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Squeezing and its inverse magnification form a one-parameter group of linear canonical transformations of
continuous signals in paraxial optics. We search for corresponding unitary matrices to apply on signal vectors
in N-point finite Hamiltonian systems. The analysis is extended to the phase space representation by means of
Wigner quasi-probability distribution functions on the discrete torus and on the sphere. Together with two pre-
vious studies of the fractional Fourier and Fresnel transforms, we complete the finite counterparts of the group
of linear canonical transformations. © 2007 Optical Society of America
OCIS codes: 070.2590, 070.6020, 070.6760, 080.1010, 090.1970, 200.4560.
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. INTRODUCTION: CLASSICAL SQUEEZING
n the continuous models of paraxial optics and quadratic
otentials in quantum mechanics, linear canonical trans-
ormations form a privileged three-parameter Lie group,
hich may be represented by 2�2 real matrices of unit
eterminant. The Iwasawa decomposition of this group is

�a b

c d� = �cos � − sin �

sin � cos � ��e� 0

0 e−���1 0

z 1� . �1�

cting on the phase space vector � q
p� of position q and mo-

entum (paraxial ray inclination) p, the left-hand term of
q. (1) represents a fractional Fourier transform, while

he right-hand term yields free-wave propagation by a
resnel transform. The finite counterparts of these two
ransforms have been analyzed in [1,2], respectively. We
ow address the middle factor, squeezing (or magnifica-
ion), which shrinks (or expands) positions q�e−�q, and
omenta p�e�p, with ��R. These transformations form

he one-parameter group of scalings; we use the term
squeezing” as in quantum optics, or “magnification” as is
ommon in geometric and wave optics, because finite sys-
ems are purported to abstract both theories.

Prima facie it would seem that on finite N-point sig-
als, where the position coordinate of the sensors takes a
nite number of fixed discrete values, squeezing or mag-
ification by arbitrary real factors cannot be performed
ithout losing information. The same applies to two-
imensional pixellated images. As we shall see, however,
e may treat squeezings as aberrations of an appropriate
hase space and represent them by N�N unitary matri-
es. As we did in [1,2], we shall consider two distinct mod-
ls for finite systems: periodic systems, where the trans-
ormation between position and momentum is the
iscrete Fourier transform (DFT) matrix, and nonperiodic
ystems, where this role is taken by the Fourier–
ravchuk transform (FKT), which is a rotation by 1

2� in
he familiar group SU�2� of quantum angular momentum
heory. Each of these two models has a corresponding
1084-7529/07/092871-8/$15.00 © 2
hase space; in the periodic case it is the discrete torus
m ,k� of integers modulo N, while for the SU�2� case it is
ssentially the 2-sphere.

In the classical Hamiltonian models of optics and me-
hanics, where the basic Poisson bracket between position
nd momentum is �q ,p�Pb=1, squeezing is generated by
he Lie exponential of the Poisson-bracket operator of the
onomial qp,

S���:f�q,p� ª exp���qp,��Pb�:f�q,p� = f�e−�q,e�p�. �2�

his produces a flow of phase space �q ,p��R2 along the
yperbolas qp=constant, as shown in Fig. 1. Similarly,
ree Fresnel propagation, fractional Fourier, and Fresnel-
ens (chirp) transforms are generated by the quadratic
unctions of �q ,p�,

gFr ª
1

2
p2, gFou ª

1

2
�p2 + q2�, gFL ª

1

2
q2, �3�

espectively. The generator of squeezing [Eq. (2)] can be
btained either through direct multiplication of q and p or
hrough a Poisson bracket of Eq. (3) as

gS�q,p� = qp = �gFL,gFr�Pb. �4�

In wave models, such as Fourier optics and quadratic
uantum mechanics, q and p are replaced by the
chrödinger operators Q : f�q�=qf�q� and P : f�q�
−idf�q� /dq, which are essentially self-adjoint on the Hil-
ert space of square-integrable wave functions f�q�
L2�R�, and satisfy the Heisenberg commutator �Q ,P�
i1. Here, squeezing is generated by the Lie exponential
f the Weyl-ordered operator that corresponds to qp,

S���:f�q� ª exp�i��QP�W�:f�q� = e−�/2f�e�q�, �5�

here
007 Optical Society of America
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�QP�W ª

1

2
�QP + PQ� = − iq

d

dq
− i

1

2
1 = − i�1

2
Q2,

1

2
P2� .

�6�

or quadratic functions such as Eqs. (3) and (4), the cor-
espondence between classical functions with Poisson
rackets, and operators with i�commutators, is exact. In
2�R�, the S���’s are unitary and form a one-parameter
roup: S��1�S��2�=S��1+�2�, S�0�=1, and S�−��= �S����†,
or ��R. Fresnel and Fourier integral transforms, and
hirps, are correspondingly generated by the quantum
ersions of Eq. (3). Together with squeezing [Eq. (5)],
hese second-degree differential operators generate the
2:1 cover of the) real symplectic group Sp�2,R�, namely,
inear canonical integral transforms [3,4], Chaps. 9 and
0, which are represented by the matrices in Eq. (1).
Can a similar construction be made for finite models? A

ell-known theorem states that noncompact groups (i.e.,
roups with infinite invariant volume) do not have finite-
imensional unitary representations [5]; hence, Sp�2,R�
annot act through N�N unitary matrices. Yet one needs
nitary matrices, elements of the group U�N�, to conserve
orms, distances, and angles between complex N-point
ignals. To find the “right” unitary matrices S��� for
queezing, we follow the strategy of finding their genera-
or matrix, self-adjoint G, using geometrical and/or dy-
amical arguments. And then the finite squeezing matri-
es S���=exp�i�G� will act directly on the signal
-vectors. However, only for small values of � can we ex-
ect that continuous and finite squeezings will resemble
ach other. We shall analyze these transformations on
hase space rather than only on “how the signals look,”
ecause—as we shall see—their Wigner distribution func-
ions [6–8] offer a more penetrating picture of the process.

In Section 2 we look at the possibilities afforded by two
tandard periodic DFT models, one based on the geomet-
ic premise of equally spaced positions, and the other on
attice dynamics with the second-difference matrix, acting
n a discrete toroidal phase space. Sections 3 and 4
resent the construction based on the group
U�2��U�N�, where squeezing is generated by a qua-
ratic element in the algebra, which is an aberration of
he phase space sphere. In Section 5 we offer some com-
ents and conclusions.

ig. 1. Squeezing S��� classically produces a flow of phase space
q ,p��R2 along the hyperbolas qp=const. For ��0, positions are
queezed, momenta (wavenumbers) are magnified, and areas are
onserved.
. SQUEEZING ON THE PHASE SPACE
ORUS
ince there are no finite N-dimensional self-adjoint ma-
rix representations of the Heisenberg algebra, one can-
ot find exact finite matrix analogs of the classical
q ,p�Pb=1 nor of the wave/quantum �Q ,P�=i1. What
hould the finite analog of qp be? We can start with a geo-
etric ansatz (g), where the N�N matrix Qg of position is

ostulated to be diagonal, with distinct and unit-spaced
igenvalues �m

g =m� �−j , j�, where we write N=2j+1. Or,
e can propose a dynamical ansatz (d) refering to a ring of
equal masses numbered by m, joined to first neighbors

y equal springs, whose free Hamiltonian is the second-
ifference matrix [�ªcirc�−2,1,0, . . . ,0 ,1�, circulating
nd symmetric] and which is naturally identified with
minus) the square of momentum �Pd�2; in this model the
igenvalues are �m

d =4 sin2��m /N�� �0,4�. In both of
hese finite models—as in continuous Hamiltonian
ystems—we make the key assumption that the Fourier
ransform (by the DFT matrix �) of position m is momen-
um (wavenumber) k, with the same spectrum. This ma-
rix transform implies that the states of the system will
e periodic in their components m modulo N and that the
orresponding phase space is the discrete torus �m ,k�
odulo N.
The N�N position and 1

2-square-momentum matrices
hat define the geometric and dynamical periodic models
re

Qg
ª diag�m�, 	m	−j

j ⇒ Pg = �Qg�−1, �7�

1

2
�Qd�2 = diag�2 sin2��m/N�� ⇐

1

2
�Pd�2

ª −
1

2
�. �8�

ll the above matrices are real and symmetric, except for
g, which is pure imaginary and skew-symmetric; thus,
ll are self-adjoint. Of course, neither pair commutes to
he identity matrix of the Heisenberg algebra; and they
re quite distinct, as we shall see below.
Out of Eqs. (7) and (8) we can construct two distinct

enerators of squeeze, obtained in the two ways of Eq. (4),
ut which are now different:

Gg
ª

1

2
�QgPg + PgQg�, �9�

Gd
ª − i�1

2
�Qd�2,

1

2
�Pd�2� , �10�

here both generator matrices are pure-imaginary, skew-
ymmetric, and hence self-adjoint. Finally, the matrices
hat represent finite squeezing are the Lie exponentials of
qs. (9) and (10),

Sg��g� ª exp�i�gGg�, Sd��d� ª exp�i�dGd�, �11�

hich are real, of unit determinant, orthogonal, and thus
nitary; they form one-parameter groups belonging to
O�N��SU�N��U�N�. These matrices act on the signal
olumn vectors f= 
fm
, so the squeeze of a real signal re-
ains real, and the angles formed between different sig-
al vectors are preserved under squeeze. The one-



p

w
c
u
o

E
s
s
p
e
�
e
�
i
o
m
b
l
y
t
b
r
t
d
t
u
s
u
p

p
s
r
c
a
s
i
o
a
a
p
d
n
a
p
s
i
W
[

(
p
�
“
w

t
p

a
m
i

F
p
d
b
b
m

F
fi
t
t
t

K. B. Wolf and G. Krötzsch Vol. 24, No. 9 /September 2007 /J. Opt. Soc. Am. A 2873
arameter Lie groups are lines in the
1
2N�N−1�-dimensional finite-volume subspace of SO�N�;

hen the eigenvalues of the squeezing generators are in-
ommensurable, the lines are nonclosing Lissajous fig-
res; this occurs in Eq. (9) when N�4, and in Eq. (10) for
dd N�5 and even N�8.

We underline that the square of Eq. (7) does not yield
q. (8), and their scales turn out to be quite different. The
pectum of positions of Qg in Eq. (7) is the unit-spaced,
ymmetric set m� �−j , j�. On the other hand in Eq. (8), the
osition matrix Qd obtained as a diagonal square root has
igenvalues on the sine curve 2 sin��m /N�, ranging in
−2,2�; the spacing between them near m=0 is �2� /N. To
stablish a scale factor between the squeezing parameters
g and ���d in Eq. (11), we can compare either the spac-

ng of the eigenvalues of position or their range—among
ther options. Since the same scale factor also relates mo-
enta, the generators (9) and (10) may be expected to

ear the square of that factor. The comparison of spacings
eads to �g= �2� /N�2�, while the comparison of ranges
ields �g= �4/N�2�. Moreover, we can also confront the ac-
ual spectra of the generator matrices (9) and (10); in
oth, the eigenvalues cluster into close pairs, and their
atios range between �1/N2 and �1/2N2. Although all
hese factors are of the same order of magnitude, there
oes not seem to be a unique argument to decide among
hem. We adopt the factor �4/N�2 noting that in the fig-
res below, the two renderings of squeezing appear rea-
onably similar. Also, since Eq. (8) is the matrix that was
sed in [2] to generate Fresnel transforms, we favor the
arameter ���d for easier compairson.
We further note that Eqs. (7) and (8) are not the only

ossible matrix pairs that one may propose to build
queezing generators. We can square the matrices (7),
ecognize the first as the generator of a Fresnel lens
hirp, then use it and its Fourier transform as in Eq. (10)
nd call it a squeezing generator. Or, one can take the
quare root of Eq. (8) from the diagonal form and use it as
n Eq. (9). Further, one may propose hybrid models where
ne foregoes the DFT as intertwiner between positions
nd momenta. Thus, beside the two definitions written
bove, for which we present the results of numerical ex-
erimentation, there are also a large variety of possible
efinitions for squeezing and magnification of finite sig-
als. We choose again the sharp-edged rectangle function
s our test signal, as we did in [2], because smooth, broad
eaks comply too easily with expectations. And moreover,
ince the signals f= 
fm
 reveal more of their true nature
n phase space, we shall concurrently examine their

igner function on the discrete torus �m ,k� [9], Eq. (50)
10],

W�f	m,k� ª
1

N 
n=−j

j

f m−n
* exp�4�i

N
kn�fm+n. �12�

In Fig. 2 we show the rectangle signal Rectm1,m2
�m�

equal to 1 in �m1 ,m2� and 0 outside) and its Wigner
hase space representation by Eq. (12). The squeezings
��0� and magnifications ���0� of this signal under the
geometric” generator (9) are shown in Fig. 3, together
ith the corresponding Wigner functions. The action of
he “dynamical” generator (10) on the same signal ap-
ears in Fig. 4.
Signals in both Figs. 3 and 4 visibly squeeze for ��0

nd broaden for ��0. The geometric version develops
ore but smaller oscillations than the dynamical version;

n the latter, magnification emphasizes the discontinui-

ig. 2. Left, the discrete rectangle signal Rect−4,4�m� on N=31
oints �j=15�. Right, the corresponding Wigner function on the
iscrete torus �m ,k�� �−j , j� modulo N; the upper and lower
oundaries represent the same meridian, as do the left and right
oundaries; the basic pattern at the center (0,0) is (approxi-
ately) repeated at its three antipodes in the torus.

ig. 3. Evolution of the discrete rectangle signal of the previous
gure and the corresponding Wigner functions on the discrete
orus, under the “geometric” version of squeezing and magnifica-
ion (where position Q has a symmetric, equally spaced spec-
rum), with �g= �4/N�2� for the �’s indicated between each pair.
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ies, while squeezing provides a rounder central peak. At
he extreme values of �, the signals would not be recog-
ized as originating from a rectangle function by shape
lone; here the Wigner function provides a complemen-
ary picture.

Several observations on the apparent symmetries of
he Wigner function in the figures were made in [2] and
eed not be repeated here. We do note, however, that the
igner functions exhibit four regions of squeeze, sepa-

ated by the torus meridians m ,k� ± 1
4N. In a neighbor-

ood of the midpoints �m ,k�= �0,0�, �0, ± 1
2N�, �± 1

2N ,0�,
± 1

2N , ± 1
2N�, the peak and oscillations of the Wigner func-

ions appear to flow in phase space consistently with the
lassical Fig. 1, although we have difficulty in defining the
ows on the whole torus; these lines should appear as
ested closed curves circulating inside each region. As
ne-parameter groups, squeezings are not periodic when
he eigenvalues of Eqs. (9) and (10) are incommensurable,
o the signal is never quite reconstituted. For larger �’s,
he Wigner functions in Figs. 3 and 4 become increasingly
eatureless. We have not searched for “revivals,” but such
vents may be safely assumed to depend randomly on the
imension and the choice of squeezing generator to have
igenvalue pairs with near-to-simple ratios.

ig. 4. Evolution of the rectangle signal and its Wigner function
n the torus under the “dynamical” version of squeezing (based
n momentum P2=−�), for the indicated values of �d��.
. su„2… POSITION, MOMENTUM,
ND ENERGY
e present now the su�2� oscillator model. In order not to

epeat the full construction, which has been detailed in
everal previous papers [11–13], we recall only the essen-
ials of the group-theoretical strategy we follow here to
nderstand N-point finite, nonperiodic Hamiltonian sys-
ems. Signals are complex N-vectors that specify the state
f the system (as in quantum mechanics) and evolve sub-
ect to unitary N�N matrices �N=2j+1�. Signals are thus
andled as states (or wavefunctions) of spin j (integer or
alf-integer), whose “rigid” SU�2� rotations include the

mpression of a chirp phase on the signal, and the frac-
ional Fourier (–Kravchuk) transform, which bridges be-
ween the position and momentum/wavenumber repre-
entations (below).

The asignments between the observables of the system
nd the generators of the (“old” angular momentum) alge-
ra su�2� are postulated to be as follows:

position: Q = L1, �13�

momentum: P = L2. �14�

�displaced� energy: H = L3 + �j +
1

2�1. �15�

hus, the “new” su�2� commutation relations are

�H,Q� = iP, �P,H� = iQ,

�Q,P� = i�H − �j +
1

2�1� . �16�

he first two are the geometric and dynamic Hamilton
quations, respectively, for the oscillator, while the third
s the algebraic postulate that is specific for the su�2�
nite-oscillator model.
Commonly known results from quantum angular mo-
entum can be applied straightforwardly to state some

roperties of this model. In the space of N-point signals,
hese operators of position, momentum, and (displaced)
nergy have spectra that are intrinsically discrete, finite,
nd equally spaced: �−j ,−j+1, . . . , j�. Also useful for our
urposes is the number operator, defined as

number: N ª H −
1

2
1 = L3 + j1. �17�

hose spectrum is 	� �0,1,2, . . . ,2j�.
Using the Dirac bracket notation, a finite N-point sig-

al f is represented by its coordinates in the position
igenbasis, �fm�m=−j

j , fmª 1�j ,m 	f�. Similarly, its momen-
um coordinates are f̃kª 2�j ,k 	f�, and its (number, energy)
ontent along the 3-axis is f̂
ª 3�j ,
 	f�. The wave func-
ions of the finite oscillator are the overlaps between the
osition and energy bases, 	j ,m�1 and 	j ,	− j�3; they are
iven in terms of the well-known Wigner “little”-d rota-
ion functions [14], Sect. 3.6,
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�	
�j��m� ª 1�j,m	j,	 − j�3 = dm,	−j

j �−
1

2
�� = d	−j,m

j �1

2
�� ,

�18�

umbered by 	� �0,2j�. Since these functions may be
ritten in terms of Kravchuk polynomials of degree 	 in
osition m (times the square root of a binomial distribu-
ion in m) [11,15], we have appended the name of Krav-
huk to several functions and operators that appear in the
u�2� model to distinguish them from their continuous
ounterparts.

In orthonormal bases, the operators (13)–(15) are rep-
esented by self-adjoint (Hermitian) N�N matrices. In
he commonly used basis 	j ,
�3, N is represented by
iag�0,1, . . . ,N−1�; in the su�2� model; however, signals
re understood to be in the eigenbasis of position, namely,

j ,m�1, where the matrix representatives of Eqs. (13), (14),
nd (17), have elements

Qm,m� ª m�m,m�, m,m� � �− j,j�, �19�

Pm,m� ª − i�1

2
��j − m��j + m + 1��m+1,m�

−
1

2
��j + m��j − m + 1��m−1,m�� , �20�

Nm,m� + j�m,m� ª
1

2
��j − m��j + m + 1��m+1,m�

+
1

2
��j + m��j − m + 1��m−1,m�. �21�

n particular, in Eq. (20) we see that the matrix analog of
omentum, P= 
Pm,m�
, acting on a signal f= 
fm
, yields
i times its central derivative, fm� ª

1
2 �cm

+ fm+1−cm
− fm−1�, but

ith unequal positive coefficients c±m
± = ��j−m��j+m

1��1/2. There is no ambiguity at the ends of the interval
ecause fj� = ± 1

2 �2j�1/2fj±1.
In the su�2� model, the fractional Fourier integral and

resnel transforms of continuous systems have their fi-
ite counterpart in the one-parameter groups [1,2],

Fourier – Kravchuk: K���
ª exp�− i

1

2
��N� , �22�

Fresnel – Kravchuk: F�z� ª exp�i
1

2
zP2� . �23�

he Fourier–Kravchuk transforms (22) are rotations
round the 3-axis and are elements of the group SU�2� of
igid rotations of a sphere; the Fresnel–Kravchuk trans-
orms, on the other hand, are the exponentials of a qua-
ratic element of su�2� and finite analog of second-degree
berrations of the phase space of signals. Each transform
s represented by N�N unitary matrices whose elements
re given again in terms of the Wigner little-d functions
1], Eq. (40), and [2], Eq. (34).

In this paper we propose to build the generator of
queezings and magnifications in finite systems using the
ymmetrized quadratic operators (5), but with the su�2�
ssignments (13)–(15), in their N�N matrix representa-
ion,

G ª �QP�W = �L1L2 + L2L1�,

G =
1

2
�QP + PQ�. �24�

he matrix elements of this squeezing generator are
ound from Eqs. (19) and (20),

Gm,m� = − i��m +
1

2���j − m��j + m + 1��m+1,m�

− �m −
1

2���j + m��j − m + 1��m−1,m�� . �25�

his representation is bidiagonal, pure imaginary, skew-
ymmetric, and self-adjoint, its trace is null, and its ei-
envalues are incommensurable for odd N�5 �j�2� and
ven N�8 �j�7/2�.

And now, as in Eq. (11), the finite squeezing operators
nd matrices are the Lie exponentials

S�a� ª exp�iaG�, S�a� ª exp�iaG�. �26�

hese matrices are real, orthogonal, hence unitary, and
f unit determinant; again, the set a�R forms a one-
arameter group line within the group
O�N��SU�N��U�N�; the lines draw nonclosing Lissa-

ous figures when the eigenvalues of Eq. (25) are incom-
ensurable. For our purposes here it was sufficient to
andle the matrices (26) for the given N by numerical
omputation, since the exponential of Eq. (25) does not
eem reducible to a simple analytic expression.

The finite analog of Eq. (6), namely, � 1
2L1

2 , 1
2L2

2�, gives a
econd option to define su�2� squeezing; we do not address
t here for reasons that will be discussed in the Conclu-
ions.

. WIGNER FUNCTION ON THE PHASE
PACE SPHERE
he su�2� model for finite systems entails a semiclassical
icture of phase space, where it is expanded into three
imensions—one for each of its three generators
1,L2 ,L3. This we have called meta-phase space; its Car-

esian coordinates are position, momentum, and (dis-
laced) energy, v� = �q ,p ,
��R3. The concept was intro-
uced in [13] for su�2� and generalized in [16] for
ssentially arbitrary finite-dimensional Lie algebras.

The construction of meta-phase space hinges on defin-
ng an R3 manifold v� of Wigner operators (elements of the
U�2� group ring),

W�v�� ª�
su�2�

dg�w� �exp i�w1�q − Q�

+ w2�p − P� + w3�
 − L3��, �27�

here the integration is over the group manifold g�w� �

SU�2� =
2:1

SO�3� (a 3-sphere S3). For integer j (odd N) we
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educe this integral to the manifold of rotations given by
he rotation axis û�� ,�� and angle �, as

w� ª �û��,�� = �
w1

w2

w3
� = �

� sin � sin �

� sin � cos �

� cos �
�,

0 � � � 2�,

0 � � � �,

0 � � � 2�.

�28�

n these coordinates, the invariant Haar measure dg�w� �
n Eq. (27) is [17, Sect. 3.V], [13],

dg��,�,�� =
1

2
sin2

1

2
� sin �d�d�d�. �29�

t this time we can also introduce the marginal operator
f position,

MQ�q� =�
R

dp�
R

d
W�q,p,
�

= �2��2�
−�

�

dw exp�iw�q − Q��. �30�

The Wigner function in meta-phase space of a
2j+1�-point signal f= 
fm
 is naturally defined as the ex-
ectation value of the manifold of Wigner operators in
hat state,

W�f	q,p,
� ª �f	W�q,p,
�	f� = 
m,m�

f m
* Wm,m�

�j� �q,p,
�fm�.

�31�

here exist analytic expressions for the matrix elements

m,m�
�j� �q ,p ,
�—see [13,16,2], Eqs. (38)–(40).
As a check, information about the finite signal f can be

ecovered from its su�2� Wigner function (31) over R3,
hrough projection on the position axis. This is the mar-
inal of position,

M�f	q� ª�
R

dp�
R

d
W�f	q,p,
� = �f	MQ�q�	f�

= �2��3
m

	fm	2sinc��q − m�. �32�

ecause of the sinc factor, when q is an integer m� �
j , j�, M�f 	m�= �2��3	fm	2 returns the absolute value of the
ignal at that point. Elsewhere, we have a finite, smooth
inc interpolation in position. Similar marginals can be
ritten to recover the momentum or energy contents of a
nite signal.
Other marginals of the su�2� Wigner function on meta-

hase space v� �R3 are also relevant. The integration over
ll angles of the sphere yields a marginal function of the
adial coordinate 	v� 	=r�R+. When we recall that in the
2j+1�-dimensional representation j, the invariant Ca-
imir operator of the algebra is a constant,

Q2 + P2 + L3
2 = j�j + 1�1, �33�

e see that this radial marginal will be independent of f,
nd a function of r only. This marginal is also the trace of
he matrix W�j� �q ,p ,
� in Eq. (31) and can be computed
m,m�
s an analytic expression; it is strongly peaked in j�r
j+1 [13]. For this reason, in [13,18,2] we chose to “slice”
eta-phase space at the radius r= j+ 1

2 near the maximum
f Eq. (33), noting that the plotted results are quite inde-
endent of the exact radius chosen. Here we use this
alue to plot—on a plane—the Wigner functions that live
n R3, as shown in Fig. 5. The angular marginal that is
btained integrating the su�2� Wigner function over the
adius r�R+ yields the Stratonovich–Agarwal Wigner
unction [19,20] over the sphere, as was shown in [21].
orresponding to Fig. 2 on the torus, in Fig. 6 we show

he su�2� Wigner function of the same rectangle signal of
ig. 2, and also in [2], Fig. 9, where some key numerical
alues are given for the peak and for the very small nega-
ive dimples.

A classical meta-phase space �q ,p ,
� on the sphere q2

p2+
2= �j+ 1
2 �2, or other conics, can be formulated using

erezin brackets [22], Chap. 7. These behave as Poisson
rackets but in three variables: �q ,p�B=
, �
 ,q�B=p, and
p ,
�B=q, with the usual distribution under sum and
ultiplication of first derivatives. A transformation gen-

rated by a function g�q ,p� through exp���g , � �B�, will pre-
erve the sphere and the lines g�q ,p�=constant. In par-
icular, the generator of squeezings, gS�q ,p�=qp will
enerate lines of flux along the intersections of the hyper-
olic cylinders qp=constant and the sphere, as shown in
ig. 5. In the vicinity of the bottom pole �q ,p ,−j− 1

2 �, these
ux lines match those of squeeze in the flat phase space of
ig. 1.
We proceed thus to exponentiate the matrix G in Eq.

24) to generate finite squeezing and magnification, S�a�
n Eq. (26), for a�0 and a�0. These matrices were ap-
lied directly to the signal vector f through multiplica-
ion. As previously, we chose the rectangle test signal
ectm1,m2

�m� with the same parameters as in Figs. 3 and
, to display its su�2� squeezing in Fig. 7. There appear
he signals and their phase space representations on the
phere, flattened out to its colatitude and azimuth coordi-
ates �� ,�� referred to the position axis, as indicated in

ig. 5. Left, the su�2� Wigner function lives in the meta-phase
pace �m ,k ,
��R3 of position, momentum, and (displaced) en-
rgy. Spherical coordinates �� ,�� are referred to the position axis
m�. The thick arrowed lines represent the global flux due to
queezing (explained in the text). Right, the �� ,�� plane presents
he su�2� Wigner function for easier comparison with the previ-
us figures (on the discrete torus). The origin of coordinates co-
ncides with the “bottom pole” of ground energy at ��= 1

2� ,�=0�;
he “top pole” is at ��= 1

2� ,�= ±��; the points on the momentum
xis are � 1

2� , ± 1
2��. The flux lines under squeezing are indicated

y the thick arrowed lines (cf. Fig. 1).
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ig. 5. Again, we are faced with the problem of establish-
ng a scale factor between the parameter a in Eq. (26) and
he parameters �g= �4/N�2� and ���d in Eq. (11). We had
xpected a=�g because the eigenvalue ranges of Qg in Eq.

ig. 6. Left, the rectangle function Rect−5,5�m� as an
=31-point signal. Right, the corresponding su�2� Wigner func-

ion on the sphere, displayed by its level curves on a square. The
ertical and horizontal axes are labeled by �m ,k� for direct com-
arison with Fig. 2; this square is actually the �� ,�� plane of the
phere, as explained in Fig. 5. The Wigner function has a strong
eak centered at the origin and elongated over the width of the
ignal, with shallow dimples of negative values. We display 40
evel curves to emphasize the behavior of the su�2� Wigner func-
ion where its values are small or negative.

ig. 7. Evolution of the rectange signal and its Wigner function
n the sphere (as explained in Fig. 6), under su�2� squeezing of
ositions by the factors e−a, with a= 1

5 �4/N�2�, for the indicated
alues of � (cf. Figs. 3 and 4).
7) and of Q in Eq. (19) are the same (although the range
f Gg eigenvalues exceeds that of G by some 37%). Finally,
e had to resort to direct comparison of the figures to pro-
ose a= 1

5 �4/N�2� and keep the issue of scaling for further
nderstanding.
In the su�2� model, as evinced by Fig. 7, squeezing a
0 compresses the peak of the Wigner function along the

ottom meridian between the two position poles, (0��
�, �=0), and stretches it along the equator between the

wo momentum poles, (�=0, −�����), and vice versa
nder magnification a�0, in accordance with the flow

ines on the classical sphere of Fig. 5. We note that in the
igner function of Fig. 7, the peak mantains its integrity

ather well, while in the rest of the picture the Wigner
unction is carried along the flow lines, necessarily wig-
ling somewhat [23] due to the nonlinear transformations
f the classical underlying phase space. A semiclassical
pproximation to finite squeeze would consist of ignoring
hese wiggles. Finally, the movement of the very small
egative dimples of the su�2� Wigner function is interest-

ng; it can be compared with their behavior under the
resnel–Kravchuk transform in [2], Fig. 9.

. CONCLUSIONS
e have classical, wave, and finite versions of squeezing,

enerated by gS=qp on signals, states, or wavefunctions
f finite systems. We worked with two distinct phase
pace representations for finite systems: the discrete
orus and the sphere. On the torus, we examined two ver-
ions of squeezing for periodic systems, according to geo-
etric or dynamical desiderata (linear or sine-spaced ei-

envalues, vibrating ring lattices, Fresnel lenses); clearly,
ther choices can be proposed that will yield squeezings
nd magnifications different from those in Figs. 3 and 4.
his ambiguity is an advantage when the choice tailors a
iven physical model, but it opens questions on math-
matical consistency. On the sphere, the su�2� model for
nite Hamiltonian systems inherits the mathematical
orpus of group theory and its elegant account of manifest
nd hidden symmetries.
We proposed a generator of su�2� squeezings, G in Eq.

24); at the end of that section we remarked that a second
hoice exists: that which instead of Eq. (5) follows the
lassical bracket (6) between the Fresnel and chirp gen-
rators. Translating this to commutators between su�2�
enerators, respecting order and the Leibnitz rule, one
btains

G� ª �1

2
L1

2,
1

2
L2

2� = i
1

2
�L1L2L3 + L3L2L1�, �34�

mong several other equivalent orderings of the three op-
rators. This differs from Eq. (24) in that it contains an
xtra factor L3. Its corresponding classical function in
eta-phase space is gS� =qp
, which generates a flux of

losed loops on the sphere divided into octants, instead of
he quadrants shown in Fig. 5. The two flows coincide at
he bottom pole, and are opposite at the top pole; and both
imit to the classical squeeze in Fig. 1 when N→�, as
u�2� contracts to the Heisenberg–Weyl algebra [24]. Ex-
ra factors or polynomials of L will have the similar ef-
3
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ect of segmenting the vertical flow of phase space on the
phere; in this regard, our choice to define the squeezing
enerator G through Eq. (24) is the most economical. Fi-
ally, as stated in Section 1, with Fourier, Fresnel, and
queezing, we have finite counterparts of the full group
p�2,R� of linear canonical transformations.
The classification of aberrations and other issues

hould be resolved as we proceed to understand the U�N�
roup of transformations of N-point signals in terms of
igid transformations and aberrations generated by or-
ered products of su�2� elements, mirroring their struc-
ure in geometric optics [22], Part 4—but finite, because
�N� admits of no more than N2 independent transforma-

ions. This problem is open on the torus but is well posed
n the sphere.
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