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1. INTRODUCTION

We describe here the unitary transformation of a finite
image—a two-dimensional array of N? complex
numbers—between Cartesian and polar pixellations. In
the first case the pixels are arranged in an N XN square
screen while in the second the pixels in the screen are
placed on concentric circles of integer radii r
€{0,1,...,N-1} with 2r+1 equally spaced pixels at each
radius as shown in Fig. 1. Both the Cartesian and the po-
lar screens have N2 data points, so no information will be
lost when this transformation is unitary. Cartesian sensor
arrays are common and mathematically easy to separate,
so their treatment simplifies to one-dimensional Fourier
or other analyses. Sensor arrays with polar pixellation
are less common but may be useful to discern the angular
characteristics of circular beams. Since squares and
circles obviously do not fit, the unitary transformation of
data between Cartesian and polar arrays is not prima fa-
cie evident; interpolation to geometrically close data
points on two such screens, for instance, is not unitary
and hence not reversible.

While many continuous optical and quantum systems
can be separated in Cartesian and polar coordinates, this
paper addresses the problem of separation of variables for
two discrete coordinates, equally spaced and of finite
range, which for brevity we will call finite coordinates. In
Section 2 we recount the discretization process from con-
tinuous to finite oscillator models in one dimension, freely
using the tools of quantum angular momentum theory for
the spin group SU(2) of 2 X 2 unitary matrices; this group
is generated by the Lie algebra su(2) of Pauli matrices [1].
One-dimensional finite signals are thus represented by
N-vectors of spin j= %(N —1). This model has been detailed
before in [2—4], among others.

Two-dimensional N XN Cartesian screens are intro-

1084-7529/08/081875-10/$15.00

duced in Section 3 by the direct product of two su(2) alge-
bras, subject to the gyration between the discrete versions
of Hermite—-Gauss and Laguerre—Gauss modes [5]. The
angular momentum theory is used in Section 4 to find an-
other two bases for the N? two-dimensional array of
points conforming to the properties expected from the po-
lar separation of coordinates. The overlap between the
two is determined in Section 5, providing the explicit form
of the unitary transformation, which includes Wigner
little-d functions and Clebsch—Gordan coefficients. In Sec-
tion 6 we report some numerical experiments and offer
some conclusions.

2. su(2) MODEL FOR FINITE SIGNALS

The points on the surface of a freely rotating sphere
project harmonic motion as do the points on the phase
space plane under evolution in a harmonic oscillator po-
tential. However, these two classical systems differ under
the rest of the transformations that can rigidly act on
these two manifolds. On the sphere one has the three
components of angular momentum that generate the spin
group SU(2) while on the plane one has translations, and
the aforesaid rotations, that generate the group ISO(2) of
Euclidean motions. We can picture the two systems as the
sphere tangent to the phase space plane in Fig. 2, and see
that in the limit of a growing radius the former will con-
tract to the latter. This picture remains true when the
classical quantities are quantized as the observable spec-
tra of self-adjoint operators that act on an appropriate
Hilbert space of functions.

These considerations led us to the su(2) model for one-
dimensional N-point finite systems: one postulates that
the three observables (q,p,\) of position ¢, momentum p,
and a “3-projection” \ (displaced energy) are the spectra of

© 2008 Optical Society of America



1876 J. Opt. Soc. Am. A/Vol. 25, No. 8/August 2008

(a) (b)

Fig. 1. (a) Cartesian and (b) polar arrangements of 172 pixel
centers.

the three su(2) generators denoted by J =(J1,J9,dJ3).
These are abstractly characterized by their commutation
relations [Jl, Jil=ie; jdy (@,j,k cyclic) that we can write

as J XJ=iJ and are realized as N XN self- adjoint matri-
ces of a spin-j representation of su(2) for N=2j+1, a posi-
tive integer. The correspondence is [6]

position: @ =J, (1)
momentum: P =J,, (2)
3-projection: L =3,

mode number: N =J3+j1,

energy:H=J3+(j+%)1. (3)

The Hilbert space of signals is that of complex N vectors,
where the spectrum of all three operators oJ, is the finite
point set {—j,—j+1,...,j}. In this model therefore, posi-
tions and momenta are intrinsically finite, and there are
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Fig. 2. Classical sphere with rotation axes j;,js,75. Tangent to
it, the phase space plane with translation directions q,p. The
harmonic oscillator evolution rotates the figure around its verti-
cal axis. We deform g—j;,p—Js, and identify the Hamiltonian
with A —j;+r, where r is the radius of the sphere.
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2j+1 energy eigenmodes numbered by n:=A+j
c{0,1,...,27}

The operator H=N+; 1 L+(]+ 1 is the finite oscilla-
tor Hamiltonian, Whose commutation relations with posi-
tion and momentum are

[H,Q]=iP, [PH]=iQ, 4)

[Q.Pl=iL=i(H - (j +3)1). (5)

The first two equalities are the geometric and dynamic
Hamilton equations for the harmonic oscillator (classical,
quantum, or finite); the third commutator is the su(2) de-
formation of the familiar Heisenberg commutator of the
usual Schrédinger operators in continuous systems. Fi-
nally, for spin j, the quadratic Casimir operator is repre-
sented by a multiple of the unit matrix

2 :Q2+P2+L2=j(i+1)1. (6)

We understand N-point signals f ={f(q)}{]=_j as the com-
ponents of the vector |f) in the orthonormal eigenbasis of
the position operator in (1)

J,q)1 =jG + D],a)1,

R, =4l )1, @

f((I) = 1<j>q|f>a {

i.e., the Kronecker basis for N-point signals indicated by
7, )1 There is also the eigenbasis of the number operator
N in Eq. (3); this basis is the set of N finite harmonic os-
cillator states \Ifle) with n\gj , N=2j+1. These we indicate
by |7,\)3 with A=n—j being its eigenvalue under L,
vMq) = GaliAs {J%',ws =+ DN,

= dj,(37), |LU:Ns=MN)s.
These are the matrix elements of a rotation around the j,

axis of Fig. 2 that brings the j; axis onto the j; axis and
are known as little-d Wigner functions [1],
&, (B =, (- B)=5(j,mlexp(-iBP)j,m");, (9)

for B= %77. The finite oscillator wave functions \PilN) (g) con-
tain Gaussian hypergeometric ,F'; functions and have the
explicit form given by [1]

(- )mm G-m)!G+m’)!
B = e 2t N Gam) LG —m)
1 \Femom' [ q \mem'
X (cos Eﬁ) (sin Eﬁ)

1
XZFl(m’ -J,—m-—jm' —m+ 1;—tan2§,8).

(10)

Additionally, the wave functions \IfﬁlN )(q) can be written in
terms of the symmetric Kravchuk orthogonal polynomials
[2,7-9]



L. E. Vicent and K. B. Wolf

) 1
vN(q) =dfn_j,q(5w)

0" [(2/\(2% I
= 2] n) .+q Kn J+q7§72.] ’ (11)

where (;) is the binomial coefficient defined for integer x
and y—the factor (;) plays the role of a discrete
Gaussian—and K, (x;p,N):= 2Fl(—n,—%N—x;—N;p‘l) is
the Kravchuk polynomial of degree n in x of parameter p
[10]. The discrete oscillator wave functions \I'gv)(q) in Eq.
(11) are also called Kravchuk functions. In Fig. 3 we show
the lower-, middle-, and highest-mode Kravchuk func-
tions; this figure has appeared several times in literature,
and a detailed study of their properties and symmetries
can be found in [2,3,11].

A momentum eigenbasis of /5 can be defined as in Eqgs.
(7) and (8), and the Fourier—Kravchuk transform [2], gen-
erated by the number operator in Eq. (3), rotates between
these su(2) positions and momentum representations of
the signal [12]. Finite coherent states that undergo har-
monic motion are defined by any SU(2) transformation of
the ground state n=0 in Eq. (8) using Eq. (9) for arbitrary
B [11,13]. Finally, when N — o« with the interval and den-
sity of points growing as ~yW, one recovers the continu-
ous harmonic oscillator algebra and wave functions [14].
This perfunctory construction of the su(2) model is all we
need for the following sections.

3. TWO-DIMENSIONAL CARTESIAN
SCREENS

The direct product (g,,q,) of two one-dimensional finite
coordinates, each of N points, is a square N X N lattice of
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Fig. 3. Kravchuk functions, \IfilN )(q) in Eq. (11), of the finite su(2)
oscillator for N=65 (j=32). Selected values of n show the lower,
middle, and higher states. Note that the latter reproduce the
former with alternating signs.
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points, such as that in Fig. 1(a). On this point set we con-
struct an su(2), ® su(2), finite oscillator model, where the
states of the system belong to the spin-(j,j) representa-
tion. The six generators are

Q. P, L,=N,-j1=H.-(j+;)1esu®), (12)

Q,, P, L,=N,-jl=H,-(j+3)l esu(2),. (13)

The x generators and the y generators each obey the su(2)
commutators in Eq. (5) and commute with each other;
there are also the two quadratic Casimir operators J?C and
J§ built as in Eq. (6). Following Eq. (8), the two-
dimensional finite oscillator modes are the products
VY, (@0a) = V@)V @) =, o (G7) g (57)

= 1x<j7qxlj7nx _-]>3x X 1y<quyljyny _j>3y
= 1<j’qx;.j’qylj’nx _.j;j’ny _.j>3’ (14)

where |j,q,:7,9,)1=1/,4x)1:1/,dy)1, is the direct product of
position eigenbases and similar to the mode number ba-
sis. As in Eq. (7), we regard an image on the Cartesian
screen as a state |[F) whose components in the position ba-
sis |/,4.5/,9,)1 give its values in the corresponding pixel

F(erQy) = 1(]7qxx]7qy|F> (15)

We can organize the Cartesian states (n,,n,) into the
rhombus pattern shown in Fig. 4; the rows are labeled by
the total mode number n=n,+n,, n\gj and the columns by
the energy difference m= %(nx—ny); the latter are con-
strained into the rhombus by |m|=3n for n=2j, and
|m|=2j-1/2n for n=2j. In Fig. 5 we show the two-
dimensional finite oscillator Kravchuk functions in Eq.
(14) placed in that rhombus pattern. These modes are the
su(2) finite counterparts of the two-dimensional x—y sepa-
rated Hermite—Gauss functions in continuum optics.

In the continuous two-dimensional models of quantum
harmonic oscillators and of scalar waveguide optics, one
builds the Poincaré sphere. On this sphere, Hermite—
Gauss states are represented by points around the equa-
tor with an azimuth that is twice the angle of their sepa-
rating coordinate frame; the two poles of the sphere
represent Laguerre—Gauss beams with opposite angular
momenta. The Poincaré sphere can be subject to rotations
generated by operators of the second order in the

Schriodinger operators of position and momentum, @,
=g, and P,=-id/dq, for k=x,y, which satisfy [Q},P}]
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Fig. 4. Rhombus pattern for the two-dimensional finite oscilla-
tor states classified by the total mode number n=n +n,.
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Fig. 5. Rhombus pattern of two-dimensional finite oscillator
Kravchuk functions. The upper half of the rhombus reproduces
the lower one with a checkerboard of alternating signs.

=621 [5,15]. This group of rotations is a subgroup of the
group of all linear canonical transformations; since it con-
tains the fractional Fourier transforms (F'Ts), it has been
called the Fourier SU(2) group [16] and Subsection 10.3 of
[17]. The three generators of this Fourier group, {Fk}zzl,
are identified as follows [5]:

antisymmetric FT, F; := %(Fﬁ - P? + Qf - Q?), (16)
gyrationy FZ = %(Pxpy + Qny)’ (17)

rotation, I_"3 = %(pry - Qypx) =: %Il_l (18)

The commutation relations of these F}’s are F Xﬁ:if‘, the
same as those of the J,’s in Section 2 and the same as any
su(2) algebra. However the physical meaning of the two

SU(2) groups is different: in Eq. (18), M=@Q X P is the
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physical orbital angular momentum operator; gyration,
generated by Eq. (17), transforms Hermite-Gauss into
Laguerre—Gauss beams; there is a fourth operator that
commutes with the previous three, this is the

symmetric FT, F‘O = i(?i + 155 + Qi + Qﬁ -21). (19)

The four generated transformations form the full Fourier
group U(2)=U(1)® SU(2) [16] and only transform beams
among those with the same energy. The matrix represen-
tation of the gyration subgroup has elements given by
Wigner little-d functions, as in Eq. (9), the same as in any
SU(2) group.

Now we return to the finite two-dimensional model,
noting that the generators of Egs. (12) and (13) of su(2),
®su(2), cannot be used to build a direct analog of the u(2)
Fourier generators in Eqs. (16)—(19). Thus, one cannot
produce in this way a finite analog of gyration that would
conserve the energy of the x—y separated modes in Eq.
(14), i.e., along the rows in Fig. 5 to find discrete “wave-
forms” with definite angular momentum as one does in
the continuous case above. However, as shown in [5], one
can import the transformation coefficients for gyration
from the continuous model, indeed, from the abstract
su(2) algebra, these coefficients are the Wigner little d’s in
Egs. (8) and (9). The process of symmetry importation [18]
yields here a unitary one-parameter group of linear trans-
formation between all n+1 modes with the same total en-
ergy (mode number n, see Fig. 5). This is the discrete ver-
sion of unitary gyration, which led in [5] to define
Laguerre—Kravchuk modes on the NXN screen, N=2;j
+1, by

N _ im(n—n,)/4 /2 1
Aiwjt(qx,qy) = > el A Yjom, 120, y)(zw)

nx+ny=n

XU, (@0a), (20)
n e{0,1,...,4j},

n=2 = me{-n-n+2,...,n},
n=2 = me{-4+n-4+n+2,...,47-n}.
(21)

As before, N=2j+1 is the number of pixels in each row or
column of the Cartesian screen. In Fig. 6 we show these
complex “angular momentum” modes using the same
rhombus pattern in Fig. 5. The Laguerre—Kravchuk
modes are orthonormal and complete in the
NZ2-dimensional space of complex functions supported on
the points in Fig. 1(a).

In Fig. 6 we see that the behavior of the nodal lines
(which separate positive from negative point values) for
(n,m) in the lower half-rhombus supports the assignment
of the integer quantum number m in Egs. (20) and (21)
and complies with properties expected from plane angular
momentum states so that they are naturally arranged
into spin-%n multiplets; the number of radial nodal lines
is n—|m|. Thus we adopt the Laguerre-Kravchuk func-
tions in Eq. (20) as the optimal discrete analogs of the
continuous Laguerre-Gauss functions characterized by
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Fig. 6. Rhombus pattern of two-dimensional Laguerre—
Kravchuk modes with definite angular momentum. Since the
modes are complex, we plot the real modes A<N)C (A(N)
+A™ ) for m=0 on the right-hand side and A<N’5_— (A(M

—A(N) ) for [m|>0 on the left-hand side. The m= 0 modes are
real. Agaln the upper triangle reproduces the lower one with a
checkerboard of alternating signs.

the same quantum numbers. In Dirac notation we can in-
dicate Eq. (20) for N=2j+1 by the ket

. 1
[isnmg= 2, e "y)/4d1/2m 12(ny—n )( )

nytn,=n
le9nx _j;j’ny _.j>3' (22)

We use round brackets to indicate that one of its labels,
angular momentum m, is not an eigenvalue under any op-
erator in the algebra in Egs. (12) and (13). On the other
hand, the total mode number n does remain the eigen-
value of N,+N, while the two quadratic Casimir opera-
tors are JZ— J(]+1)1 J2 These kets can be turned into
wave functlons by closmg with the bra ((j,q.:/, qy| Fi-
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nally, it should not escape attention that the linear com-
bination coefficients in Eq. (22) are themselves Kravchuk
functions given through Eq. (8) as

(n+1) 1 _ gn/2 1
‘1’1'};(n+m)(§(nx - ny)) = d,11/2m,1/2(nx—ny)(§ w ) . (23)

Although the Laguerre—Kravchuk states in Eq. (20) are
all we need for the following sections, we should note that
the imported gyration subgroup can be given for arbitrary
angles vy essentially replacing the argument of the little-d
function above by 2v. This one-parameter group properly
meshes with the “domestic” symmetric and antisymmet-
ric Fourier—Kravchuk transforms whose eigenfunctions
are in Eq. (14) with eigenvalues n=n,+n, and %(nx—ny).
Thus we have the full Fourier group U(2) acting on finite
systems, including the image rotation on the Cartesian
grid, and its action is unitary [5].

4. TWO-DIMENSIONAL POLAR SCREENS

We used the algebra su(2),®su(2), in the (j,j) represen-
tation in Section 3, but now we will find two commuting
operators whose eigenvalues can appropriately define a
basis in that (2j+1)2-dimensional space, by mode number
and angular momentum (n,m), with the ranges in Eq.
(21). Also, we should find two commuting operators whose
eigenvalues have the meaning of radius and angle for the
points to be arranged into a polar pattern as that in Fig.
1(b). Angle and angular momentum (with technical reser-
vations) are canonically conjugate observables; in finite
periodic signals they are determined by the Kronecker
and Fourier bases, which are related to each other by the
unitary finite FT matrix. Since there are & equidistant
“angle” points on the circle supporting the signal, there
will also be £ angular momentum values in the Fourier
basis.

Therefore, the two-dimensional problem is simplified to
finding an operator that behaves as a radius (or radius-
squared), namely, that it commutes with the chosen angu-
lar momentum generator. To place and name these opera-
tors it is convenient to look into the structure of the
algebra generated by sz(Qx,Px,Lx) and jyz(Qy,Py,Ly),
writing linear combinations and their commutators as

J Xd,=id, . . J,XdJd,=id,
T J,=d,+d, S
J.xd,=0 = {J, XdJ_=id_
Y A A o
J, X d,=id, XdJ_=id,
(24)

The six generators of the direct sum algebra su(2),
®su(2), are thus separated into a subset of three J,’s that
close under commutation into the algebra denoted su(2),
and three JJ_’s that transform as a vector under this. Let
us name the new component operators as follows:

R, -S_
J,=|S.|, J_=|R- |, (25)
L M

where L=L,+L, is the total 3-projection generator that
provided the total energy or mode number n=n,+n, in
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Section 3 and M =%(Lx—Ly) is the proposed finite angular
momentum operator. The justification for this assignment
of M is that it commutes with the total mode number,
[L,M]=0 and that it generates joint rotations in the
planes of (R, ,R_) and of (S,,S_), namely,

[M’Rt]z iiRI’ [M5St]= iisi' (26)

In support of the proposition that R, and S, behave as po-
sition and momentum operators, we note that the total os-
cillator Hamiltonian H:=N+1=L+(2j+1)1 indeed gener-
ates joint rotations in the “phase space” planes (R,,S,)
and (R_,S_) since

[L7Rt]=_isi7 [Lysx]=iRI- (27)

From Egs. (26) and (27), the choice of L and M to provide
quantum mode and angular momentum eigenvalues
(n,m) for finite polar kets seems appropriate. Regarding
the “position and momentum” generators R, and S, we
see that they also conform to the su(2) model since
[R,,S.]=iL=[R_,S_]. However, the algebraic structure in
Eq. (25) also fixes the commutators [R,,R_]=iM
=[S,,S_]. These “nonstandard” commutators imply that
the subset R,,R_,M (and also S,,S_,M) closes under
commutation into an su(2) algebra that we distinguish by
su(2),; its quadratic Casimir operator

R?%:= RE +R? + M? commutes with M. (28)

This provides us with the radius-squared operator whose
spectrum will be p(p+1) with integer p ranging from 0 up
to 2j, as we will more fully argue below. The structure of
su(2), also implies that the eigenvalues m of angular mo-
mentum M will range in {-p,-p+1,...,p}. These 2p+1
values determine that, after FT, the circles of radii p in
Fig. 1(b) will have 2p+1 points each so that the polar
screen will consist of E%;0(2p+ 1)=(2j+1)2=N? pixels, the
same as the N XN Cartesian screen.

We thus have the following two bases for the su(2),
®su(2), kets: that of total mode number n=\+j, charac-
terized by the eigenvalues \ under L=¢J,3+J,3 and m un-
der M=Jx3—Jy3,

li;)\7m>L’
eigenkets of: J2 J7 Jz 3,

eigenvalues: j(j+1) j(j+1) %()\ +m) %()\ -m),
(29)

and that of radius p and angular momentum m, charac-
terized by

U;p7m>R7
eigenkets of: (j,c+jy)2 jxjy R? M,

eigenvalues: 2j(j+1) 0 p(p+1) m. (30)

To pass from the mode basis in Eq. (29) to the radius basis
in Eq. (30) is, in angular momentum quantum mechanics,
the coupling of two spin-j states to a sum of states of in-
teger total spins pe{0,1,...,2j} with Clebsch-Gordan (or
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su(2)-Wigner) coefficients, C/¥* as shown in Fig. 7.

The “third-component” eigenvalues in the Clebsch—
Gordan coefficients must properly sum, yet we see that m
in Eq. (30) is the difference of the eigenvalues of J3, and
J3,; hence, a sign reversal of the latter is necessary before
relating the overlap matrix of the two bases to the
Clebsch—Gordan coefficients C{n*j P onomy With my+my=m
[19]. Also, we should be aware that these coefficients were
defined by recursion from their highest-m state, whereas
the Kravchuk functions start from the ground state. To-
gether, these two considerations relate the overlap of Egs.
(29) and (30) to the Clebsch—Gordan coefficients through
a phase that must be carefully calculated [20]. The result
is

R(],P,ml],)\,m>L = ‘P(]a pa)\7m)C]1’5é‘Em+}\),l/2(m_)\),m7 (31)
with the phase
o, p,\,m) = (- 1)j+p+1/2(|m\—m)eifr)\/2. (32)

As we indicated at the beginning of this section, the (2p
+1)-dimensional FT matrix will turn the kets |j;p,m)g
into “angular” states that we denote by

p
50,008 = ———= 2, e""%|j;p,m)g, (33)
AT et > :

m=-p

where % is an integer counted modulo 2p+1 and the
angles are 6,=27k/(2p+1) plus any function c(p). This
transformation is shown in Fig. 8, where we have aligned
the £=0 points along a vertical p-axis by putting c¢(p)=0.
Again, we have used round brackets in Eq. (33) to indi-
cate that 6, is not the eigenvalue of any operator built
from the algebra but has been imported.

Thus we can finally write the basis of N2 polar-
separated finite functions, N=2j+1, by closing the mode-
angular momentum kets |j;n—j,m);, in Eq. (29) with the
bras in Eq. (33), and using Eq. (31) we find

-4 -3-2-1 [ 1 2 3 4
m

Fig. 7. States in the rhombus classified by mode number n=j
+\ and angular momentum m are related to states classified by
radius p and the same angular momentum through Clebsch—
Gordan coefficients.
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B
|

Fig. 8. States classified by radius p and angular momentum m
are related, at each circle of radius p, to 2p+1 kets associated
with equally spaced points through the finite FT.

q)g,\?n(p’ Gk) = A(j;p’ 0kl]’n _j’m>L

1 P
- eimak()o(j’p’n _j’m)
\V2p + lmg_p

XChd

>
/12(m+n—j),1/2(m-n+j),m*

(34)

The Clebsch—Gordan coefficients that contain the radius
and angular momentum (p,m) are well known in the lit-
erature [1]; they can also be expressed as the product of a
discrete function in p with the behavior of a decreasing
exponential times a 3F2(',',' | 1) hypergeometric function,
which for the appropriate negative integer values of the
parameters is a discrete Hahn polynomial [21]. In the N
— oo limit, with radii decreasing as ~p/ \N, the radial part
in Eq. (35) correctly contracts to the Laguerre functions of
the two-dimensional quantum harmonic oscillator [22].

In Fig. 9 we show these “Laguerre—Kravchuk-on-polar-
screen” functions, Cl)gt?n(p, 6,) in Eq. (35), forming the
same rhombus pattern for (n,m) as in Fig. 6 for the Car-
tesian (n,m) modes A(n]\?n in Eq. (20). They are orthonor-
mal and complete over the finite polar screen (p, ;). Since
the Clebsch—Gordan coefficients include the restriction
|m|=p, the higher-m modes in Fig. 9 are only nonzero
near to the edge of the screen for radii |m|=p=2j. Prop-
erties noted for the Cartesian modes of Fig. 6, such as the
sign alternation of the states in the upper triangle of the
rhombus with respect to those in the lower one, also hold
for the polar modes.

5. TRANSFER OF IMAGES

The basic proposition to unitarily transfer images from a
square to a polar screen with the same number N? of
points is to identify the (n,m) modes of the former in Fig.
6 with the corresponding (n,m) modes of the latter in Fig.
9. The modes in Eq. (14) are orthonormal and complete
over the points of the Cartesian screen in Fig. 1(a) while
the modes in Eq. (34) are over those of the polar screen in
Fig. 1(b). Both sets of modes are orthonormal and com-
plete over the same rhombus of points (n,m) in Fig. 4; the
inner products in the first yield 6%‘1;5%)‘1' while those of
the second yield 3,3, 4,,- The transformation between
the Cartesian ket basis |, q, iJ»qy)1 in Eq. (14) and the po-
lar ket basis |j;p, 6,)4 in Eq. (83) is unitary because each
of the transformations in Sections 3 and 4 have been uni-
tary, both the domestic and the imported ones.
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Fig. 9. Rhombus pattern of two-dimensional modes (n,m) with
definite mode number and angular momentum on a screen with
pixels that follow polar coordinates. Again, the modes are com-
plex, so we show the real part of the modes for m =0 on the right-
hand side and the imaginary part for [m|>0 on the left-hand
side. The functions are zero for radii p<|m]|.

As in the one-dimensional case in Eq. (7), and on the
two-dimensional Cartesian screen in Eq. (15), an N2-point
image on the polar screen F=||F(p, 6,)| is given by the set
of components of |F) in the position basis for N=2j+1,

Fo(p’ ak) = A(j;P, 0k|F> (35)

J
= 2 A(j;p’ 0klj’qx;j’qy>1
Qxdy=—J

To relate the set of polar screen coefficients of the image
to its Cartesian screen coefficients in Eq. (15), we need
the overlaps of the position eigenbases. We use Eqs. (20)
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and (34) to write this overlap as an N2XN? array of nu-
merical coefficients,

U(N)(P, 0k7qx:Qy) = A(i;p> 9kU7qx;.j9Qy>1

= 2 onprgkb,n _j7m>L

n,me

XLK(j;n’mlian;.j7Qy>1 (37)

= > M (0, 6)AY) (@.0,)",

nme

(38)

where X, ,, . indicates the summation over the ranges
specified in Eq. (21) of the polar @;erl and Cartesian A;N,L
modes. Thus, the expansion in Eq. (35) is completed by

J
F.p,00)= > UM(p,6,;9:,9,)F(@q,),  (39)

Q9y=-J

which relates the two sets of coordinates of the same vec-
tor F in the N2-dimensional space of images. In the form
of Eq. (38) it is easy to verify that this transformation is
unitary, hence reversible, and given by
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F@ug)= >, U™(p,0,0.,q,)°F.(p,6),  (40)

p,0,€0

where p, 6, € O indicates the sum over k| <p|¥.

6. DISCUSSION

We have defined Cartesian and polar “position” bases in
the (2j+1)%-dimensional space of two-dimensional finite
images and found their overlap. The definitions were
based on geometrical arguments, and the su(2) machinery
was used to formalize the labels of mode number and an-
gular momentum that were used to identify the images in
Fig. 6 with those in Fig. 9. The calculation of the trans-
formation kernel in Eq. (38) is algebraically arduous, so
credible results should be computationally obtained to
check and underline the theory. In Fig. 10 we generate a
sharp and a soft “letter R” image (of 1’s in a field of 0’s) on
a 65X65 Cartesian-pixellated screen and their trans-
forms by Eq. (40) on a polar screen.

The Cartesian and polar renderings in Fig. 10 are very
close if one discounts the appearance of zig-zags when
sharp image edges do not conform with pixel coordinates;
Gaussian smoothing of the images immediately reduces
this effect. It is perhaps surprising that straight lines re-
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Fig. 10. Left: unitary map of a high-contrast image of 652 pixels from Cartesian (top) to polar (bottom) coordinates. Right: map of a

low-contrast version. White corresponds to 1 and black to 0.
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main visibly straight over the “R” in Fig. 10, which occu-
pies about 2/3 of the linear size of the Cartesian image, or
about half the area, as if the square were inscribed in the
circle. To test which part of the Cartesian image is
mapped into the parts of the circle out of this square, in
Fig. 11 we map a square grid of one-pixel thick lines (of 1’s
on a field of 0’s) and a partial square grid of three-pixel
thick lines. The lines and vertices in the grid remain
plainly visible, albeit distorted in the “no-fit” region be-
tween the square and the circle.

As we have shown, the transformation between images
in the Cartesian- and polar-pixellated screens is an N2
X N? unitary matrix given by Eq. (38). This matrix can be
reduced to a block-diagonal form based on its parity un-
der reflections, which is common to both pixel configura-
tions. The computational complexity of the Cartesian-to-
polar transformation once the matrix elements of Eq. (38)
have been numerically determined (as in all irreducible
unitary transformations), grows as N? for one-
dimensional N-point signals and N* for two-dimensional
N XN images. This algorithm thus cannot be as fast as
other ad hoc local interpolation algorithms nor can we
bring to mind an optical setup to transform square into
round images without loss of information. We hold in fa-
vor of our treatment that the transformation between
square and round is well defined and has the proper con-

tinuum limits, properly meshes with the Fourier group,
and is unitary, thus reversible.

We have separated discrete variables, exploiting the
structure of the Lie algebra su(2),®su(2), in its
(j,j)-representation, and reduced it with respect to two
distinct subalgebra chains, one containing the Cartesian
u(l),ou(l), and the other containing the polar
su(2),2u(l),,. Two extraneous unitary transformations
(gyration and the FT) were imported onto the representa-
tion space and properly mesh into a U(2) Fourier group in
Egs. (16) and (17) that acts on the finite N%-dimensional
space of pixellated images.

Group theory provides the full classification of coordi-
nates to separate the Hamiltonians through correspond-
ing subalgebra chains and invariants [23]. Two dimen-
sions are rather special in this and other respects (use of
complex variables, etc.); for three dimensions the present
construction leads to circular cylinder coordinates on the
one hand and a Cartesian cube on the other. To both one
may apply the Fourier group, which is U(3) there, con-
taining the full rotation group of three-dimensional
Cartesian-voxellated images.
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