of the ordered vector elements �k(m|q) for 0 � k � N−1 and m ∈ MN ,
as was done in [10]. Thus in figure 2 we show the q-Mehta bases for three values of
the deformation parameter q, starting with the q = 1 undeformed basis of original Mehta
functions. The parabolic pattern of maxima widens as do the classical oscillator turning
points, ∼√

k, and there is a shortening of the intervals between sign alternations by ∼1/
√

k.
The two states k = 0 and 1 are q-independent as we saw above, and their lowest neighbours
are relatively insensitive to the value of q. For q < 1 and higher k’s, the patterns reveal two
superposed parabola-like structures which are due to the sum of two terms in (33), the inner
one stemming from Mk(m|q) and the outer one from iκμk(m|q). In the same figure we also
use density plots to represent the non-orthogonality of a given real basis through building the
matrix of their overlaps, (�k(m|q),�k′(m|q)). Were the basis orthonormal, a Kronecker δk,k′

would be on the diagonal; we see this for the smaller k and k′’s, but for larger k’s (belonging
to the same Fourier eigenspace) off-diagonal values appear; these increase as we leave the
q = 1 undeformed case. For q = 1, the overlaps have been given by Ruzzi [16] in analytic
form with Jacobi ϑ-functions.

We may ask if the q-Mehta functions are in some sense wavefunctions of a discrete
oscillator. For example, the Harper basis is defined as the eigenbasis of the Harper oscillator
[10, 12], defined by its Hamiltonian 1

2 (Δ + Δ̃), where Δ is the second-difference matrix
corresponding to the kinetic energy − 1

2Δ, and − 1
2Δ̃ is its diagonal Fourier transform,

representing the discrete and periodic Harper potential VH(m) := 2(1 − cos s2m),m ∈
MN, s2 = 2π/N . In continuous quantum mechanics the ground state of a system determines
its potential through(− 1

2∇2 + V (x)
)
φ0(x) = E0φ0(x) ⇒ (V (x) − E0) = ∇2φ0(x)/2φ0(x). (35)

In our discrete system, the ground state k = 0 is given by a Jacobi theta function [13],

π1/4�0(m|q) =
∑
�∈Z

exp
(
− π

N
(m+�N)2

)
= e−πm2/Nϑ3(π im, e−πN), (36)

which has no zeros in m ∈ MN . Thus it can serve to similarly define an equivalent potential
[21, 22] through

V�(m) := (�0(m+1) + �0(m−1))/�0(m) + const. (37)

This potential is periodic in the position label m, and can be analytically continued or computed
over m ∈ �; it is shown in figure 3 where indeed it resembles that of a harmonic oscillator. The
potential (37) is independent of the deformation parameter q, suggesting that this parameter
is not of dynamical import, but only embodies a choice of basis.

7
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Figure 2. The q-Mehta bases for N = 63. Top row: density plots of the basis vectors �k(m|q)

(in each, columns are numbered by k = 0, 1, . . . , N−1 = 62 and rows by m ∈ M63 =
{−31, . . . , 31}). From left to right, for q = 1 (undeformed), 0.9 and 0.8. Middle row: overlaps
(�k(q), �k′ (q)) (rows and columns numbered by k, k′) for the same values of q. Bottom row: the
orthonormalized q-Mehta bases (compared with the top row).

Figure 3. The q-Mehta equivalent potential (37) for N = 63 points (values at integer m’s joined
by a thick line, scaled to fit the figure), and the Mehta ground state �0(m) in (36) (values joined
by a dotted line). Both are independent of the deformation parameter q.

4. The integral vis-á-vis discrete transforms

As we stated in the introduction, our aim is to compare the fractional DFTs obtained from the
q-Mehta functions, with the fractional FITs Fν in (15)–(17). The evident properties of the
integral kernel F(x, x ′; ν), ν = φ/ 1

2π , are that, for any ν �= 0, 2 modulo 4, the absolute value

8
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|F(x, x ′; ν)| = 1/
√

(2π | sin φ|) is constant over the x–x ′ plane, while its phases are constant
on the hyperbolas

(x2 + x ′2) cot φ − 2xx ′ csc φ = constant. (38)

These are centred hyperbolas whose asymptotes lie in the first and third quadrants, given
by the lines (x/x ′)±1 = sec φ ± tan φ > 0. For example, the square root of the FIT,
ν = 1

2 , has asymptotes (x ′/x)±1 = √
2 ± 1 =: tan α±, which lie at α− = 22◦30′ and

α+ = 90◦ − α− = 67◦30′. For the DFT matrix ν = 1 the asymptotes become the ±x and ±x ′

axes, while for ν → 0, both asymptotes coalesce at 45◦ as the kernel becomes δ(x − x ′).
Since the fractional FITs are unitary for all ν, we should use orthonormal bases to

construct correspondingly unitary FrDFT matrices. Since neither the Mehta nor q-Mehta
bases are orthogonal, we should subject the vectors of the bases �k(m|q) in (33) to a Schmidt
orthogonalization procedure within each of the four Fourier eigenspaces, in the natural order
given by k = 4j + n, n ∈ {0, 1, 2, 3}, 0 � j � Nϕn

−1. This was done by Pei et al
[14, 15] for the sampled HG-functions. Henceforth, the computation must be basically
numerical because the Schmidt process and final normalization produce rather unmanageable
formulae. Yet, the process is unique, and thus out of the q-Mehta basis (33) we build the
orthonormalized q-Mehta bases �◦

k(m|q), whose elements are real, to define the q-FrDFT
matrix Fν

q (8), with elements

(
Fν

q

)
m,m′ :=

N−1∑
k=0

�◦
k(m|q) exp

(
−i

1

2
πkν

)
�◦

k(m
′|q). (39)

In figures 4, we show density plots of the matrix elements of the q-FrDFT matrices (39), built
with orthonormalized q-Mehta bases, for three values of q, starting with the undeformed case
q = 1. We have checked of course that for any value of q one recovers the DFT matrix at
ν = 1, and that the product of the q-FrDFT matrices Fνi

q yields another such matrix with
the sum of powers of the factors. These matrices are unitary and symmetric; hence their
inverse is their complex conjugate as for the fractional FIT kernel, and the matrix elements
are periodic in m,m′ modulo N. We see in the figure that the absolute values of the matrix
elements

(
Fν

q

)
m,m′ are approximately constant only over a central region of roughly elliptical

shape in the m–m′ plane, which diminishes in size with the parameter q. The phases follow
the pattern of hyperbolas (38), that appear to close as circles, which are particularly visible for
ν = 1.

The q-FrDFT of a signal vector f—a rectangle is commonly used in the literature as a test
function [6, 14, 15]—can be seen as the matrix product of the square density plots of Fν

q in
figures 4 on an N × 1 column vector {fm} represented by a corresponding density plot. As
long as the significantly non-zero portion of f is multiplied by the plateau region of the matrix,
the result will approximate the fractional FIT of the corresponding ‘continuous’ rectangle
function. In figures 5 we show the application of various q-FrDFTs to a rectangle signal.

5. Concluding remarks

We have introduced the fractional discrete q-Fourier transform matrices,
(
Fν

q

)
m,m′ in (39), using

q-extensions of the Mehta basis of DFT eigenstates. These matrices form cyclic subgroups
within SL(N, C) that pass through the unit matrix 1 and the DFT matrix F (and its integer
powers); the matrices will be unitary only when the bases are orthonormal, so we subjected
them to the Schmidt process. As an informative aid, we presented density plots of the basis
vectors (figure 2), and of the absolute value and phase of the q-Fourier transform matrix

9
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Figure 4. Absolute value and phase of the fractional discrete q-Fourier matrices (Fν
q )m,m′ for

N = 63. Upper row: the ν = 1 DFT matrix common to all q. Lower-left columns: the q-FrDFT
matrices for power ν = 3

4 and (from top to bottom) q = 1 (undeformed case), 0.9 and 0.8.
Lower-right columns: the q-FrDFT matrices for power ν = 1

2 and the same values of q.

elements (figure 4), which served to compare the matrices with the fractional Fourier integral
kernels (16).

The property of the integral kernels to have unit absolute value indicates that the action
of the q-FrDFT matrices on signal vectors can be faithful to the integral transform only in the
central range (small |m|) of the signal, as can be seen in figure 4, and this range diminishes
with the power ν and the parameter q. In the same regions, the phases of the matrix elements
do follow (roughly) the pattern of hyperbolas that characterize the fractional integral kernels.
The q-FrDFTs of a rectangle signal were displayed (figure 5) for comparison with the same
example in the extant literature.

We noted that the equivalent potential defined in (37) of the discrete system has the
expected shape, resembling that of a harmonic oscillator (figure 3), and that it is independent of

10



J. Phys. A: Math. Theor. 42 (2009) 355212 C A Muñoz et al
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Figure 5. Fractional q-Fourier transforms of a rectangle signal with support on (−15, 15) for
N = 63. (Thick lines for real parts and dotted lines for imaginary parts.) Upper row: the rectangle
signal (ν = 0) and its DFT (ν = 1) common to all q. Second row: continuous fractional FIT (15)
of a rectangle function with the integral kernel (16) for powers (left to right) ν = 3

4 , 1
2 and 1

4 . The
scale factor between m and x is

√
(2π/N). Last three rows: rectangle signals under the q-FrDFTs

for q = 1 (undeformed case), 0.9 and 0.8, and the same powers ν.

the parameter q, so this deformation parameter cannot be contained in optical Fourier transform
setups [23] that are distinct from the classical symmetric one-lens and other arrangements.
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