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Mode analysis and signal restoration
with Kravchuk functions

Kurt Bernardo Wolf

Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Cuernavaca,
Morelos 62251, Mexico (bwolf@fis.unam.mx)

Received August 28, 2008; accepted December 8, 2008;
posted December 23, 2008 (Doc. ID 100739); published February 12, 2009

When a continuous-signal field is sampled at a finite number N of equidistant sensor points, the N resulting
data values can yield information on at most N oscillator mode components, whose coefficients should in turn
restore the sampled signal. We compare the fidelity of the mode analysis and synthesis in the orthonormal
basis of N-point Kravchuk functions with those in the basis of sampled Hermite–Gauss functions. The scale
between the two bases is calibrated on the ground state of the field. We conclude that mode analysis is better
approximated in the nonorthogonal sampled Hermite–Gauss basis, while signal restoration in the Kravchuk
basis is exact. © 2009 Optical Society of America
OCIS codes: 070.2025, 070.4790.
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. INTRODUCTION
ssume that in a planar acoustical or optical multimodal
aveguide, the field across the guide is recorded by sam-
ling the continuous complex function F�x� on N=2j+1
qually spaced “sensor” points xm=sm, for integer or half-
nteger �m�−j

j , and an appropriate scale factor s to be de-
ermined. From this collection of N complex data values,
he signal �F�m��m=−j

j , we should (approximately) find the
rst N formant harmonic oscillator mode coefficients of
he continuous field, and from these, if possible, restore
he original sampled signal.

In the continuum, the harmonic oscillator modes are
he well-known Hermite–Gauss (HG) functions
�n�x��n=0

� , which form a complete and denumerable or-
honormal basis for the Hilbert space of square-integrable
unctions L2�R� under its standard scalar product that in-
egrates over �x�−�

� . On the other hand, under the usual
calar product of N-dimensional complex vector spaces
N, the corresponding N sampled-HG (s-HG) N-vectors

�n�xm��n=0
N−1 (with components numbered by �m�−j

j ), are
inearly independent—but not orthogonal. There is ample
iterature on the analysis of signals by HG functions [1–5]
hat discusses their remarkable properties under the Fou-
ier transform [6,7]. For VN we have also the orthonormal
asis of discrete Kravchuk functions ��n

j �m��n=0
N−1, which

erive from oscillator dynamics [8–10]. The aim of this
aper is to elucidate the relative advantages of each of
hese two bases for the two tasks we set forth above:
amely, analyzing the mode content and synthesizing
ack the signal.
At the outset we must indulge in the abstraction that

he field can be subject to measurement at a point—actual
ensors have finite size of course; and while the measure-
ent of amplitude and phase is possible in acoustics, op-

ical arrangements will require extra provisions. We note
hat since in a waveguide neither the continuous field nor
he finite signal is actually periodic modulo N, the free
1084-7529/09/030509-8/$15.00 © 2
aves of Fourier analysis would not provide the best ba-
is for this analysis in VN. Thus, we recall in Section 2 the
-HG and Kravchuk bases. In finite systems, the sampled
ata “exist” only on the N sensor points (numbered by

�m�−j
j ); yet both the s-HG and the Kravchuk functions are

nalytic on the complex m plane; for mathematical in-
truction we shall keep track of the behavior of signals on
he real interval m� �−j , j�.

The context of this work is the approximation of finite
o continuous models of optics, one of whose aspects is
nding the optimal free parameters to center and scale
he sensor array [11]. In Section 3 our approach calibrates
he optimal scale between the s-HG and Kravchuk func-
ions with the ground state of the field. The validity of
his choice comes to the fore in Section 4, bringing up the
onorthogonality of the s-HG basis versus the orthonor-
al Kravchuk basis as we analyze and synthesize sig-
als. In fact, the s-HG basis is better used with a different
nalysis, which is applied in Section 5 to compare the
-HG and Kravchuk syntheses of a rectangle signal. The
discontinuities” of the rectangle emphasize the Gibbs-
ike oscillations that impede the exact restoration of the
ignal. In Section 6 we offer some conclusions and suggest
traightforward extensions for two-dimensional sensor
onfigurations.

. SAMPLED-HG AND KRAVCHUK BASES
he natural structure for finitely sampled N-point sig-
als, �F�m��, �G�m��, is that of a complex vector space VN,
haracterized by its scalar product,

�F,G�N ª �
m=−j

j

F�m�*G�m�, �1�

here N=2j+1 and * means complex conjugation. The
orm of a signal is �F�ª	�F ,F�, and the angle between
he two is cos � ª �F ,G� / �F��G�. We consider two vector
F,G N

009 Optical Society of America
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ases for VN that approximate the continuous-oscillator
ynamics: sampled HG and Kravchuk functions.
The normalized s-HG function basis is the set of real

ectors in VN sampled from the continuous oscillator func-
ions,

�n
�s��m� ª An�s�exp�− 1

2s2m2�Hn�sm�, �n�0
N−1, �2�

here An�s� is the factor that sets ��n
�s��=1. The

ontinuous-oscillator Hamiltonian 1
2 �−�2+x2� is approxi-

ated in VN by the N�N matrix whose eigenvectors are
q. (2) with eigenvalues n+ 1

2. To find this matrix one
eeds to compute the dual basis since, except for parity,
wo s-HG vectors are not orthogonal. The exponential of
his matrix builds a one-parameter cyclic subgroup of ma-
rices that is the fractional Fourier transform associated
ith the s-HG basis [12]. This imposes harmonic motion
n the vectors of this basis.

The Kravchuk functions stem from the harmonic mo-
ion provided by the rotation (spin) group SU�2�, well
nown from quantum angular momentum theory [13],
hich has matrix representations of dimensions N=2j
1, for j a positive integer or half-integer. In this SU�2�
scillator model [8], the position, momentum, and (dis-
laced) energy observables are identified with the eigen-
alues of the generators of rotations around the 1-, 2-, and
-axis, respectively; for each j, all have thus intrinsically
he same discrete, finite spectrum �m�−j

j . The Kravchuk
unctions �n

j �m� of mode number �n�0
2j and position �m�−j

j

re the overlaps between the eigenvectors of the Hamil-
onian generator of rotations around the 3-axis and the
igenvectors of the position operator, which is the genera-
or of rotations around the 1-axis. These overlaps are the
ell-known SU�2� Wigner “little-d” functions for the
ngle 1

2�, which can be expressed as the product of the
quare root of a binomial times a symmetric Kravchuk
olynomial [14] as [8]

�n
j �m� ª dn−j,m

j � 1
2��

=
�− 1�n

2j 	
2j

n�
 2j

j + m�Kn�j + m; 1
2 ,2j� , �3�

Kn�j + m; 1
2 ,2j� = 2F1�− n,− 2j − m;− 2j;2� = Kj+m�n; 1

2 ,2j� ,

�4�

nd have the symmetry properties

�n
j �m� = �− 1�n�n

j �− m� = �− 1�n−j�2j−n
j �m�

= �− 1�n−j−m�j+m
j �n − j�. �5�

hen N is even, j and m are half-integers; although the
ormalism applies straightforwardly, there is an extra
ign for global transformations owing to the 2:1 cover of
he unitary group SU�2� over the rotation group SO�3�. To
void this possible complication—and to have a sensor
oint at m=0—we shall consider here only odd numbers

of points, so j and m will be integers. Finally, in the
→� limit, Kravchuk functions converge pointwise to

he continuous-oscillator functions on the full finite
ine [15],
lim
j→�

�− 1�n+jj1/4�n
j �m� = �n�x� for x = m/	j. �6�

The chosen SU�2� group generators are self-adjoint, so
he Kravchuk basis (3) is orthogonal, and it has been cho-
en orthonormal: ��n

j ,�n�
j �N=�n,n�. Note in Eq. (3) that

ince Kn�j+m ; · , · � is a polynomial of degree n in m, and
lso the binomial coefficient � 2j

j+m � has a unique analytic
ontinuation, the Kravchuk functions are analytic in the
omplex-m plane; they have branch-point zeros at m
± �j+k� for integer k�1 (so there is “nothing” beyond the

ignal end points). In Fig. 1 we show the Kravchuk func-
ions �n

j �m� for discrete m� �−j , j�, analytically continued
n that interval, and the corresponding s-HG functions

n
�s̄��m� with a scale s̄ that is optimized to match the

round states, to be determined next.
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n = 0
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n = 3
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n = 5

n = 6

n = 7

n = 8

n = 9

n = 10

ig. 1. Left column, Kravchuk basis functions, �n
j �m� in Eq. (3),

or j=5 (marked with dots on the N=11 points); dotted curves
how their analytic continuation to m� �−5,5�. Right column,
-HG functions �n

�s̄��m� in Eq. (2); dots indicate the sampling
oints for an optimal scale factor s̄=0.446410. From top to bot-
om are the vectors of 11 basis states n�0

10. Note that as a result of
q. (5), the higher Kravchuk modes 6	n	10 have the same ab-
olute values as the lower modes 0	n	4.
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. CALIBRATION OF SCALE
e propose that the sensor array that samples the field

nd yields the signal can be calibrated so that the ground
G beam is centered and so that its sampling �0

�s��m� re-
ults in an optimal match with the ground Kravchuk vec-
or �0

j �m�. This is the square root of a binomial distribu-
ion,

�0
j �m� =

1

2j	
 2j

j + m�, �m�−j
j . �7�

n Fig. 2 we compare Eq. (7) with the normalized s-HG
round state for various scale factors s around an optimal
alue s̄ where the two are visually indistinguishable.

The question naturally arises how appropriate is this
optimal” scale for all other modes. The relation between
he Kravchuk and s-HG basis vectors with scale s is con-
ained in a set of N difference N-vectors,

Φ0 (m) Ψ0 (xm), xm = s m

m
−6 −4 −2 2 4 6

0.1

0.2

0.3

0.4

0.5

0.6

7−7 1−1 3−3−5 5

s − 0.30

s − 0.15

s + 0.30
s + 0.15

s

0

−15 −12 −6 6 12 15

0.1

0.2

0.3

0.4

0.5

Φ0 (m) Ψ0 (xm), xm = s m

m

s − 0.30

s − 0.15

s + 0.30
s + 0.15

s

0 3 9−3−9

ig. 2. Scale calibration of the ground s-HG vector to the
round Kravchuk vector. Top, for j=7 (N=15 points); bottom, for
=15 (N=31 points). Large dots mark the values of the Kravchuk
unction �0

j �m�. Solid curves show the s-HG function �0�xm�;
mall-dots mark the sampling points xm=sm, for scale factors s
round the optimal value s̄ where the s-HG and Kravchuk func-
ions are closest. For j=7, this is s̄=0.378138, and for j=15 it is
=0.258253. The dashed curve (barely visible in the top figure
ear the center and edges of the interval) is the analytic continu-
tion of the ground Kravchuk function.
Dn
�s��m� ª �n

j �m� − �n
�s��m�, �n�0

2j. �8�

one of these vectors can be zero for any scale s, but for
ach �n�0

N−1 one can find values s̄n
j that minimize the norm

f the difference vectors,

Dn
j
ª min

s
�Dn

�s�� = �Dn
�s̄��. �9�

he vectors in both bases are normalized so the angle be-
ween each pair of corresponding modes n, �n

j �s�
arccos��n

j ,�n
�s��N, is also minimized for s= s̄n

j .
In Fig. 3 we show the difference norms �Dn

�s�� for all
odes and a range of scale factors. There is a single mini-
um for the ground state, s̄0

j , because both functions have
ingle positive and centered bulges; we see that this mini-
um has a clear continuation into the higher-n region,
here several minima can occur when the quasi-period of

he s-HG functions comes close to a multiple or submul-
iple of the sign alternation period in the Kravchuk func-
ions. For concreteness, we tabulate the following low-n
cale factors, difference norms, and angles (in degrees) be-
ween the s-HG and Kravchuk basis vectors, indicating

s̄n
j , best value of the scale s,

�Dn
�s̄��, norm of difference vector at s̄n

j ,

�n
j , angle between the vectors at s̄n

j . �10�

or first few models �n�0
5 and for arrays between 11 and

1 sensors, these are as follows:

0 0.2 0.4 0.6 0.8 1.0

5

10

15

20

25

30

0.258253

s

n

ig. 3. Density plot of the norm of the difference vector �Dn
�s�� in

q. (9) for j=15 (N=31 points), over the ranges n�0
30 and 0
s

1. We adopt the optimum value at the n=0 ground state, s̄j

0.258253.
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j�N� 5�11� 7�15� 9�19� 11�23� 13�27� 15�31�

n = 0:

0.446410

0.019418

1.113°

0.378138

0.015702

0.899°

0.333515

0.012382

0.709°

0.301632

0.010027

0.574°

0.277429

0.008383

0.480°

0.258253

0.007196

0.412°

n = 1:

0.459067

0.038087

2.182°

0.387106

0.034659

1.986°

0.339919

0.028435

1.629°

0.306390

0.023206

1.330°

0.281117

0.019358

1.109°

0.261214

0.016547

0.948°

n = 2:

0.465404

0.061012

3.496°

0.393058

0.064049

3.670°

0.344594

0.055706

3.192°

0.309960

0.046456

2.662°

0.283890

0.038952

2.232°

0.263430

0.033283

1.907°

n = 3:

0.472270

0.061512

3.525°

0.399089

0.087453

5.012°

0.349729

0.084336

4.834°

0.314058

0.073291

4.200°

0.287129

0.062266

3.569°

0.266030

0.053278

3.053°

n = 4:

0.484325

0.062078

3.557°

0.405105

0.097435

5.585°

0.354900

0.109893

6.300°

0.318405

0.102186

5.857°

0.290666

0.089274

5.117°

0.268900

0.077050

4.416°

n = 5:

0.504866

0.137602

7.890°

0.412380

0.098467

5.644°

0.359923

0.127387

7.304°

0.322743

0.130108

7.460°

0.294333

0.118937

6.819°

0.271938

0.104628

5.998°
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As expected, we see that the alignment between the
ectors in the two bases improves with growing number of
oints (to the right) and worsens with increasing mode
umber n, down. Our working proposition is that the op-
imal scale for n=0, s̄ ª s̄0

j , will serve best for all signals.

. EXPANSION IN KRAVCHUK AND s-HG
ODES

he basis of N Kravchuk vectors ��n
j �n=0

2j in Eq. (3) is or-
honormal and complete in VN. Its vectors provide a com-
ortable basis for the vector space, and every N-point sig-
al �F�m��m=−j

j can be synthesized and analyzed through

F�m� = �
n=0

2j

Fn
KKn,m

j , Fn
K = �

m=−j

j

Kn,m
j F�m�,

Kn,m
j

ª �n
j �m�, �12�

here the N-vector of Kravchuk mode coefficents is
Fn

K�n=0
2j . The Kravchuk transform matrix Kn,m

j =�n
j �m� is

hown as a density plot in Fig. 4 (adapted from Fig. 7 of
12]); since it is unitary and real (thus orthogonal), �Kj�−1

s the transpose of Kj (with m↔n+ j), det Kj=1, and the
arseval identity implies that �FK � = �F�.
When we apply the same straightforward analysis to

he set of N optimally scaled and normalized s-HG vectors
�n

�s̄��m��m=−j
j in Eq. (2), since they are not orthogonal we

ave to invert the matrix of vectors to find its dual basis,

F�m� = �
n=0

2j

Fn
SSn,m, Fn

S = �
m=−j

j

�S−1�n,mF�m�,
Sn,m ª �n
�s̄��m�. �13�

he determinant of the transform matrix S would be zero,
nd the s-HG basis incomplete, if two or more vectors in

0 5 10 15 20 25 30

−5

0

5

10

15

n

m

−10

−15

ig. 4. Density plot for the elements of the 31�31 unitary
ravchuk transform matrix Kn,m

j =�n
j �m� in Eq. (3) for j=15.

ach column represents one Kravchuk vector n�0
30; gray is zero;

ight and dark pixels correspond to positive and negative values.
wing to the symmetry properties (5), the left half of the figure

eflects the right half with a sign alternation. (Adapted from Fig.
of [12]).
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he set were linearly dependent. Actually, the s-HG basis
s “barely” complete for VN: in the case N=31 �j=15�, its
eterminant is det S=2.33�10−41. This does not seem to
e a numerical obstacle to computing the coefficients: the
lements of S−1S were found to differ from the unit ma-
rix by less than 10−7. The real problem with using this
asis is illustrated by Fig. 5, where we show the s-HG vec-
ors of the matrix S (adapted from Fig. 1 of [12]), and
heir dual basis in S−1, also by density plots as for the
ravchuk basis in Fig. 4. This dual basis is rather sur-
rising because it indicates that in mode analysis, when
his matrix acts on the column vector of signal values
�m�, the higher mode coefficients (roughly 8
n
28)
ill be greatly enhanced over all lower ones, inordinately
unching out these coefficients.
To play fairly however, the basis of s-HG vectors

�n
�s̄��n=0

2j can be used in a much better way to analyze the
odes of the N-point signal F�m� by succesively project-

ng out, from n=0 up, the components of the signal along
ach basis vector. This leads to a recursive algorithm for
he sequence of difference vectors:

��n+1��m� = ��n��m� − fn�n
�s̄��m�,

fn ª ���n�,�n
�s̄��N, ��0��m� ª F�m�. �14�

he signal is thus finally represented as

F�m� = f0�0
�s̄��m� + f1�1

�s̄��m� + ¯ + fN−1�N−1
�s̄� �m� + ��N��m�,

�15�

here the coefficients �fn�n=0
N−1 will provide an alternative

ode content vector for the signal. Note that there is no
uarantee that the norm of the last difference vector in
q. (15), ���N��m��, will be zero. Both sampling analyses

13) and (15) will now be compared with the sampling
nalysis afforded by the Kravchuk basis in Eq. (12) and
ith the “true” mode coefficients of the field.

. HARMONIC ANALYSIS IN THREE BASES
ssume that we have a setup whose continuous-output
eld F̄�x� can be subject to analysis and synthesis in the

ull basis of harmonic oscillator modes, � �x��L2�R�, as

0 5 10 15 20 25 30

−5

0

5

10

15

n

m

−10

−15

ig. 5. Left, density plot for the elements of the s-HG matrix Sn

G mode. Here j=15, m�−15
15 , n�0

30, and det S=2.33458�10−41; the m
lements of the inverse matrix �S−1�n,m; the maximum elements
n

F̄�x� = �
n=0

�

F̄n�n�x�, F̄n =�
−�

�

dx�n�x�F̄�x�, �n�0
�,

�16�

ielding the infinite set of “true” mode coefficients,
F̄n�n=0

� . The first N of these can now be compared with the
ode coefficients of the Kravchuk analysis, �Fn

K�n=0
N−1 in Eq.

12), with the s-HG mode coefficients �Fn
S�n=0

N−1 in Eq. (13),
nd with the fair-play mode coefficients �fn�n=0

N−1 in Eq. (14).
ith these coefficients we shall then examine the fidelity

f their synthesis to restore the original N-point signal.
For test function we consider a real and centered rect-

ngle signal [F�x�=1 for �x�	5.5, and 0 otherwise],
ampled at the N=31 points xm= s̄m for integer �m�−j

j �j
15�, with the corresponding optimal scale factor s̄
0.258253 from the table of numbers, Eq. (11). We choose

his sharp-edged signal for mode analysis because it pre-
ents a wide spectrum of modes; Gaussian-smooth test
unctions are often too compliant with expectations. In
ig. 6 we compare the “true” mode coefficients of the field,
ormalized by the ratio F̄n / F̄0, together with the corre-
ponding Kravchuk mode coefficients Fn

K/F0
K so that both

oincide at 1 for n=0; for odd n they are zero due to parity.
n the insets of the figure, we show the true mode coeffi-
ients for n’s well beyond 2j=N−1=30; they exhibit a
inc-like decrease and a beat that reminds us of the Fou-
ier series coefficients of the same rectangle function.
his feature can be traced to the fact that the middle por-

ion of large-n oscillator states approximates a cosine or a
ine curve (for n even or odd) having n zeros in an inter-
al that grows as n1/2 (cf. Fig. 5) and accounting for the
isible lengthening of the beat periods. Finally, we insert
he s-HG mode coefficients Fn

S/F0
S obtained from Eq. (13).

We note that (for N=31), the Kravchuk mode coeffi-
ients �Fn

K�n=0
30 match the true coefficients of the field up to

�7 (and at n=30), that they have the same sign up to
�17, and that they differ thereafter. On the other hand,

he mode coefficients in the s-HG basis—�Fn
S�n=0

30 obtained
rom Eq. (13)—are manifestly unfit to approximate the
rue mode content of the rectangle function, since even its
owest modes do not follow the pattern of the main graph
n Fig. 6.

−15 −10 −5 0 5 10 15

n

m

n
�s̄��m� in Eq. (13); as in Fig. 4, each column represents a sampled
m element of S is S0,0=0.3817. Right, the dual basis given by the

9,±1
1 =6.054�107. (Adapted from Fig. 1 of [12]).
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ig. 6. True mode coefficients �F̄n / F̄0�n=0
30 , from Eq. (16) for N=31, of the rectangle signal that is nonzero for m� �−5,5�, indicated by

mall dots and joined by solid lines for visibility. Superposed are the Kravchuk mode coefficients �Fn
K/F0

K�n=0
30 from Eq. (12), indicated by

arge dots joined by dotted lines. (Their common value 1 for n=0 is outside the graph.) Top inset, true mode coefficients up to n=300;
ottom inset, sampled HG mode coefficients �Fn

S/F0
S�n=0

30 of the same data set from Eq. (13); notice the very large coefficients, �3.5�105 for
�20.
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In Fig. 7 is shown the result when the s-HG vectors are
sed to provide the mode coefficients �fn�n=0

30 from Eqs. (14)
nd (15) for the same rectangle function. There we see an
lmost perfect match with the true mode content, so we
onclude that the s-HG basis can provide a very good ap-
roximation to the true modes of the continuous field. The
nly discernible differences in Fig. 7 occur at mode num-
ers n=10 and 20–26. Yet, because the basis of sampled
G’s are not orthogonal, we confirm our suspicion that

he norms of the difference vectors, ���n�� in Eq. (15), do
ot decrease to zero. An inset in the figure shows the dif-
erence between the original rectangle signal (scaled to
ave norm 1) and its full synthesis by s-HG functions,
hich ends with a difference norm of 0.1442. Therefore,
q. (15) cannot reproduce the original signal at all its
oints.
The second part of our three mode analyses concerns

he fidelity of their syntheses in restoring the signal
hrough a sequence of approximations by sums over the
odes n	M, truncated to M+1	N terms—and also, al-

hough the physical meaning is unclear, the behavior of

−15 −5 5 15 −15 −5 5 15 −15 −5 5 15
m m m

M=0

4

8

12

18

24

26

28

30

ig. 8. Successive approximations to the finite rectangle signal
n N=31 points �j=15� by truncated sums of modes 0	n	M for
=0, 4, 8, 12, 18, 22, 24, 26, 28, and 30. Left column, the true
odes �F̄n�n=0

M from Eq. (16) synthesized with HG functions; dots
ark the values at the sensor points m�−j

j . Middle column, the
-HG mode coefficients �fn�n=0

M from Eq. (14), also synthesized
ith the continuous HG functions. Right column, the Kravchuk
ode coefficients �Fn

K�n=0
M synthesized with Kravchuk functions at

he sensor points and their analytical continuation. The signal
estoration is exact for M+1=N=31.
he analytic continuation of the approximant functions for
� �−j , j�. In Fig. 8 is shown the successive approxima-

ions to the rectangle function by the true, s-HG, and
ravchuk functions, for selected values of M	N−1. We
ote that the HG reconstruction by F̄N−1�m� exhibits a
ibbs-like phenomenon at the discontinuities (as ex-
ected), both on the sample points and in their analytic
nterpolations; this persists, with little difference or im-
rovement up to the highest M=N−1. Of course, discrete
ignals are discontinuous by nature, so “discontinuity”
hould be understood here as a “large difference between
wo adjoining signal points.” Finally, Fig. 8 also shows the
ynthesized Kravchuk approximants to the signal values
nd their analytic continuation. For the highest M’s the
ravchuk approximants display shorter oscillations in-

ide the rectangle and quickly go to zero elsewhere, while
he analytic continuations oscillate ever more strongly
ear the end points of the interval.

. CONCLUSIONS
hile Fourier integral analysis and its periodic and finite

ampled versions are well understood and widely used in
ommunication theory, harmonic analysis in terms of os-
illator modes requires function bases that obey the oscil-
ator dynamics and are related by an appropriate scale
actor.

The first line of comparison between the Kravchuk and
-HG bases of VN was dictated by mathematical prefer-
nce for orthonormality and completeness. This straight-
orward approach to analyzing finite signals in their for-
ant modes is well served by the Kravchuk functions,
hile it fails for the “almost-incomplete” s-HG functions.
he latter seem to work best in the second comparison

ine, when only its mode content is sought and the re-
uirement to restore the signal is dropped. At some cost in
ts fidelity in reproducing the true mode coefficients of the
ontinuous field, only the Kravchuk basis achieves the ex-
ct restoration of the original signal.
For two-dimensional fields, sampled to form Cartesian-

ixelated images, a straightforward generalization of the
revious analysis and synthesis is the direct product of
wo one-dimensional ones, combined to form orthonormal
ases of two Kravchuk or Laguerre–Kravchuk vectors
16,17]. Moreover, group theory also affords a distribution
f sensor points on circles [18] that would seem fit to ana-
yze beams with angular momentum. Finally, discrete-
nd finite-oscillator models can be set up using q special
unctions [19] that will sample the field with non-equally-
paced sensor points.
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