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Squeezing and its inverse magnification form a one-parameter group of linear canonical transformations of
continuous signals in paraxial optics. We search for corresponding unitary matrices to apply on signal vectors
in N-point finite Hamiltonian systems. The analysis is extended to the phase space representation by means of
Wigner quasi-probability distribution functions on the discrete torus and on the sphere. Together with two pre-
vious studies of the fractional Fourier and Fresnel transforms, we complete the finite counterparts of the group
of linear canonical transformations. © 2007 Optical Society of America
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1. INTRODUCTION: CLASSICAL SQUEEZING

In the continuous models of paraxial optics and quadratic
potentials in quantum mechanics, linear canonical trans-
formations form a privileged three-parameter Lie group,
which may be represented by 2 X2 real matrices of unit
determinant. The Iwasawa decomposition of this group is

a b cosw —-sinw||e* 0 10
c d| |sinw cosw ||0 e ||z 1| (D

Acting on the phase space vector ( {q’) of position ¢ and mo-
mentum (paraxial ray inclination) p, the left-hand term of
Eq. (1) represents a fractional Fourier transform, while
the right-hand term yields free-wave propagation by a
Fresnel transform. The finite counterparts of these two
transforms have been analyzed in [1,2], respectively. We
now address the middle factor, squeezing (or magnifica-
tion), which shrinks (or expands) positions g—e~“%g, and
momenta p+—e®p, with a € R. These transformations form
the one-parameter group of scalings; we use the term
“squeezing” as in quantum optics, or “magnification” as is
common in geometric and wave optics, because finite sys-
tems are purported to abstract both theories.

Prima facie it would seem that on finite N-point sig-
nals, where the position coordinate of the sensors takes a
finite number of fixed discrete values, squeezing or mag-
nification by arbitrary real factors cannot be performed
without losing information. The same applies to two-
dimensional pixellated images. As we shall see, however,
we may treat squeezings as aberrations of an appropriate
phase space and represent them by N X N unitary matri-
ces. As we did in [1,2], we shall consider two distinct mod-
els for finite systems: periodic systems, where the trans-
formation between position and momentum is the
discrete Fourier transform (DFT) matrix, and nonperiodic
systems, where this role is taken by the Fourier—
Kravchuk transform (FKT), which is a rotation by %77 in
the familiar group SU(2) of quantum angular momentum
theory. Each of these two models has a corresponding
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phase space; in the periodic case it is the discrete torus
(m,k) of integers modulo N, while for the SU(2) case it is
essentially the 2-sphere.

In the classical Hamiltonian models of optics and me-
chanics, where the basic Poisson bracket between position
and momentum is {¢,p}p,=1, squeezing is generated by
the Lie exponential of the Poisson-bracket operator of the
monomial gp,

S(@):f(q,p) = exp(a{gp,otp):flq,p) =fle"q,e’p). (2)

This produces a flow of phase space (¢,p) € R? along the
hyperbolas gp=constant, as shown in Fig. 1. Similarly,
free Fresnel propagation, fractional Fourier, and Fresnel-
lens (chirp) transforms are generated by the quadratic
functions of (q,p),

1 1 1

8r = p%, 8Fou *= 5(172 +q%), 8FL = 5‘12’ 3)

2

respectively. The generator of squeezing [Eq. (2)] can be
obtained either through direct multiplication of ¢ and p or
through a Poisson bracket of Eq. (3) as

gs(q,p) = qp ={gFL.EFIPb- (4)

In wave models, such as Fourier optics and quadratic
quantum mechanics, ¢ and p are replaced by the
Schrodinger operators  Q:flqg)=qf(q) and P:f(q)
=-idf(q)/dq, which are essentially self-adjoint on the Hil-
bert space of square-integrable wave functions f(q)
e £2(R), and satisfy the Heisenberg commutator [Q,P]
=il. Here, squeezing is generated by the Lie exponential
of the Weyl-ordered operator that corresponds to gp,

S(@):f(q) = exp(iac{ QP}w):f(q) = e~ *fle’q), (5)

where
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Fig. 1. Squeezing S(a) classically produces a flow of phase space
(q,p) € R? along the hyperbolas gp =const. For >0, positions are
squeezed, momenta (wavenumbers) are magnified, and areas are
conserved.

1 . d .11 qr,1
{QP}W— E(Q,P-'-,PQ)__lq@_lE =—1 EQ ’57) .

(6)

For quadratic functions such as Egs. (3) and (4), the cor-
respondence between classical functions with Poisson
brackets, and operators with i X commutators, is exact. In
L£2%(R), the S(a)’s are unitary and form a one-parameter
group: S(a;)S(a)=S(a;+ay), S(0)=1, and S(-a)=(S(a))’,
for a € R. Fresnel and Fourier integral transforms, and
chirps, are correspondingly generated by the quantum
versions of Eq. (3). Together with squeezing [Eq. (5)],
these second-degree differential operators generate the
(2:1 cover of the) real symplectic group Sp(2,R), namely,
linear canonical integral transforms [3,4], Chaps. 9 and
10, which are represented by the matrices in Eq. (1).

Can a similar construction be made for finite models? A
well-known theorem states that noncompact groups (i.e.,
groups with infinite invariant volume) do not have finite-
dimensional unitary representations [5]; hence, Sp(2,R)
cannot act through N X N unitary matrices. Yet one needs
unitary matrices, elements of the group U(XN), to conserve
norms, distances, and angles between complex N-point
signals. To find the “right” unitary matrices S(a) for
squeezing, we follow the strategy of finding their genera-
tor matrix, self-adjoint G, using geometrical and/or dy-
namical arguments. And then the finite squeezing matri-
ces S(a)=exp(iaG) will act directly on the signal
N-vectors. However, only for small values of « can we ex-
pect that continuous and finite squeezings will resemble
each other. We shall analyze these transformations on
phase space rather than only on “how the signals look,”
because—as we shall see—their Wigner distribution func-
tions [6-8] offer a more penetrating picture of the process.

In Section 2 we look at the possibilities afforded by two
standard periodic DFT models, one based on the geomet-
ric premise of equally spaced positions, and the other on
lattice dynamics with the second-difference matrix, acting
on a discrete toroidal phase space. Sections 3 and 4
present the construction based on the group
SU(2) CU(N), where squeezing is generated by a qua-
dratic element in the algebra, which is an aberration of
the phase space sphere. In Section 5 we offer some com-
ments and conclusions.
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2. SQUEEZING ON THE PHASE SPACE
TORUS

Since there are no finite N-dimensional self-adjoint ma-
trix representations of the Heisenberg algebra, one can-
not find exact finite matrix analogs of the classical
{q,p}pb=1 nor of the wave/quantum [Q,P]=il. What
should the finite analog of gp be? We can start with a geo-
metric ansatz (g), where the N X N matrix Q# of position is
postulated to be diagonal, with distinct and unit-spaced
eigenvalues \&,=m e[-j,j], where we write N=2j+1. Or,
we can propose a dynamical ansatz (d) refering to a ring of
N equal masses numbered by m, joined to first neighbors
by equal springs, whose free Hamiltonian is the second-
difference matrix [A:=circ(-2,1,0,...,0,1), circulating
and symmetric] and which is naturally identified with
(minus) the square of momentum (P%)2; in this model the
eigenvalues are )\S1=4 sin?(mm/N) €[0,4]. In both of
these finite models—as in continuous Hamiltonian
systems—we make the key assumption that the Fourier
transform (by the DFT matrix @) of position m is momen-
tum (wavenumber) &, with the same spectrum. This ma-
trix transform implies that the states of the system will
be periodic in their components m modulo N and that the
corresponding phase space is the discrete torus (m,k)
modulo N.

The N XN position and %-square-momentum matrices
that define the geometric and dynamical periodic models
are

Q®:=diag(m), mf;=P¢=0Q®™, (7)

1 1 1
5(Qd)2 = diag(2 sin®(mm/N)) < 5(P@‘)2 =—A. (8)

All the above matrices are real and symmetric, except for
P8, which is pure imaginary and skew-symmetric; thus,
all are self-adjoint. Of course, neither pair commutes to
the identity matrix of the Heisenberg algebra; and they
are quite distinct, as we shall see below.

Out of Eqgs. (7) and (8) we can construct two distinct
generators of squeeze, obtained in the two ways of Eq. (4),
but which are now different:

1
GE = 5(QgPg +P2Q?), 9)

Gdi=—i 1(Qd)2 1(P‘*)2 (10)
2 ) ’

where both generator matrices are pure-imaginary, skew-
symmetric, and hence self-adjoint. Finally, the matrices
that represent finite squeezing are the Lie exponentials of
Egs. (9) and (10),

S&(a®) := exp(iafGS), Sd(ad) := exp(ia?GY), (11)

which are real, of unit determinant, orthogonal, and thus
unitary; they form one-parameter groups belonging to
SO(N)C SU(IN) CU(N). These matrices act on the signal
column vectors f=|f,,|, so the squeeze of a real signal re-
mains real, and the angles formed between different sig-
nal vectors are preserved under squeeze. The one-



K. B. Wolf and G. Krotzsch

parameter  Lie groups are lines in the
%N(N —1)-dimensional finite-volume subspace of SO(N);
when the eigenvalues of the squeezing generators are in-
commensurable, the lines are nonclosing Lissajous fig-
ures; this occurs in Eq. (9) when N=4, and in Eq. (10) for
odd N=5 and even N=8.

We underline that the square of Eq. (7) does not yield
Eq. (8), and their scales turn out to be quite different. The
spectum of positions of Q% in Eq. (7) is the unit-spaced,
symmetric set m €[—j,j]. On the other hand in Eq. (8), the
position matrix Q9 obtained as a diagonal square root has
eigenvalues on the sine curve 2 sin(7m/N), ranging in
(-2,2); the spacing between them near m =0 is =27/N. To
establish a scale factor between the squeezing parameters
of and o= o in Eq. (11), we can compare either the spac-
ing of the eigenvalues of position or their range—among
other options. Since the same scale factor also relates mo-
menta, the generators (9) and (10) may be expected to
bear the square of that factor. The comparison of spacings
leads to af=(27w/N)%a, while the comparison of ranges
yields a8=(4/N)%a. Moreover, we can also confront the ac-
tual spectra of the generator matrices (9) and (10); in
both, the eigenvalues cluster into close pairs, and their
ratios range between ~1/N? and ~1/2N2. Although all
these factors are of the same order of magnitude, there
does not seem to be a unique argument to decide among
them. We adopt the factor (4/N)? noting that in the fig-
ures below, the two renderings of squeezing appear rea-
sonably similar. Also, since Eq. (8) is the matrix that was
used in [2] to generate Fresnel transforms, we favor the
parameter a= o for easier compairson.

We further note that Eqgs. (7) and (8) are not the only
possible matrix pairs that one may propose to build
squeezing generators. We can square the matrices (7),
recognize the first as the generator of a Fresnel lens
chirp, then use it and its Fourier transform as in Eq. (10)
and call it a squeezing generator. Or, one can take the
square root of Eq. (8) from the diagonal form and use it as
in Eq. (9). Further, one may propose hybrid models where
one foregoes the DFT as intertwiner between positions
and momenta. Thus, beside the two definitions written
above, for which we present the results of numerical ex-
perimentation, there are also a large variety of possible
definitions for squeezing and magnification of finite sig-
nals. We choose again the sharp-edged rectangle function
as our test signal, as we did in [2], because smooth, broad
peaks comply too easily with expectations. And moreover,
since the signals f=||f;,| reveal more of their true nature
in phase space, we shall concurrently examine their
Wigner function on the discrete torus (m,k) [9], Eq. (50)
[10],

Jo 4mi
W(tm, k) := Efjn_nexp<7kn>fm+n. (12)

1
Nﬂ:—j

In Fig. 2 we show the rectangle signal Rect,, 1,mQ(m)
(equal to 1 in [mq,ms] and 0 outside) and its Wigner
phase space representation by Eq. (12). The squeezings
(a>0) and magnifications (a<0) of this signal under the
“geometric” generator (9) are shown in Fig. 3, together

with the corresponding Wigner functions. The action of
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Fig. 2. Left, the discrete rectangle signal Rect_4 4(m) on N=31
points (j=15). Right, the corresponding Wigner function on the
discrete torus (m,k)e[-j,j] modulo N; the upper and lower
boundaries represent the same meridian, as do the left and right
boundaries; the basic pattern at the center (0,0) is (approxi-
mately) repeated at its three antipodes in the torus.

the “dynamical” generator (10) on the same signal ap-
pears in Fig. 4.

Signals in both Figs. 3 and 4 visibly squeeze for a>0
and broaden for a<0. The geometric version develops
more but smaller oscillations than the dynamical version;
in the latter, magnification emphasizes the discontinui-
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Fig. 3. Evolution of the discrete rectangle signal of the previous
figure and the corresponding Wigner functions on the discrete
torus, under the “geometric” version of squeezing and magnifica-
tion (where position Q has a symmetric, equally spaced spec-
trum), with af=(4/N)2«a for the «’s indicated between each pair.



2874 J. Opt. Soc. Am. A/Vol. 24, No. 9/September 2007

1

T

1

i

o
|

—

(=}

W
(=}

TN

|

W |
(9] [\]
<) =

I
Fig. 4. Evolution of the rectangle signal and its Wigner function
on the torus under the “dynamical” version of squeezing (based
on momentum P2=-A), for the indicated values of ad=a.

ties, while squeezing provides a rounder central peak. At
the extreme values of «, the signals would not be recog-
nized as originating from a rectangle function by shape
alone; here the Wigner function provides a complemen-
tary picture.

Several observations on the apparent symmetries of
the Wigner function in the figures were made in [2] and
need not be repeated here. We do note, however, that the
Wigner functions exhibit four regions of squeeze, sepa-
rated by the torus meridians m k= iiN . In a neighbor-
hood of the midpoints (m,k)=(0,0), (0,+iN), (x3N,0),
(i%N , £ %N), the peak and oscillations of the Wigner func-
tions appear to flow in phase space consistently with the
classical Fig. 1, although we have difficulty in defining the
flows on the whole torus; these lines should appear as
nested closed curves circulating inside each region. As
one-parameter groups, squeezings are not periodic when
the eigenvalues of Egs. (9) and (10) are incommensurable,
so the signal is never quite reconstituted. For larger o’s,
the Wigner functions in Figs. 3 and 4 become increasingly
featureless. We have not searched for “revivals,” but such
events may be safely assumed to depend randomly on the
dimension and the choice of squeezing generator to have
eigenvalue pairs with near-to-simple ratios.
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3. su(2) POSITION, MOMENTUM,
AND ENERGY

We present now the su(2) oscillator model. In order not to
repeat the full construction, which has been detailed in
several previous papers [11-13], we recall only the essen-
tials of the group-theoretical strategy we follow here to
understand N-point finite, nonperiodic Hamiltonian sys-
tems. Signals are complex N-vectors that specify the state
of the system (as in quantum mechanics) and evolve sub-
ject to unitary N X N matrices (N=2j+1). Signals are thus
handled as states (or wavefunctions) of spin j (integer or
half-integer), whose “rigid” SU(2) rotations include the
impression of a chirp phase on the signal, and the frac-
tional Fourier (-Kravchuk) transform, which bridges be-
tween the position and momentum/wavenumber repre-
sentations (below).

The asignments between the observables of the system
and the generators of the (“old” angular momentum) alge-
bra su(2) are postulated to be as follows:

Q=Ly, (13)

position:

momentum: P=L,. (14)

1
(displaced) energy: H=Lg+ (j + 5)1 (15)

Thus, the “new” su(2) commutation relations are

[H,Q]=iP,

1
[Q,P]=i[7—[—<j+ 5)1]. (16)

The first two are the geometric and dynamic Hamilton
equations, respectively, for the oscillator, while the third
is the algebraic postulate that is specific for the su(2)
finite-oscillator model.

Commonly known results from quantum angular mo-
mentum can be applied straightforwardly to state some
properties of this model. In the space of N-point signals,
these operators of position, momentum, and (displaced)
energy have spectra that are intrinsically discrete, finite,
and equally spaced: {-j,—j+1,...,j}. Also useful for our
purposes is the number operator, defined as

[P,H] = iQ;

1
number: N:=H — 51 =Lg+j1. (17)

whose spectrum is v{0,1,2,...,2j}.

Using the Dirac bracket notation, a finite N-point sig-
nal f is represented by its coordinates in the position
eigenbasis, {f;,}),__j» fm=10 ,m|f). Similarly, its momen-
tum coordinates are 7k =o(7,k|f), and its (number, energy)

content along the 3-axis is fﬂ:: 3¢, u|f). The wave func-
tions of the finite oscillator are the overlaps between the
position and energy bases, |j,m); and |j,v—j)s; they are
given in terms of the well-known Wigner “little”-d rota-
tion functions [14], Sect. 3.6,
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. , 1 . 1
w(y])(m) = lg,m[]', V—j>3 = d]m,v—j(_ 577) = djv—j,m<_77) N
(18)

numbered by ve[0,2j]. Since these functions may be
written in terms of Kravchuk polynomials of degree v in
position m (times the square root of a binomial distribu-
tion in m) [11,15], we have appended the name of Krav-
chuk to several functions and operators that appear in the
su(2) model to distinguish them from their continuous
counterparts.

In orthonormal bases, the operators (13)—(15) are rep-
resented by self-adjoint (Hermitian) N XN matrices. In
the commonly used basis |j,u)3, A is represented by
diag(0,1,...,N-1); in the su(2) model; however, signals
are understood to be in the eigenbasis of position, namely,
lj,m)1, where the matrix representatives of Egs. (13), (14),
and (17), have elements

Qm,m' = mam,m’a m7m, € [_Jx]]y (19)
r 0000000
Pm,m' == 5\”0_m)(].+m + 1)5m+1,m’
1 e N7+ 4N
- 5\’(] + m)(.] -m+ 1)5m—1,m’ ’ (20)

Nm,m’ +J5m,m’ = \*’(I - m)(] +m + 1)5m+l,m’

N |

T
+ E\s’(j+m)(j— m+1)8,_ 1, . (21)

In particular, in Eq. (20) we see that the matrix analog of
momentum, P=|P,, .|, acting on a signal f=||f, ||, yields
-1 times its central derivative, f;, := %(c;fmﬂ—c;fm_l), but
with unequal positive coefficients c¢3,,=[(j—-m)(j+m
+1)]¥2. There is no ambiguity at the ends of the interval
because f~ ;== %(2]')1/2/‘;#1.

In the su(2) model, the fractional Fourier integral and
Fresnel transforms of continuous systems have their fi-
nite counterpart in the one-parameter groups [1,2],

1
Fourier — Kravchuk: KW o= exp( - 15 TKkN ) , (22)

1
Fresnel — Kravchuk:  Flz):= exp<i§z7ﬂ>. (23)

The Fourier—-Kravchuk transforms (22) are rotations
around the 3-axis and are elements of the group SU(2) of
rigid rotations of a sphere; the Fresnel-Kravchuk trans-
forms, on the other hand, are the exponentials of a qua-
dratic element of su(2) and finite analog of second-degree
aberrations of the phase space of signals. Each transform
is represented by N X N unitary matrices whose elements
are given again in terms of the Wigner little-d functions
[1], Eq. (40), and [2], Eq. (34).

In this paper we propose to build the generator of
squeezings and magnifications in finite systems using the
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symmetrized quadratic operators (5), but with the su(2)
assignments (13)—(15), in their N X N matrix representa-
tion,

G={QPltw=(L1Ly+ L3L1),

1
G=_(QP+PQ). (24)

The matrix elements of this squeezing generator are
found from Egs. (19) and (20),

1
Gom =- 1((m + 5) NG=-m)G+m+1)6,41,m

1
) (m _ 5) \fm,sm_m,). (25)

This representation is bidiagonal, pure imaginary, skew-
symmetric, and self-adjoint, its trace is null, and its ei-
genvalues are incommensurable for odd N=5 (j=2) and
even N=8 (j=17/2).

And now, as in Eq. (11), the finite squeezing operators
and matrices are the Lie exponentials

S(a) = exp(iaG), S(a) := exp(iaG). (26)

These matrices are real, orthogonal, hence unitary, and
of unit determinant; again, the set a e R forms a one-
parameter group line within the group
SO(N)CSU(N)CU(N); the lines draw nonclosing Lissa-
jous figures when the eigenvalues of Eq. (25) are incom-
mensurable. For our purposes here it was sufficient to
handle the matrices (26) for the given N by numerical
computation, since the exponential of Eq. (25) does not
seem reducible to a simple analytic expression.

The finite analog of Eq. (6), namely, [%E%,%Lg], gives a
second option to define su(2) squeezing; we do not address
it here for reasons that will be discussed in the Conclu-
sions.

4. WIGNER FUNCTION ON THE PHASE
SPACE SPHERE

The su(2) model for finite systems entails a semiclassical
picture of phase space, where it is expanded into three
dimensions—one for each of its three generators
L1,L9,L3. This we have called meta-phase space; its Car-
tesian coordinates are position, momentum, and (dis-
placed) energy, v=(q,p,u) € R%. The concept was intro-
duced in [13] for su(2) and generalized in [16] for
essentially arbitrary finite-dimensional Lie algebras.

The construction of meta-phase space hinges on defin-
ing an R3 manifold v of Wigner operators (elements of the
SU(2) group ring),

W) = f dg(w)exp i[w,(g - Q)
su(2)

+wo(p —P) +ws(pm—Ls)], (27)

where the integration is over the group manifold g(w)
2:1
e SU(2) =S0(3) (a 3-sphere S?). For integer j (odd N) we
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reduce this integral to the manifold of rotations given by
the rotation axis (6, ¢) and angle ¢, as

w1 ¢sin fsin ¢ 0<y<2m,
w = yi(6,¢)=| ws |=| ¢sin fcos ¢ |, o<éo=<m,
ws Ycos 6 0<¢p<2m.

(28)

In these coordinates, the invariant Haar measure dg(w)
in Eq. (27) is [17, Sect. 3.V], [13],

1 1
dg(y,6,¢) = 3 sin? Ezpsin odydede. (29)

At this time we can also introduce the marginal operator
of position,

Molq) = f dp J duW(q,p, 1)
R R

= (277)2f dw expliw(g — Q)]. (30)

The Wigner function in meta-phase space of a
(2j+1)-point signal f=||f,,|| is naturally defined as the ex-
pectation value of the manifold of Wigner operators in
that state,

W(flq,p,u) = EWq.p,w)f) = > Fr, WY, (@0, )f -

m,m’

(31)

There exist analytic expressions for the matrix elements
W9 (q.p,u)—see [13,16,2], Egs. (38)—(40).

m,m’

As a check, information about the finite signal f can be
recovered from its su(2) Wigner function (31) over R3,
through projection on the position axis. This is the mar-

ginal of position,
M(flq) ==f dpf duW(flg,p,n) = (M o(q)[f)
R R

= (23D |f,|?sinem(q - m). (32)

Because of the sinc factor, when ¢ is an integer m €[
—j .j1, M(f|m)=(2m)3|f,,|? returns the absolute value of the
signal at that point. Elsewhere, we have a finite, smooth
sinc interpolation in position. Similar marginals can be
written to recover the momentum or energy contents of a
finite signal.

Other marginals of the su(2) Wigner function on meta-
phase space v e R? are also relevant. The integration over
all angles of the sphere yields a marginal function of the
radial coordinate |v]=r € R*. When we recall that in the
(27+1)-dimensional representation j, the invariant Ca-
simir operator of the algebra is a constant,

Q?+ P2+ L2=j(j+ 1)1, (33)

we see that this radial marginal will be independent of f,
and a function of r only. This marginal is also the trace of

the matrix WV (g,p,p) in Eq. (31) and can be computed

m,m’
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as an analytic expression; it is strongly peaked in j<r
<j+1 [13]. For this reason, in [13,18,2] we chose to “slice”
meta-phase space at the radius r= j+% near the maximum
of Eq. (33), noting that the plotted results are quite inde-
pendent of the exact radius chosen. Here we use this
value to plot—on a plane—the Wigner functions that live
in R3, as shown in Fig. 5. The angular marginal that is
obtained integrating the su(2) Wigner function over the
radius r e R* yields the Stratonovich—-Agarwal Wigner
function [19,20] over the sphere, as was shown in [21].
Corresponding to Fig. 2 on the torus, in Fig. 6 we show
the su(2) Wigner function of the same rectangle signal of
Fig. 2, and also in [2], Fig. 9, where some key numerical
values are given for the peak and for the very small nega-
tive dimples.

A classical meta-phase space (q,p,u) on the sphere g2
+p%+u?=(j+1)% or other conics, can be formulated using
Berezin brackets [22], Chap. 7. These behave as Poisson
brackets but in three variables: {q,p}g=pu, {®,q}g=p, and
{p,ulg=q, with the usual distribution under sum and
multiplication of first derivatives. A transformation gen-
erated by a function g(q,p) through exp(afg, °}), will pre-
serve the sphere and the lines g(q,p)=constant. In par-
ticular, the generator of squeezings, gs(q,p)=gp will
generate lines of flux along the intersections of the hyper-
bolic cylinders gp =constant and the sphere, as shown in
Fig. 5. In the vicinity of the bottom pole (g,p,—j— %), these
flux lines match those of squeeze in the flat phase space of
Fig. 1.

We proceed thus to exponentiate the matrix G in Eq.
(24) to generate finite squeezing and magnification, S(a)
in Eq. (26), for ¢ >0 and a <0. These matrices were ap-
plied directly to the signal vector f through multiplica-
tion. As previously, we chose the rectangle test signal
Rect,, .,(m) with the same parameters as in Figs. 3 and
4, to display its su(2) squeezing in Fig. 7. There appear
the signals and their phase space representations on the
sphere, flattened out to its colatitude and azimuth coordi-
nates (8, y) referred to the position axis, as indicated in

A

Fig. 5. Left, the su(2) Wigner function lives in the meta-phase
space (m,k,u) e R® of position, momentum, and (displaced) en-
ergy. Spherical coordinates (3, y) are referred to the position axis
(m). The thick arrowed lines represent the global flux due to
squeezing (explained in the text). Right, the (8, y) plane presents
the su(2) Wigner function for easier comparison with the previ-
ous figures (on the discrete torus). The origin of coordinates co-
incides with the “bottom pole” of ground energy at (,8:%77, y=0);
the “top pole” is at (B=%7T, y=+); the points on the momentum
axis are (%71-, 1%77). The flux lines under squeezing are indicated
by the thick arrowed lines (cf. Fig. 1).
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Fig. 6. Left, the rectangle function Rect_;z(m) as an
N=31-point signal. Right, the corresponding su(2) Wigner func-
tion on the sphere, displayed by its level curves on a square. The
vertical and horizontal axes are labeled by (m,k) for direct com-
parison with Fig. 2; this square is actually the (3, y) plane of the
sphere, as explained in Fig. 5. The Wigner function has a strong
peak centered at the origin and elongated over the width of the
signal, with shallow dimples of negative values. We display 40
level curves to emphasize the behavior of the su(2) Wigner func-
tion where its values are small or negative.

Fig. 5. Again, we are faced with the problem of establish-
ing a scale factor between the parameter a in Eq. (26) and
the parameters af=(4/N)%2a and a= a4 in Eq. (11). We had
expected a = a8 because the eigenvalue ranges of Q¢ in Eq.

Fig. 7. Evolution of the rectange signal and its Wigner function
on the sphere (as explained in Fig. 6), under su(2) squeezing of
positions by the factors e™®, with a=§(4/N)2a, for the indicated
values of « (cf. Figs. 3 and 4).
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(7) and of Q in Eq. (19) are the same (although the range
of G2 eigenvalues exceeds that of G by some 37%). Finally,
we had to resort to direct comparison of the figures to pro-
pose a= %(4/N)2a and keep the issue of scaling for further
understanding.

In the su(2) model, as evinced by Fig. 7, squeezing a
>0 compresses the peak of the Wigner function along the
bottom meridian between the two position poles, (0<p
<, y=0), and stretches it along the equator between the
two momentum poles, (8=0, —w<y<m), and vice versa
under magnification a <0, in accordance with the flow
lines on the classical sphere of Fig. 5. We note that in the
Wigner function of Fig. 7, the peak mantains its integrity
rather well, while in the rest of the picture the Wigner
function is carried along the flow lines, necessarily wig-
gling somewhat [23] due to the nonlinear transformations
of the classical underlying phase space. A semiclassical
approximation to finite squeeze would consist of ignoring
these wiggles. Finally, the movement of the very small
negative dimples of the su(2) Wigner function is interest-
ing; it can be compared with their behavior under the
Fresnel-Kravchuk transform in [2], Fig. 9.

5. CONCLUSIONS

We have classical, wave, and finite versions of squeezing,
generated by gg=gp on signals, states, or wavefunctions
of finite systems. We worked with two distinct phase
space representations for finite systems: the discrete
torus and the sphere. On the torus, we examined two ver-
sions of squeezing for periodic systems, according to geo-
metric or dynamical desiderata (linear or sine-spaced ei-
genvalues, vibrating ring lattices, Fresnel lenses); clearly,
other choices can be proposed that will yield squeezings
and magnifications different from those in Figs. 3 and 4.
This ambiguity is an advantage when the choice tailors a
given physical model, but it opens questions on math-
ematical consistency. On the sphere, the su(2) model for
finite Hamiltonian systems inherits the mathematical
corpus of group theory and its elegant account of manifest
and hidden symmetries.

We proposed a generator of su(2) squeezings, G in Eq.
(24); at the end of that section we remarked that a second
choice exists: that which instead of Eq. (5) follows the
classical bracket (6) between the Fresnel and chirp gen-
erators. Translating this to commutators between su(2)
generators, respecting order and the Leibnitz rule, one
obtains

1 1 1
G = [gﬁigﬁg} = i5(£1£2/~'3 +L3Ls5L), (34)

among several other equivalent orderings of the three op-
erators. This differs from Eq. (24) in that it contains an
extra factor L3. Its corresponding classical function in
meta-phase space is gg=gpu, which generates a flux of
closed loops on the sphere divided into octants, instead of
the quadrants shown in Fig. 5. The two flows coincide at
the bottom pole, and are opposite at the top pole; and both
limit to the classical squeeze in Fig. 1 when N—o, as
su(2) contracts to the Heisenberg—Weyl algebra [24]. Ex-
tra factors or polynomials of £3 will have the similar ef-
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fect of segmenting the vertical flow of phase space on the
sphere; in this regard, our choice to define the squeezing
generator G through Eq. (24) is the most economical. Fi-
nally, as stated in Section 1, with Fourier, Fresnel, and
squeezing, we have finite counterparts of the full group
Sp(2,R) of linear canonical transformations.

The classification of aberrations and other issues
should be resolved as we proceed to understand the U(V)
group of transformations of N-point signals in terms of
rigid transformations and aberrations generated by or-
dered products of su(2) elements, mirroring their struc-
ture in geometric optics [22], Part 4—but finite, because
U(N) admits of no more than N? independent transforma-
tions. This problem is open on the torus but is well posed
on the sphere.
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