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A unitary transformation between Cartesian and polar pixellations of finite two-dimensional images is ob-
tained from the su�2� model for discrete and finite signals. This transformation analyzes the original image
into its finite Cartesian “Laguerre–Kravchuk” modes (involving Wigner little-d functions) and synthesizes it
back using a polar mode basis with the same set of mode coefficients. The polar basis is derived from the quan-
tum angular momentum theory, and its modes are given by Clebsch–Gordan coefficients. © 2008 Optical So-
ciety of America
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. INTRODUCTION
e describe here the unitary transformation of a finite

mage—a two-dimensional array of N2 complex
umbers—between Cartesian and polar pixellations. In
he first case the pixels are arranged in an N�N square
creen while in the second the pixels in the screen are
laced on concentric circles of integer radii r
�0,1, . . . ,N−1� with 2r+1 equally spaced pixels at each

adius as shown in Fig. 1. Both the Cartesian and the po-
ar screens have N2 data points, so no information will be
ost when this transformation is unitary. Cartesian sensor
rrays are common and mathematically easy to separate,
o their treatment simplifies to one-dimensional Fourier
r other analyses. Sensor arrays with polar pixellation
re less common but may be useful to discern the angular
haracteristics of circular beams. Since squares and
ircles obviously do not fit, the unitary transformation of
ata between Cartesian and polar arrays is not prima fa-
ie evident; interpolation to geometrically close data
oints on two such screens, for instance, is not unitary
nd hence not reversible.
While many continuous optical and quantum systems

an be separated in Cartesian and polar coordinates, this
aper addresses the problem of separation of variables for
wo discrete coordinates, equally spaced and of finite
ange, which for brevity we will call finite coordinates. In
ection 2 we recount the discretization process from con-
inuous to finite oscillator models in one dimension, freely
sing the tools of quantum angular momentum theory for
he spin group SU�2� of 2�2 unitary matrices; this group
s generated by the Lie algebra su�2� of Pauli matrices [1].
ne-dimensional finite signals are thus represented by
-vectors of spin j= 1

2 �N−1�. This model has been detailed
efore in [2–4], among others.
Two-dimensional N�N Cartesian screens are intro-
1084-7529/08/081875-10/$15.00 © 2
uced in Section 3 by the direct product of two su�2� alge-
ras, subject to the gyration between the discrete versions
f Hermite–Gauss and Laguerre–Gauss modes [5]. The
ngular momentum theory is used in Section 4 to find an-
ther two bases for the N2 two-dimensional array of
oints conforming to the properties expected from the po-
ar separation of coordinates. The overlap between the
wo is determined in Section 5, providing the explicit form
f the unitary transformation, which includes Wigner
ittle-d functions and Clebsch–Gordan coefficients. In Sec-
ion 6 we report some numerical experiments and offer
ome conclusions.

. su(2) MODEL FOR FINITE SIGNALS
he points on the surface of a freely rotating sphere
roject harmonic motion as do the points on the phase
pace plane under evolution in a harmonic oscillator po-
ential. However, these two classical systems differ under
he rest of the transformations that can rigidly act on
hese two manifolds. On the sphere one has the three
omponents of angular momentum that generate the spin
roup SU(2) while on the plane one has translations, and
he aforesaid rotations, that generate the group ISO�2� of
uclidean motions. We can picture the two systems as the
phere tangent to the phase space plane in Fig. 2, and see
hat in the limit of a growing radius the former will con-
ract to the latter. This picture remains true when the
lassical quantities are quantized as the observable spec-
ra of self-adjoint operators that act on an appropriate
ilbert space of functions.
These considerations led us to the su�2� model for one-

imensional N-point finite systems: one postulates that
he three observables �q ,p ,�� of position q, momentum p,
nd a “3-projection” � (displaced energy) are the spectra of
008 Optical Society of America
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he three su�2� generators denoted by J� = �J1 ,J2 ,J3�.
hese are abstractly characterized by their commutation
elations �Ji ,Jj�=i�i,j,kJk (i , j ,k cyclic) that we can write
s J� �J� =iJ� and are realized as N�N self-adjoint matri-
es of a spin-j representation of su�2� for N=2j+1, a posi-
ive integer. The correspondence is [6]

position: Q = J1, �1�

momentum: P = J2, �2�

3-projection: L = J3,

mode number: N = J3 + j1,

energy: H = J3 + �j + 1
2�1. �3�

he Hilbert space of signals is that of complex N vectors,
here the spectrum of all three operators Jk is the finite
oint set �−j ,−j+1, . . . , j�. In this model therefore, posi-
ions and momenta are intrinsically finite, and there are

ig. 1. (a) Cartesian and (b) polar arrangements of 172 pixel
enters.

ig. 2. Classical sphere with rotation axes j1 , j2 , j3. Tangent to
t, the phase space plane with translation directions q ,p. The
armonic oscillator evolution rotates the figure around its verti-
al axis. We deform q→ j1 ,p→ j2, and identify the Hamiltonian
ith h→ j +r, where r is the radius of the sphere.
3
j+1 energy eigenmodes numbered by nª�+ j
�0,1, . . . ,2j�.
The operator H=N+ 1

21=L+ �j+ 1
2 �1 is the finite oscilla-

or Hamiltonian, whose commutation relations with posi-
ion and momentum are

�H,Q� = iP, �P,H� = iQ, �4�

�Q,P� = iL = i�H − �j + 1
2�1� . �5�

he first two equalities are the geometric and dynamic
amilton equations for the harmonic oscillator (classical,
uantum, or finite); the third commutator is the su�2� de-
ormation of the familiar Heisenberg commutator of the
sual Schrödinger operators in continuous systems. Fi-
ally, for spin j, the quadratic Casimir operator is repre-
ented by a multiple of the unit matrix

J2
ª Q2 + P2 + L2 = j�j + 1�1. �6�

We understand N-point signals f= �f�q��q=−j
j as the com-

onents of the vector �f� in the orthonormal eigenbasis of
he position operator in (1)

f�q� ª 1	j,q�f�, 
J2�j,q�1 = j�j + 1��j,q�1,

Q�j,q�1 = q�j,q�1,
�7�

.e., the Kronecker basis for N-point signals indicated by
j , · �1. There is also the eigenbasis of the number operator

in Eq. (3); this basis is the set of N finite harmonic os-
illator states �n

�N� with n�0
2j, N=2j+1. These we indicate

y �j ,��3 with �=n− j being its eigenvalue under L,

�n
�N��q� ª 1	j,q�j,��3

= dn−j,q
j � 1

2�� , 
J2�j,��3 = j�j + 1��j,��3,

L�j,��3 = ��j,��3.
�8�

hese are the matrix elements of a rotation around the j2
xis of Fig. 2 that brings the j3 axis onto the j1 axis and
re known as little-d Wigner functions [1],

dm,m�
j ��� = dm�,m

j �− �� = 3	j,m�exp�− i�P��j,m��3, �9�

or �= 1
2�. The finite oscillator wave functions �n

�N��q� con-
ain Gaussian hypergeometric 2F1 functions and have the
xplicit form given by [1]

dm�,m
j ��� =

�− 1�m−m�

�m� − m�!
��j − m� ! �j + m��!

�j + m� ! �j − m��!

��cos
1

2
�
2j+m−m��sin

1

2
�
m−m�

�2F1�m� − j,− m − j;m� − m + 1;− tan2
1

2
�
 .

�10�

dditionally, the wave functions �n
�N��q� can be written in

erms of the symmetric Kravchuk orthogonal polynomials
2,7–9]
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�n
�N��q� = dn−j,q

j �1

2
�


=
�− 1�n

2j ��2j

n 
�2j

j + q
Kn�j + q;
1

2
,2j
 , �11�

here � x
y � is the binomial coefficient defined for integer x

nd y—the factor � 2j
j+q � plays the role of a discrete

aussian—and Kn�x ;p ,N�ª 2F1�−n ,− 1
2N−x ;−N ;p−1� is

he Kravchuk polynomial of degree n in x of parameter p
10]. The discrete oscillator wave functions �n

�N��q� in Eq.
11) are also called Kravchuk functions. In Fig. 3 we show
he lower-, middle-, and highest-mode Kravchuk func-
ions; this figure has appeared several times in literature,
nd a detailed study of their properties and symmetries
an be found in [2,3,11].

A momentum eigenbasis of J2 can be defined as in Eqs.
7) and (8), and the Fourier–Kravchuk transform [2], gen-
rated by the number operator in Eq. (3), rotates between
hese su(2) positions and momentum representations of
he signal [12]. Finite coherent states that undergo har-
onic motion are defined by any SU(2) transformation of

he ground state n=0 in Eq. (8) using Eq. (9) for arbitrary
[11,13]. Finally, when N→� with the interval and den-

ity of points growing as ��N, one recovers the continu-
us harmonic oscillator algebra and wave functions [14].
his perfunctory construction of the su(2) model is all we
eed for the following sections.

. TWO-DIMENSIONAL CARTESIAN
CREENS
he direct product �qx ,qy� of two one-dimensional finite
oordinates, each of N points, is a square N�N lattice of

ig. 3. Kravchuk functions, �n
�N��q� in Eq. (11), of the finite su�2�

scillator for N=65 �j=32�. Selected values of n show the lower,
iddle, and higher states. Note that the latter reproduce the

ormer with alternating signs.
oints, such as that in Fig. 1(a). On this point set we con-
truct an su�2�x � su�2�y finite oscillator model, where the
tates of the system belong to the spin-�j , j� representa-
ion. The six generators are

Qx, Px, Lx = Nx − j1 = Hx − �j + 1
2�1 � su�2�x, �12�

Qy, Py, Ly = Ny − j1 = Hy − �j + 1
2�1 � su�2�y. �13�

he x generators and the y generators each obey the su(2)
ommutators in Eq. (5) and commute with each other;
here are also the two quadratic Casimir operators Jx

2 and

y
2 built as in Eq. (6). Following Eq. (8), the two-
imensional finite oscillator modes are the products

�nx,ny

�N� �qx,qy� = �nx

�N��qx��ny

�N��qy� = dnx−j,qx

j � 1
2��dny−j,qy

j � 1
2��

= 1x	j,qx�j,nx − j�3x � 1y	j,qy�j,ny − j�3y

¬ 1	j,qx;j,qy�j,nx − j;j,ny − j�3, �14�

here �j ,qx ; j ,qy�1= �j ,qx�1x � j ,qy�1y is the direct product of
osition eigenbases and similar to the mode number ba-
is. As in Eq. (7), we regard an image on the Cartesian
creen as a state �F� whose components in the position ba-
is �j ,qx ; j ,qy�1 give its values in the corresponding pixel

F�qx,qy� = 1	j,qx;j,qy�F�. �15�

We can organize the Cartesian states �nx ,ny� into the
hombus pattern shown in Fig. 4; the rows are labeled by
he total mode number n=nx+ny, n�0

4j and the columns by
he energy difference m= 1

2 �nx−ny�; the latter are con-
trained into the rhombus by �m � 	 1

2n for n	2j, and
m � 	2j− 1 / 2n for n
2j. In Fig. 5 we show the two-
imensional finite oscillator Kravchuk functions in Eq.
14) placed in that rhombus pattern. These modes are the
u(2) finite counterparts of the two-dimensional x–y sepa-
ated Hermite–Gauss functions in continuum optics.

In the continuous two-dimensional models of quantum
armonic oscillators and of scalar waveguide optics, one
uilds the Poincaré sphere. On this sphere, Hermite–
auss states are represented by points around the equa-

or with an azimuth that is twice the angle of their sepa-
ating coordinate frame; the two poles of the sphere
epresent Laguerre–Gauss beams with opposite angular
omenta. The Poincaré sphere can be subject to rotations

enerated by operators of the second order in the
chrödinger operators of position and momentum, Q̄k

qk and P̄k=−id/dqk for k=x ,y, which satisfy �Q̄k , P̄k��

ig. 4. Rhombus pattern for the two-dimensional finite oscilla-
or states classified by the total mode number n=n +n .
x y
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�k,k�1 [5,15]. This group of rotations is a subgroup of the
roup of all linear canonical transformations; since it con-
ains the fractional Fourier transforms (FTs), it has been
alled the Fourier SU(2) group [16] and Subsection 10.3 of
17]. The three generators of this Fourier group, �Fk�k=1

3 ,
re identified as follows [5]:

antisymmetric FT, F̄1 ª
1
4 �P̄x

2 − P̄y
2 + Q̄x

2 − Q̄y
2�, �16�

gyration, F̄2 ª
1
2 �P̄xP̄y + Q̄xQ̄y�, �17�

rotation, F̄3 ª
1
2 �Q̄xP̄y − Q̄yP̄x� ¬ 1

2M̄. �18�

he commutation relations of these F̄k’s are F� �F� =iF� , the
ame as those of the Jk’s in Section 2 and the same as any
u(2) algebra. However the physical meaning of the two
U(2) groups is different: in Eq. (18), M̄=Q̄� P̄ is the

ig. 5. Rhombus pattern of two-dimensional finite oscillator
ravchuk functions. The upper half of the rhombus reproduces

he lower one with a checkerboard of alternating signs.
hysical orbital angular momentum operator; gyration,
enerated by Eq. (17), transforms Hermite–Gauss into
aguerre–Gauss beams; there is a fourth operator that
ommutes with the previous three, this is the

symmetric FT, F̄0 ª
1
4 �P̄x

2 + P̄y
2 + Q̄x

2 + Q̄y
2 − 21�. �19�

he four generated transformations form the full Fourier
roup U�2�=U�1� � SU�2� [16] and only transform beams
mong those with the same energy. The matrix represen-
ation of the gyration subgroup has elements given by
igner little-d functions, as in Eq. (9), the same as in any
U(2) group.
Now we return to the finite two-dimensional model,

oting that the generators of Eqs. (12) and (13) of su�2�x
� su�2�y cannot be used to build a direct analog of the u�2�

ourier generators in Eqs. (16)–(19). Thus, one cannot
roduce in this way a finite analog of gyration that would
onserve the energy of the x–y separated modes in Eq.
14), i.e., along the rows in Fig. 5 to find discrete “wave-
orms” with definite angular momentum as one does in
he continuous case above. However, as shown in [5], one
an import the transformation coefficients for gyration
rom the continuous model, indeed, from the abstract
u�2� algebra, these coefficients are the Wigner little d’s in
qs. (8) and (9). The process of symmetry importation [18]
ields here a unitary one-parameter group of linear trans-
ormation between all n+1 modes with the same total en-
rgy (mode number n, see Fig. 5). This is the discrete ver-
ion of unitary gyration, which led in [5] to define
aguerre–Kravchuk modes on the N�N screen, N=2j
1, by

�n,m
�N� �qx,qy� ª �

nx+ny=n
ei��nx−ny�/4d1/2m,1/2�nx−ny�

n/2 � 1
2��

��nx,ny

�N� �qx,qy�, �20�

n � �0,1, . . . ,4j�,


n 	 2j ⇒ m � �− n,− n + 2, . . . ,n�,

n 
 2j ⇒ m � �− 4j + n,− 4j + n + 2, . . . ,4j − n�.

�21�

s before, N=2j+1 is the number of pixels in each row or
olumn of the Cartesian screen. In Fig. 6 we show these
omplex “angular momentum” modes using the same
hombus pattern in Fig. 5. The Laguerre–Kravchuk
odes are orthonormal and complete in the
2-dimensional space of complex functions supported on

he points in Fig. 1(a).
In Fig. 6 we see that the behavior of the nodal lines

which separate positive from negative point values) for
n ,m� in the lower half-rhombus supports the assignment
f the integer quantum number m in Eqs. (20) and (21)
nd complies with properties expected from plane angular
omentum states so that they are naturally arranged

nto spin-1
2n multiplets; the number of radial nodal lines

s n− �m�. Thus we adopt the Laguerre–Kravchuk func-
ions in Eq. (20) as the optimal discrete analogs of the
ontinuous Laguerre–Gauss functions characterized by
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he same quantum numbers. In Dirac notation we can in-
icate Eq. (20) for N=2j+1 by the ket

�j;n,m�LK ª �
nx+ny=n

ei��nx−ny�/4d1/2m,1/2�nx−ny�
n/2 � 1

2��

��j,nx − j;j,ny − j�3. �22�

e use round brackets to indicate that one of its labels,
ngular momentum m, is not an eigenvalue under any op-
rator in the algebra in Eqs. (12) and (13). On the other
and, the total mode number n does remain the eigen-
alue of Nx+Ny while the two quadratic Casimir opera-
ors are Jx

2= j�j+1�1=Jy
2. These kets can be turned into

ave functions by closing with the bra 	j ,q ; j ,q �. Fi-

ig. 6. Rhombus pattern of two-dimensional Laguerre–
ravchuk modes with definite angular momentum. Since the
odes are complex, we plot the real modes �n,m

�N�,c= 1
2 ��n,m

�N�

�n,−m
�N� � for m
0 on the right-hand side and �n,m

�N�,s=−1
2i��n,m

�N�

�n,−m
�N� � for �m � 
0 on the left-hand side. The m=0 modes are

eal. Again, the upper triangle reproduces the lower one with a
heckerboard of alternating signs.
1 x y
ally, it should not escape attention that the linear com-
ination coefficients in Eq. (22) are themselves Kravchuk
unctions given through Eq. (8) as

�1/2�n+m�
�n+1� � 1

2 �nx − ny�� = d1/2m,1/2�nx−ny�
n/2 � 1

2�� . �23�

lthough the Laguerre–Kravchuk states in Eq. (20) are
ll we need for the following sections, we should note that
he imported gyration subgroup can be given for arbitrary
ngles � essentially replacing the argument of the little-d
unction above by 2�. This one-parameter group properly
eshes with the “domestic” symmetric and antisymmet-

ic Fourier–Kravchuk transforms whose eigenfunctions
re in Eq. (14) with eigenvalues n=nx+ny and 1

2 �nx−ny�.
hus we have the full Fourier group U�2� acting on finite
ystems, including the image rotation on the Cartesian
rid, and its action is unitary [5].

. TWO-DIMENSIONAL POLAR SCREENS
e used the algebra su�2�x � su�2�y in the �j , j� represen-

ation in Section 3, but now we will find two commuting
perators whose eigenvalues can appropriately define a
asis in that �2j+1�2-dimensional space, by mode number
nd angular momentum �n ,m�, with the ranges in Eq.
21). Also, we should find two commuting operators whose
igenvalues have the meaning of radius and angle for the
oints to be arranged into a polar pattern as that in Fig.
(b). Angle and angular momentum (with technical reser-
ations) are canonically conjugate observables; in finite
eriodic signals they are determined by the Kronecker
nd Fourier bases, which are related to each other by the
nitary finite FT matrix. Since there are k equidistant
angle” points on the circle supporting the signal, there
ill also be k angular momentum values in the Fourier
asis.
Therefore, the two-dimensional problem is simplified to

nding an operator that behaves as a radius (or radius-
quared), namely, that it commutes with the chosen angu-
ar momentum generator. To place and name these opera-
ors it is convenient to look into the structure of the
lgebra generated by J� x= �Qx ,Px ,Lx� and J� y= �Qy ,Py ,Ly�,
riting linear combinations and their commutators as

J� x � J� x = iJ� x

J� x � J� y = 0

J� y � J� y = iJ� y

J� + ª J� x + Jy

J� − ª J� x − Jy

⇒ �J� + � J� + = iJ� +

J� + � J� − = iJ� −

J� − � J� − = iJ� +

.

�24�

he six generators of the direct sum algebra su�2�x
� su�2�y are thus separated into a subset of three J+’s that
lose under commutation into the algebra denoted su�2�+
nd three J−’s that transform as a vector under this. Let
s name the new component operators as follows:

J� + ª �
R+

S+

L
�, J� − ª �

− S−

R−
1
2M

� , �25�

here L=Lx+Ly is the total 3-projection generator that
rovided the total energy or mode number n=n +n in
x y
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ection 3 and M= 1
2 �Lx−Ly� is the proposed finite angular

omentum operator. The justification for this assignment
f M is that it commutes with the total mode number,
L ,M�=0 and that it generates joint rotations in the
lanes of �R+,R−� and of �S+,S−�, namely,

�M,R±� = ± iR�, �M,S±� = ± iS�. �26�

n support of the proposition that R± and S± behave as po-
ition and momentum operators, we note that the total os-
illator Hamiltonian HªN+1=L+ �2j+1�1 indeed gener-
tes joint rotations in the “phase space” planes �R+,S+�
nd �R−,S−� since

�L,R±� = − iS±, �L,S±� = iR�. �27�

rom Eqs. (26) and (27), the choice of L and M to provide
uantum mode and angular momentum eigenvalues
n ,m� for finite polar kets seems appropriate. Regarding
he “position and momentum” generators R± and S± we
ee that they also conform to the su�2� model since
R+,S+�=iL= �R−,S−�. However, the algebraic structure in
q. (25) also fixes the commutators �R+,R−�=iM
�S+,S−�. These “nonstandard” commutators imply that

he subset R+,R−,M (and also S+,S−,M) closes under
ommutation into an su�2� algebra that we distinguish by
u�2��; its quadratic Casimir operator

R2
ª R+

2 + R−
2 + M2 commutes with M. �28�

his provides us with the radius-squared operator whose
pectrum will be ���+1� with integer � ranging from 0 up
o 2j, as we will more fully argue below. The structure of
u�2�� also implies that the eigenvalues m of angular mo-
entum M will range in �−� ,−�+1, . . . ,��. These 2�+1

alues determine that, after FT, the circles of radii � in
ig. 1(b) will have 2�+1 points each so that the polar
creen will consist of ��=0

2j �2�+1�= �2j+1�2=N2 pixels, the
ame as the N�N Cartesian screen.

We thus have the following two bases for the su�2�x
� su�2�y kets: that of total mode number n=�+ j, charac-
erized by the eigenvalues � under L=Jx3+Jy3 and m un-
er M=Jx3−Jy3,

�j;�,m�L,

eigenkets of: Jx
2 Jy

2 Jx3 Jy3,

eigenvalues: j�j + 1� j�j + 1� 1
2 �� + m� 1

2 �� − m�,

�29�

nd that of radius � and angular momentum m, charac-
erized by

�j;�,m�R,

eigenkets of: �J� x + J� y�2 J� x · J� y R2 M,

eigenvalues: 2j�j + 1� 0 ��� + 1� m. �30�

o pass from the mode basis in Eq. (29) to the radius basis
n Eq. (30) is, in angular momentum quantum mechanics,
he coupling of two spin-j states to a sum of states of in-
eger total spins �� �0,1, . . . ,2j� with Clebsch–Gordan (or
u(2)-Wigner) coefficients, C···
j;j,� as shown in Fig. 7.

The “third-component” eigenvalues in the Clebsch–
ordan coefficients must properly sum, yet we see that m

n Eq. (30) is the difference of the eigenvalues of J3x and
3y; hence, a sign reversal of the latter is necessary before
elating the overlap matrix of the two bases to the
lebsch–Gordan coefficients Cmx,my,m

j,j,� , with mx+my=m
19]. Also, we should be aware that these coefficients were
efined by recursion from their highest-m state, whereas
he Kravchuk functions start from the ground state. To-
ether, these two considerations relate the overlap of Eqs.
29) and (30) to the Clebsch–Gordan coefficients through
phase that must be carefully calculated [20]. The result

s

R	j;�,m�j;�,m�L = ��j,�,�,m�C1/2�m+��,1/2�m−��,m
j,j,� , �31�

ith the phase

��j,�,�,m� = �− 1�j+�+1/2��m�−m�ei��/2. �32�

s we indicated at the beginning of this section, the �2�
1�-dimensional FT matrix will turn the kets �j ;� ,m�R

nto “angular” states that we denote by

�j;�,�k�A ª

1

�2� + 1
�

m=−�

�

e−im�k�j;�,m�R, �33�

here k is an integer counted modulo 2�+1 and the
ngles are �k=2�k / �2�+1� plus any function c���. This
ransformation is shown in Fig. 8, where we have aligned
he k=0 points along a vertical �-axis by putting c���=0.
gain, we have used round brackets in Eq. (33) to indi-

ate that �k is not the eigenvalue of any operator built
rom the algebra but has been imported.

Thus we can finally write the basis of N2 polar-
eparated finite functions, N=2j+1, by closing the mode-
ngular momentum kets �j ;n− j ,m�L in Eq. (29) with the
ras in Eq. (33), and using Eq. (31) we find

ig. 7. States in the rhombus classified by mode number n= j
� and angular momentum m are related to states classified by
adius � and the same angular momentum through Clebsch–
ordan coefficients.
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�n,m
�N� ��,�k� ª A�j;�,�k�j;n − j,m�L

=
1

�2� + 1
�

m=−�

�

eim�k��j,�,n − j,m�

�C1/2�m+n−j�,1/2�m−n+j�,m
j,j,� . �34�

he Clebsch–Gordan coefficients that contain the radius
nd angular momentum �� ,m� are well known in the lit-
rature [1]; they can also be expressed as the product of a
iscrete function in � with the behavior of a decreasing
xponential times a 3F2� ···

·· �1� hypergeometric function,
hich for the appropriate negative integer values of the
arameters is a discrete Hahn polynomial [21]. In the N

� limit, with radii decreasing as �� /�N, the radial part
n Eq. (35) correctly contracts to the Laguerre functions of
he two-dimensional quantum harmonic oscillator [22].

In Fig. 9 we show these “Laguerre–Kravchuk-on-polar-
creen” functions, �n,m

�N� �� ,�k� in Eq. (35), forming the
ame rhombus pattern for �n ,m� as in Fig. 6 for the Car-
esian �n ,m� modes �n,m

�N� in Eq. (20). They are orthonor-
al and complete over the finite polar screen �� ,�k�. Since

he Clebsch–Gordan coefficients include the restriction
m � 	�, the higher-m modes in Fig. 9 are only nonzero
ear to the edge of the screen for radii �m � 	�	2j. Prop-
rties noted for the Cartesian modes of Fig. 6, such as the
ign alternation of the states in the upper triangle of the
hombus with respect to those in the lower one, also hold
or the polar modes.

. TRANSFER OF IMAGES
he basic proposition to unitarily transfer images from a
quare to a polar screen with the same number N2 of
oints is to identify the �n ,m� modes of the former in Fig.
with the corresponding �n ,m� modes of the latter in Fig.
. The modes in Eq. (14) are orthonormal and complete
ver the points of the Cartesian screen in Fig. 1(a) while
he modes in Eq. (34) are over those of the polar screen in
ig. 1(b). Both sets of modes are orthonormal and com-
lete over the same rhombus of points �n ,m� in Fig. 4; the
nner products in the first yield �qx,qx�

�qy,qy�
while those of

he second yield ��,����k,�k�
. The transformation between

he Cartesian ket basis �j ,qx ; j ,qy�1 in Eq. (14) and the po-
ar ket basis �j ;� ,�k�A in Eq. (33) is unitary because each
f the transformations in Sections 3 and 4 have been uni-
ary, both the domestic and the imported ones.

ig. 8. States classified by radius � and angular momentum m
re related, at each circle of radius �, to 2�+1 kets associated
ith equally spaced points through the finite FT.
As in the one-dimensional case in Eq. (7), and on the
wo-dimensional Cartesian screen in Eq. (15), an N2-point
mage on the polar screen F= �F�� ,�k�� is given by the set
f components of �F� in the position basis for N=2j+1,

F���,�k� ª A�j;�,�k�F� �35�

= �
qx,qy=−j

j

A�j;�,�k�j,qx;j,qy�1

� 1	j,qx;j,qy�F�. �36�

o relate the set of polar screen coefficients of the image
o its Cartesian screen coefficients in Eq. (15), we need
he overlaps of the position eigenbases. We use Eqs. (20)

ig. 9. Rhombus pattern of two-dimensional modes �n ,m� with
efinite mode number and angular momentum on a screen with
ixels that follow polar coordinates. Again, the modes are com-
lex, so we show the real part of the modes for m
0 on the right-
and side and the imaginary part for �m � 
0 on the left-hand
ide. The functions are zero for radii �� �m�.
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nd (34) to write this overlap as an N2�N2 array of nu-
erical coefficients,

U�N���,�k;qx,qy� ª A�j;�,�k�j,qx;j,qy�1

= �
n,m��

A�j;�,�k�j;n − j,m�L

�LK�j;n,m�j,qx;j,qy�1 �37�

= �
n,m��

�n,m
�N� ��,�k��n,m

�N� �qx,qy�*,

�38�

here �n,m�� indicates the summation over the ranges
pecified in Eq. (21) of the polar �n,m

�N� and Cartesian �n,m
�N�

odes. Thus, the expansion in Eq. (35) is completed by

F���,�k� = �
qx,qy=−j

j

U�N���,�k;qx,qy�F�qx,qy�, �39�

hich relates the two sets of coordinates of the same vec-
or F in the N2-dimensional space of images. In the form
f Eq. (38) it is easy to verify that this transformation is
nitary, hence reversible, and given by

ig. 10. Left: unitary map of a high-contrast image of 652 pixe
ow-contrast version. White corresponds to 1 and black to 0.
F�qx,qy� = �
�,�k��

U�N���,�k;qx,qy�*F���,�k�, �40�

here � ,�k�� indicates the sum over �k � 	��0
2j.

. DISCUSSION
e have defined Cartesian and polar “position” bases in

he �2j+1�2-dimensional space of two-dimensional finite
mages and found their overlap. The definitions were
ased on geometrical arguments, and the su�2� machinery
as used to formalize the labels of mode number and an-
ular momentum that were used to identify the images in
ig. 6 with those in Fig. 9. The calculation of the trans-

ormation kernel in Eq. (38) is algebraically arduous, so
redible results should be computationally obtained to
heck and underline the theory. In Fig. 10 we generate a
harp and a soft “letter R” image (of 1’s in a field of 0’s) on

65�65 Cartesian-pixellated screen and their trans-
orms by Eq. (40) on a polar screen.

The Cartesian and polar renderings in Fig. 10 are very
lose if one discounts the appearance of zig-zags when
harp image edges do not conform with pixel coordinates;
aussian smoothing of the images immediately reduces

his effect. It is perhaps surprising that straight lines re-

Cartesian (top) to polar (bottom) coordinates. Right: map of a
ls from
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ain visibly straight over the “R” in Fig. 10, which occu-
ies about 2/3 of the linear size of the Cartesian image, or
bout half the area, as if the square were inscribed in the
ircle. To test which part of the Cartesian image is
apped into the parts of the circle out of this square, in
ig. 11 we map a square grid of one-pixel thick lines (of 1’s
n a field of 0’s) and a partial square grid of three-pixel
hick lines. The lines and vertices in the grid remain
lainly visible, albeit distorted in the “no-fit” region be-
ween the square and the circle.

As we have shown, the transformation between images
n the Cartesian- and polar-pixellated screens is an N2

N2 unitary matrix given by Eq. (38). This matrix can be
educed to a block-diagonal form based on its parity un-
er reflections, which is common to both pixel configura-
ions. The computational complexity of the Cartesian-to-
olar transformation once the matrix elements of Eq. (38)
ave been numerically determined (as in all irreducible
nitary transformations), grows as N2 for one-
imensional N-point signals and N4 for two-dimensional
�N images. This algorithm thus cannot be as fast as

ther ad hoc local interpolation algorithms nor can we
ring to mind an optical setup to transform square into
ound images without loss of information. We hold in fa-
or of our treatment that the transformation between
quare and round is well defined and has the proper con-

ig. 11. Top: map of a square grid of one-pixel thick lines (in wh
hite). As in Fig. 10, white corresponds to 1 and black to 0.
inuum limits, properly meshes with the Fourier group,
nd is unitary, thus reversible.
We have separated discrete variables, exploiting the

tructure of the Lie algebra su�2�x � su�2�y in its
j , j�-representation, and reduced it with respect to two
istinct subalgebra chains, one containing the Cartesian
�1�x � u�1�y and the other containing the polar
u�2���u�1�m. Two extraneous unitary transformations
gyration and the FT) were imported onto the representa-
ion space and properly mesh into a U�2� Fourier group in
qs. (16) and (17) that acts on the finite N2-dimensional
pace of pixellated images.

Group theory provides the full classification of coordi-
ates to separate the Hamiltonians through correspond-

ng subalgebra chains and invariants [23]. Two dimen-
ions are rather special in this and other respects (use of
omplex variables, etc.); for three dimensions the present
onstruction leads to circular cylinder coordinates on the
ne hand and a Cartesian cube on the other. To both one
ay apply the Fourier group, which is U�3� there, con-

aining the full rotation group of three-dimensional
artesian-voxellated images.
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ite). B



M
t
s
t
s

R

1

1

1

1

1

1

1

1

1

1

2

2

2

2

1884 J. Opt. Soc. Am. A/Vol. 25, No. 8 /August 2008 L. E. Vicent and K. B. Wolf
éxico) IN105008, Óptica Matemática. The authors
hank Luis Mochán (Instituto de Ciencias Físicas, Univer-
idad Nacional Autónoma de México) for the code in PEARL

o graphically display the modes and figures in the polar
creen.

EFERENCES
1. L. C. Biedenharn and J. D. Louck, “Angular momentum in

quantum physics,” in Encyclopedia of Mathematics and Its
Applications, G.-C. Rota, ed. (Addison-Wesley, 1981), Vol. 8.

2. N. M. Atakishiyev and K. B. Wolf, “Fractional
Fourier–Kravchuk transform,” J. Opt. Soc. Am. A 14,
1467–1477 (1997).

3. N. M. Atakishiyev, G. S. Pogosyan, L. E. Vicent, and K. B.
Wolf, “Finite two-dimensional oscillator: I. The Cartesian
model,” J. Phys. A 34, 9381–9398 (2001).

4. N. M. Atakishiyev, G. S. Pogosyan, L. E. Vicent, and K. B.
Wolf, “Finite two-dimensional oscillator: II. The radial
model,” J. Phys. A 34, 9399–9415 (2001).

5. T. Alieva and K. B. Wolf, “Rotation and gyration of finite
two-dimensional modes,” J. Opt. Soc. Am. A 25, 365–370
(2008).

6. M. Arik, N. M. Atakishiyev, and K. B. Wolf, “Quantum
algebraic structures compatible with the harmonic
oscillator Newton equation,” J. Phys. A 32, L371–L376
(1999).

7. A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi,
Higher Transcendental Functions (McGraw-Hill, 1953), Vol.
2.

8. N. Ya. Vilenkin, Special Functions and the Theory of Group
Representations (American Mathematical Society, 1968).

9. N. M. Atakishiyev and S. K. Suslov, “Difference analogs of
the harmonic oscillator,” Theor. Math. Phys. 85, 1055–1062
(1991).

0. M. Krawtchouk, “Sur une généralization des polinômes
d’Hermite,” Acad. Sci., Paris, C. R. 189, 620–622 (1929).
1. N. M. Atakishiyev, L. E. Vicent, and K. B. Wolf,

“Continuous vs. discrete fractional Fourier transforms,” J.
Comput. Appl. Math. 107, 73–95 (1999).

2. K. B. Wolf and G. Krötzsch, “Geometry and dynamics in the
fractional discrete Fourier transform,” J. Opt. Soc. Am. A
24, 651–658 (2007).

3. L. E. Vicent, “Coherent states for the finite su(2)-oscillator
model,” Int. J. Mod. Phys. B 20, 1934–1941 (2006).

4. N. M. Atakishiyev, G. S. Pogosyan, and K. B. Wolf,
“Contraction of the finite one-dimensional oscillator,” Int.
J. Mod. Phys. A 18, 317–327 (2003).

5. A. Frank and P. Van Isacker, Algebraic Methods in
Molecular and Nuclear Structure Physics (Wiley, 1998).

6. R. Simon and K. B. Wolf, “Fractional Fourier transforms in
two dimensions,” J. Opt. Soc. Am. A 17, 2368–2381 (2000).

7. K. B. Wolf, Geometric Optics on Phase Space (Springer-
Verlag, 2004).

8. L. Barker, Ç. Çandan, T. Hakioğlu, M. A. Kutay, and H. M.
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