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Free propagation in continuous optical and mechanical systems is generated by the momentum-squared op-
erator and results in a shear of the phase space plane along the position coordinate. We examine three discrete
versions of the Fresnel transform in periodic systems through their Wigner function on a toroidal phase space.
But since it is topologically impossible to continuously and globally shear a torus, we examine a fourth version
of the Fresnel transform on a spherical phase space, in a model based on the Lie algebra of angular momen-
tum, where the corresponding Fresnel transform wrings the sphere. © 2007 Optical Society of America

OCIS codes: 070.2590, 070.6020, 070.6760, 090.1970.
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. INTRODUCTION
he Fresnel transform describes the evolution of free sys-
ems. It is an approximation to the diffraction of traveling
aves in Fourier optics [1,2], and also represents the free

ime evolution of quantum wave functions [3] in homoge-
eous space. The set of Fresnel transforms F�z�, z�R, is a
ne-parameter Lie group generated by the second-
erivative operator or, in quantum mechanics, the square
omentum operator ([4], [Part IV]). It produces a shear of

he phase space plane, F�z� : �x ,p�� �x+zp ,p� [5]. In this
aper we examine various finite versions of the Fresnel
ransform in discrete models of free systems, where the
osition and momentum coordinates take values on a fi-
ite collection of points �xm�m=1

N , either periodic modulo N,
r nonperiodic.

The first finite version of the Fresnel transform opera-
or, which we indicate by F�1��z�, is the exponential of the
econd-difference N�N matrix. The second version,
�2��z�, is built as the Fourier transform of a Fresnel lens

hat impresses a Gaussian phase on the N data points of
n input signal. The third, F�3�, follows the discrete
resnel transform studied by Arrizón and Ojeda-
astañeda [6–8], also used as a model for precession to-
ography by Leonhardt [9]; this is represented by a dis-

rete Gaussian matrix kernel. We compare these three
ersions of finite Fresnel transforms through their action
n a discrete (periodic) rectangle function, examining
heir Wigner functions on a discrete phase space torus. Fi-
ally, a fourth finite version, F�K��z�, which we call
resnel–Kravchuk transform will be constructed using
he su�2� finite oscillator model developed in Cuernavaca
10,11], and its corresponding Wigner function on a
phere [12,13]. Because Fresnel evolution is generated by
n su�2� operator squared, we have a global shear—an
berration—of phase space.
It is to be expected that there can be many finite ver-

ions of an integral transform, because finite systems gen-
rally have a richer structure than continuous ones. This
1084-7529/07/092568-10/$15.00 © 2
as the case of their fractional Fourier transforms inves-
igated in [14]. The basic condition that all finite versions
f a continuous transform must fulfill is that when the in-
erval and density of the data points increase to infinity,
he former should contract to the latter. The choice among
he various versions of a transform can be influenced by
riteria of consistency with geometric and dynamic prop-
rties of Hamiltonian systems, such as canonicity and/or/
ersus unitarity, as well as their computational conve-
ience.
In Section 2 we review the continuous Fresnel trans-

orm and Wigner function, whose discrete counterparts
re our main interest. We consider periodic N-point sig-
als as represented by their Wigner function on the dis-
rete toroidal phase space and their symmetries in Sec-
ion 3. In these terms, in Sections 4–6 we plot the three
ersions of the finite Fresnel transform on a periodic sig-
al and on phase space. In particular, we point out the
ourfold quasi-repetition of the Wigner function pattern
nd the result of the topological obstruction due to the
ole of the torus. Thus in Section 7 we propose a version
f the finite Fresnel transform on N-point signals that is
onperiodic. The corresponding phase space can be pro-

ected on a sphere [12,13]; its corresponding Wigner func-
ion is reviewed in Section 8, giving results for the same
nput signal of the previous sections. The concluding Sec-
ion 9 compares the two phase space arenas and offers
ome further comments on the treatment of aberrations of
nite signals.

. FRESNEL TRANSFORMS AND WIGNER
UNCTIONS
e first organize some basic facts of the continuous
resnel transform [1] and the Wigner function. Paraxial

ree flight in geometric optics and in classical mechanics
s a linear and canonical transformation of phase space
x ,p��R2 (where x�R is the coordinate of position and
�R is momentum, or paraxial ray inclination in geomet-
007 Optical Society of America
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ic optics). The Fresnel transform F�z� : �x ,p�� �x�z� ,p�z��
hears phase space by a “distance” parameter z�R as

�x�z�

p�z�� = �1 z

0 1��x�0�

p�0�� . �1�

his is shown in Fig. 1. Under linear transformations,
lassical and wave models follow each other [2,3], and are
anonical ([15], [Part III]). For one-dimensional systems,
hase space is a plane; there, canonicity is equivalent to
he conservation of area, and no coordinate discontinui-
ies should occur. We expect that appropriate finite mod-
ls will follow suit.

In wave models, the Schrödinger operators of position
: f�x�=xf�x� and momentum P : f�x�=−idf�x� /dx, satisfy

he well-known Heisenberg commutation relation �X ,P�
i1. The purely kinetic, free-propagation Hamiltonian is

1
2P2; its Lie exponential is the Fresnel operator F�z�, de-
ned on the space of infinitely differentiable functions of
ast decrease on the real line, which is dense in the Hil-
ert space of all square-integrable functions. There, this
perator is represented by the Fresnel integral transform,

F�z� ª exp�− i 1
2zP2� , �2�

F�z��X
P�F�− z� = �1 z

0 1��X
P� = �X + zP

P � . �3�

�F�z�:f��x� =
1

	2�iz



R

dx� exp� i

2z
�x − x��2�f�x��. �4�

he transforms are unitary and form a continuous one-
arameter group: F�z1�F�z2�=F�z1+z2� and F�0�=1.
When the parameter z is analytically continued to the
ower complex half-plane, Im z�0, the Fresnel transform
ecomes the Gauss–Weierstrass, or heat diffusion trans-
orm ([4], Chap. 9)].

As in quantum mechanics [16,17], signals on a one-
imensional “input” screen, f�x�, can be analyzed through
heir Wigner function on paraxial optical phase space
x ,p��R2 [18],

W�f�x,p� ª
1

2�



R

dyf�x − y�* exp�2iyp�f�x + y�. �5�

n Fig. 2 we show a rectangle test function (Rectx1,x2
�x�,

qual to 1 in �x1 ,x2� and 0 outside) and the corresponding
igner function on a portion of phase space; this shears

lassically under Fresnel transforms (1) [5], as in Fig. 1,
amely,

ig. 1. Fresnel transform F�z� shears classical phase space
x ,p��R2 by the angle �ªarctan z.
W�F�z�:f�x,p� = W�f�x + zp,p�. �6�

lso in Fig. 2 are the (continuous) Fresnel transforms of a
ectangle function for various values of z; these will be
ompared with various finite versions of the Fresnel
ransform below.

Finite and periodic analogs for N-point signals f= �fm�
an be obtained when f�x� is chosen to be a periodic Dirac
omb function with coefficients fm= fm±N and “discretiz-
ng” the coordinates by

x ↔ 2�m/N, for m integer modulo N. �7�

hen N is odd, convenience dictates the symmetric range
f integers m��− 1

2 �N−1� , 1
2 �N−1��. From this N-vector

pace of signals, whose values are the coordinates along
xes designated by the N positions, the finite Fourier
ransform yields a canonically conjugate momentum (dis-
rete wavenumber) equivalent N-vector space, along axes
esignated by p↔k, with integer k also counted modulo
. When N is even, quoting Leonhardt [9], “it is probably

n the nature of things that discrete Wigner functions for
ven-dimensional systems are a bit odd,…”; we shall thus
onsider only N odd. The discrete analog Wigner function
efined in Eq. (50) in [9] (see also [19]) is

W�f�m,k� ª
1

N�
n

fm−n
* exp�4�i

N
kn�fm+n, �8�

here henceforth we write �n for �n=−�N−1�/2
�N−1�/2 . This phase

pace is the discrete torus of integer points �m ,k� modulo
, as shown in Fig. 3.

ig. 2. Top, rectangle signal f�x�=Rect−5,5�x� and its Wigner
unction on phase space W�f �x ,p� for x ,p� �−15,15� and 20 con-
ours. The x axes are drawn vertically, as if the function repre-
ented a light signal on an input screen. Bottom, Fresnel trans-
orms of the rectangle function for z=1,2,5,10; real, imaginary,
nd absolute values are indicated by dashed, dotted, and con-
inuous curves, respectively. These will be compared with their
iscrete Fresnel versions below.
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The Wigner function (8) of a finite, periodic rectangle
ignal on this toroidal phase space is displayed by the
ixellated square in Fig. 4. There is ample literature on
iscrete, periodic time–frequency distributions (for ex-
mple, see [20]).
In continuous systems, the only phase space distribu-

ion function that is covariant under all linear canonical
ransformations and (noncommuting) translations, is the
riginal Wigner function (5) [5,16], which is built with the
eyl ordering (sum of all permutations of the individual

ymbols X, P, divided by the factorial of their number) of
ll monomials in exp i�xX+pP�. The discrete analog (8) is
lso built with the Weyl ordering of the corresponding fi-
ite matrices (see [21], Chap. 2); it is covariant under in-
eger translations but not under linear transformations
hat map the integer points on the torus out of integer
alues.

. WIGNER FUNCTION ON THE TORUS
ince we are working with the example of a centered rect-
ngle signal, we should state the covariance and symme-
ry properties of the periodic Wigner function (8), which is
eal. It is covariant of course under integer displace-
ents:

ig. 4. Left, discrete (and periodic) centered rectangle function
ect−10,10�m� for N=63. For visibility, the data points are joined
y continuous lines. Right, the corresponding Wigner function on
he discrete toroidal phase space �k ,m�, shown as pixellated; the
pper and lower boundaries of the square represent the same

ine, as do the right and left boundaries. The center �0,0� corre-
ponds to the “front end” of the torus in Fig. 3.

ig. 3. Discrete toroidal phase space of integer positions m and
omenta k counted modulo N. (The two circles are supposed to
ave the same radius; for visibility they are drawn unequal.) The
nite Fresnel transformations F�·��z� classically shear the (con-
inuous) torus by angles �ªarctan z. The torus breaks at the two
ircles k ± 1

4N.
gm = fm+mo
⇒ W�g�m,k� = W�f�m + mo,k�, �9�

hm = e2�ikom/Nfm ⇒ W�h�m,k� = W�f�m,k + ko�. �10�

ignals of definite parity have Wigner functions that are
nvariant under inversions, while signals that are either
eal or pure imaginary have Wigner functions that are
ven in momentum,

f−m = ± fm ⇒ W�f�m,k� = W�f�− m,− k�, �11�

fm
* = ± fm ⇒ W�f�m,k� = W�f�m,− k�. �12�

resnel transforms do not change the parity of the signal,
ut they do complexify it, so the k↔−k reflection symme-
ry of the Wigner function (12) is lost under free propaga-
ion.

Additionally, we should comment on other symmetries
f the Wigner function on the torus that are apparent Fig.
. It is well known that due to its sesquilinearity, the con-
inuous Wigner function (5) of a signal localized at two
istinct regions of phase space (known as Schrödinger-cat
tates) shows their interference as a third highly oscillat-
ng region between the two component terms (the smile of
he cat). In the case of the discrete Wigner function on the
orus [Eq. (8)] in Fig. 4, the I-shaped feature of the “liv-
ng” Wigner function centered on �0,0� is accompanied by
hree (approximately) similar phantom features, dis-
laced in position and in momentum by m ,k ± 1

2N (that
ppear cut by the equivalent boundary lines). These
hantoms can be understood as Schrödinger cat smiles
etween the signal and itself, repeated modulo N around
he two circles of the torus, and centered on the antipo-
es, �0, ± 1

2N�, �± 1
2N ,0�, and �± 1

2N , ± 1
2N�. In particular, the

hantom strip in Fig. 4 casts no shadow: Its position mar-
inal (i.e., the sum of the Wigner function over momen-
um k in this strip) is zero. Finally, it is important to re-
lize that under the Fresnel shear of Fig. 1, a classical
oroidal manifold must break somewhere. To conserve
arity (11), this occurs at the two momentum circles k
± 1

2N, as shown in Fig. 3.

. EXPONENTIAL OF THE SECOND-
IFFERENCE MATRIX
enerally, a finite periodic homogeneous and isotropic

ystem of N elements can be modeled by an N�N Hamil-
onian matrix that is circulating and symmetric, H
�Hm,m�

� =circ�H�m−m���, containing N dynamic param-
ters. The time evolution of its states, f�z�= � fm�z��, fm�z�
fm+N�z�, is given by the one-parameter group of matrices
�z� defined by

Hf�z� = − i
d

dz
f�z� ⇒ f�z� = F�z�f�0�, F�z� ª exp�izH�.

�13�

he z→0 limit of the group line is F�z�1+izH, so their
angents will differ as much as their generator matrices
o, times z. Different choices of the Hamiltonian matrix H
ill give rise to generally distinct z-evolution paths for

he signals �f �z��. We may expect that various likely
m
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hoices for free Hamiltonians will lead to quite different
ignal shapes; for this reason we draw attention to their
ignature in phase space. A natural finite analog to the
urely kinetic free Hamiltonian 1

2P2 is the second-
ifference N�N matrix − 1

2�. This system can be visual-
zed as a circular lattice of equal masses joined to their
rst neighbors by equal springs; it realizes a first, me-
hanical version of the finite Fresnel transform that we
ndicate as F�1��z�.

The finite Fourier transform [with the discrete Fourier
ransform (DFT) matrix �= ��k,m�] of the second-
ifference matrix is diagonal:

� ª circ�− 2,1,0, . . . ,0,1�, �14�

�̃ ª ���−1 = diag�− 4 sin2��k/N��, �15�

�k,m ª

1

	N
exp�−

2�i

N
km� , �16�

or k, m counted modulo N in a symmetric interval. We
dentify the indices m and k as position and momentum,
espectively. The first version of the finite Fresnel trans-
orm is the summation kernel given by the matrix

F�1��z� ª exp�− i 1
2z�� = �−1 exp�− i 1

2z�̃�� = �Fm,m�
�1� �z�� ,

�17�

Fm,m�
�1� �z� =

1

N�
k

exp�2iz sin2
�

N
k�exp�2�i

N
k�m − m��� ,

�18�

here we abbreviate the sum as indicated above.
The matrix (17) is unitary, Fm,m�

�1� �−z�=Fm�,m
�1� �z�*, and

hus preserves the common sesquilinear inner product,
ndictated as �f �g�ª�mfm

* gm. As in the continuous case
hese matrices form a group for z�R; it is not periodic
hen the distinct values of sin2 �k /N are incommensu-

able. In Fig. 5 we show the evolution of the centered rect-
ngle signal of Fig. 4 under the first Fresnel matrix

m,m�
�1� �z� in Eq. (18) for various values of z and its corre-
ponding discrete Wigner function (8) on the torus.

. FOURIER-TRANSFORMED FRESNEL LENS
n paraxial optics, a Fresnel lens of power z multiplies the
ave field by exp�i 1

2zx2�; placing this between a direct and
n inverse Fourier transformer yields free propagation
ccording to the matrix identity

�0 − 1

1 0 �� 1 0

− z 1�� 0 1

− 1 0� = �1 z

0 1� . �19�

We can build a finite analog to this construction by re-
lacing the Fourier integral transform by the DFT matrix

in Eq. (16) and representing the Fresnel lens by the di-
gonal matrix obtained through Eq. (7),

L�z� = diag�exp�2iz��m/N�2��, �20�

n the symmetric interval m� �− 1 �N−1� , . . . ,0 , . . . , 1 �N
2 2
1��. This defines a second discrete version of the Fresnel
ransform by

F�2��z� ª �−1L�z�� = �Fm,m�
�2� �z�� , �21�

Fm,m�
�2� �z� =

1

N�
k

exp�2iz��k

N �2�exp�2�i

N
k�m − m��� ,

�22�

nd again we have a one-parameter group of unitary ma-
rices. The rows and columns of these matrices are not pe-

ig. 5. Left, evolution of the centered discrete rectangle signal
ect−5,5�m� for N=31 points under the first Fresnel transform
�1��z� for z=1,2,5,10. For visibility, the real, imaginary, and ab-

olute values of the discrete points are joined by dashed, dotted,
nd continuous curves, respectively. Right, their corresponding
igner functions on the 31�31 discrete torus.
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iodic, so the symmetry of the range of m in Eq. (20) is
mportant.

The evolution of the rectangle signal under this second
nite Fresnel transform is shown in Fig. 6, together with
he corresponding Wigner functions. We note that this
ransform is periodic in z modulo zNªN2�, since
�2��zN�=1, as if each of the fixed-k momentum circles of

he discrete phase space torus rotated through an integer
umber of turns. In Fig. 6 we see that at z1ªzN /N (for
1=31/�10) the centered I-shaped feature of the
igner function reconnects with its copy at �± 1

2N ,0�; at
ne half this distance, z1/2ªN /2� (z1/25 in the figure),

ig. 6. Left, evolution of the rectangle signal Rect−5,5�m� under
he second Fresnel transform Fm,m�

�2� �z�, with the same values of
=1,2,5,10 and indications of real, imaginary, and absolute val-
es. Right, their corresponding Wigner functions on the phase
pace torus. We note that at z5 and z10, the Wigner function
and reconnects with its copies.
he Wigner function reconnects with its antipode
± 1

2N ,  ± 1
2N�. Retrospectively, we recognize the same

pproximate features in Fig. 5, although they are less dis-
inct due to the nonlinear values of sin2 �k /N in the ex-
onent of Eq. (18).

. DISCRETE GAUSSIAN KERNEL
rom applications to data handling of finite pixellated im-
ges that simulates near-field diffraction, Ojeda-
astañeda and colleagues [6–8] noted that the continuous
resnel transform in Eq. (2) could be assembled—for z
1 only—according to the matrix product

�1 1

0 1� = �1 0

1 1�� 0 1

− 1 0��1 0

1 1� , �23�

hich corresponds to two Fresnel lenses of unit power,
ach of which impresses a phase exp�i 1

2x2�, on both sides
f a Fourier transformer. In the continuous case, the inte-
ral kernel (4) is the phase exp�i 1

2 �x−x��2�. Distinct from
he spacing in Eq. (7), the correspondence here is with the
entered array xm=	2� /Nm.

This defines a third finite analog for the Fresnel inte-
ral kernel that is given by the matrix F�3�= �Fm,m�

�3� �, with
lements

Fm,m�
�3�

ª

1

	N
exp�−

i�

N
�m − m��2� . �24�

he same discretization of the continuous Fresnel trans-
orm kernel (4) has been also used by Leonhardt as a
odel for precession tomography [9]. The Fresnel matrix
�3� is the Fourier transform of Eq. (22) for z1/2=N /2�; it

s circulating and periodic in rows and columns.
The authors of [8] define F�3��z�ª �F�3��z for multiples of

1/2, even though these powers do not have the same dis-
rete Gaussian form with an exponent linear in z. In Fig.
we show the transformations of the same rectangle sig-
al of Figs. 5 and 6 under this third Fresnel matrix �F�3��z

n Eq. (24), and their corresponding Wigner functions (8)
n toroidal phase space. Here applies again the argument
n the reconnection of the sheared bands of the Wigner
unctions seen in Figs. 5 and 6.

The contraction N→� of the three models of the
resnel transform to the continuous one follows the same

imit as the DFT to the Fourier integral transform, with
ronecker �’s becoming Dirac �’s and the second differ-

nce matrix a second derivative (for example, see [4], Sec-
ion 3.4). Thus, all three models satisfy the requirement
f being finite versions of a free system. When N is large
but as all numerical data, finite) and the support of the
ignal is far from that of its phantoms, reasonable finite
pproximations F�z� to the Fresnel integral transform
�z� are achieved for small values of z. The previous finite

ransforms are moreover fast, since the fast Fourier
ransform (FFT) algorithm can be enlisted for their nu-
erical computation. Nevertheless, we believe that the

opological obstruction due to the hole in the torus seri-
usly questions the adequacy of this phase space model of
iscrete systems to globally support the Fresnel transfor-
ation. In the next section we shall present a distinct fi-
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ite analogue of the Fresnel transform on a model of finite
ystems whose phase space is not a torus, but a sphere.
here, the breakup of phase space and the fourfold quasi-
edundancy of the Wigner function on the torus are elimi-
ated.

. FRESNEL–KRAVCHUK TRANSFORMS
n [10] (see also [11]) we proposed a model for dynamic
ystems where the set of values of the position and mo-
entum coordinates, �x�, �p�, are the spectra of two non-

ommuting operators X and P within a Lie algebra. When
his algebra is the Heisenberg–Weyl algebra, their com-
utator is �X ,P�=i1, and one has the basic construct of
chrödinger mechanics and of Fourier optics. But when
ne postulates that their commutator be related to the
amiltonian of a system, several possibilities arise. In
articular, the well-known angular momentum (spin) al-
ebra su�2� (which generates the group of 2�2 unitary
atrices [22]) leads to the model of a finite harmonic os-

illator, where the spectra of positions, momenta, and en-
rgies are intrinsically finite and equal in spacing and
umber.
Consider the three traditional generators of quantum

ngular momentum, L1 ,L2 ,L3, and the new assignments
or position and momentum, distinguished with overbars:

position: X̄ ↔ L1, �25�

momentum: P̄ ↔ L2. �26�

heir commutator is the third generator � , satisfying

ig. 7. Left, rectangle function Rect−5,5�m� of Figs. 5 and 6 un-
er the third Fresnel transform �F�3��z for integer powers z=1,2.
ight, the corresponding Wigner functions on the phase space

orus.
3

�L3,X̄� = iP̄, �P̄,L3� = iX̄, �X̄,P̄� = iL3. �27�

or integer or half-integer spin �, these operators have
atrix representations of dimension N=2� +1, where the

pectra of X̄ , P̄, and L3 are m ,k ,�� �−� ,−� +1, . . . , � �,
espectively. Complementing Eqs. (25) and (26), the
amiltonian H is assigned to the generator of rotations
round the 3-axis through

H ª N̄ + 1
21 ª L3 + �� + 1

2�1, �28�

here N̄ is the number operator, whose eigenvalues n
�+� are the integers in �0,2� �. The three commutators

n Eq. (27) are, respectively, the geometric, dynamic, and
lgebraic postulates of the su�2� finite oscillator model.
In this scheme, a finite N-point signal f= �fm�m=−�

� is a
tate vector in the eigenbasis of positions; using the eco-
omic bracket notation of Dirac, this is

fm = 1��,m�f�, m�−�
� . �29�

orrespondingly, the momentum and (displaced) energy
ontent of the signal f are its overlaps with the momen-
um and energy eigenbases, 2�� ,k �f� and 3�� ,� �f�, respec-
ively. Thus, the momentum representation of the signal
s found rotating the 1-axis onto the 2-axis by means of a

1
2� turn around the 3-axis; this takes the place of the fi-
ite Fourier transform used in the previous sections and

s called the Fourier–Kravchuk transform [10]. Whereas
he unique definition of a fractional DFT matrix is prob-
ematic [14], the fractional Fourier–Kravchuk matrix of
ower 	, K�	�= �Km,m�

�	� �, represents a rotation by the angle
1
2�	 around the 3-axis in the position basis,

Km,m�
�	�

ª 1��,m�exp�− i 1
2�	N̄�� � ,m��1

= ei��m�−m�	/2dm,m�
� � 1

2�	� , �30�

here dm,m�
� �
�=dm�,m

� �−
� are the Wigner little-d func-
ions [[22], Eq. (3.65)],

dm,m�
� �
� ª 3��,m�e−i
L2� � ,m��3

= 	�j + m� ! �j − m� ! �j + m�� ! �j − m��!

� �
n

�− 1�n�cos 1
2
�2�−2n+m−m��sin 1

2
�2n−m+m�

n ! �� + m − n� ! ��− m� − n� ! �m� − m + n�!
,

�31�

hich are homogeneous polynomials of degree 2� in the
rigonometric functions and may thus be written in terms
f Kravchuk polynomials in m (see [11]). The K�	�’s are a
roup of unitary matrices with 	 modulo 4, which con-
ract to the fractional Fourier integral transform when �

� [23].
The Fresnel–Kravchuk transform matrix, F�K��a�

�F�K� �a��, is generated by 1 P̄2 on the position basis,
m,m� 2
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Fm,m�
�K� �a� ª 1��,m�exp�− ia 1

2 P̄2�� � ,m��1
�32�

= �
k=−�

�

1��,m� � ,k22��,k�exp�− ia 1
2 P̄2��

�� � ,k�22��,k� � ,m��1
�33�

=�− i�m+m� �
k=−�

�

dm,k
� � 1

2��

��− 1�kexp�ia 1
2k2�dk,m�

� �− 1
2�� , �34�

i.e., F�K��a� ª K�1� diag�exp�ia 1
2k2��K�−1�. �35�

n obtaining Eq. (34) we have used common angular mo-
entum identities [22] and the fact that P̄2 is diagonal in

he momentum basis. Noting the structural resemblance
f this Fresnel–Kravchuk transform matrix with the first
wo discrete Fresnel transforms, F�1��z� in Eq. (17) and
�2��z� in Eq. (21), we see that the DFT matrix � there is

eplaced here with the Fourier–Kravchuk matrix K�1�,
hile the diagonal Gaussian phase matrix is the same as

hat of a finite Fresnel lens, except for the scale of the pa-
ameter a here versus z there; the conversion factor is a
z�� /N�2.
The Fresnel–Kravchuk transform matrices F�K��a� in

q. (35) are unitary, i.e. F�K��−a�= �F�K��a��†, and form a
ne-parameter group in the parameter a, which is peri-
dic modulo 4�. The spin group implies further—
roken—symmetries: for a=n� (n integer), the transform
ultiplies the signal values fm by in for m even, while re-

pecting those of m odd. In particular, for n= ±2 modulo 4,
lternate signal values fm reverse signs, but in all cases
he absolute values are conserved (for N=2� +1 points,
ith � integer). These broken symmetries will be further

ommented upon in the context of the Wigner function be-
ow.

The Fresnel–Kravchuk matrix represents our fourth
ersion of the finite Fresnel transform; it acts on column-
ector signals (29) in the same way as the three previous
nes and will be illustrated for a rectangle function as be-
ore. However, to describe its action on the larger scenario
f phase space, we must first review this basic concept in
he context of the su�2� model for finite systems.

. WIGNER FUNCTION ON THE SPHERE
n order to be consistent with the su�2� model for finite
ystems, where N-point signals can be specified by their
osition, momentum, or energy values, we are led to con-
ider a three-dimensional meta-phase space v� = �v1 ,v2 ,v3�
R3, where �v1 ,v2�= �x ,p� will be the analog coordinates

f classical phase space. This construction was introduced
n [12] and generalized in [13] for any finite-dimensional
ie algebra. We proceed to offer a succinct review of the
heory before displaying the action of the Fresnel–
ravchuk transform on a discrete rectangle function in a

orm that is readily comparable with the previous three
ersions of the Fresnel transform.
First, one defines a Wigner operator as an integral over
he three-dimensional group manifold g�w� ��SU�2�=S3

the three-sphere [12]),

W�v�� ª

su�2�

dg�w� �exp i�w1�v1 − L1� + w2�v2 − L2�

+ w3�v3 − L3��, �36�

here v� �R3 and where dg�w� � is the invariant Haar mea-
ure over the group ([24], Section 3.V). This is a generali-
ation of the standard Wigner operator on the
eisenberg-Weyl group that can be symbolically written
s ���x−X���p−P� [25]. The operators (36) are elements
f the SU�2� group ring [26] and may be seen as the Fou-
ier transform of the group itself. It is convenient to pa-
ametrize the rotation group in polar coordinates, i.e., as
rotation by � around the unit axis û�
 ,�� on the two-

phere S2,

w� = �û�
,�� = �
w1

w2

w3
� = �

� sin 
 sin �

� sin 
 cos �

� cos 

�, �

0  � � 2�

0  
  �

0  � � 2�

.

�37�

We gloss over the important topological difference be-
ween the spin SU�2� and the rotation groups—we actu-
lly work with the latter for � integer and N odd.) Simi-
arly, v� �R3 will be expressed in the spherical coordinates
v ,� ,�� of radius, colatitude, and azimuth with respect to
he 1-axis of positions, as in Fig. 8.

Then the su�2� Wigner function of an N-point signal f
� fm�, with discrete, finite position m� �−� ,−�

ig. 8. Left, geometric picture of the action of the Fresnel–
ravchuk transform F�K��a� on the sphere, which is embedded in

he meta-phase space �m ,k ,���R3 of position, momentum, and
displaced) energy; the polar angles �� ,�� are determined by the
osition and energy axes. The transform wrings the sphere
round the momentum k axis, rotating it differentially by angles

1
2ak2, as shown by the empty arrows. Right: We represent the

urface of the sphere by its coordinates �� ,�� drawn on a plane to
resent the su(2) Wigner function in a form directly comparable
ith the three previous versions of the discrete Fresnel trans-

orm on the torus. The center (B) corresponds to the “bottom
ole” of ground energy at ��= 1

2� ,�=0�. The ±k points ��= 1
2� ,�

± 1
2�� are the two extreme “momentum poles.” The left and

ight lines at �= ±� are the “top meridian” of the sphere. The top
nd bottom heavy lines correspond to the singular points �=0
nd � of the polar coordinate system at the upper and lower ex-
remes of the position m axis.
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1, . . . , � �, N=2� +1, is the expectation value of the
igner operator (36) in that state,

W����f�v�� ª �f�W�v���f� = �
m,m�=−�

�

fm
* Wm,m�

��� �v��fm�, �38�

here the last expression introduces what we may call
he Wigner matrix W����v��= �Wm,m�

��� �v���, which is self-
djoint. The covariance of Eq. (36) with rotations allows
ne to express this matrix in terms of its diagonal form

Wm,m�
��� �v,�,�� = e−i�m−m��� �

m̄=−�

�

dm,m̄
� ���W̄m̄

����v�dm̄,m�
� �− ��.

�39�

inally, the diagonal form, which is a function only of the
adius v, is found to be [12]

W̄m̄
����v� = �− 1�2�+1

�

2 �
m=−�

� 

0

�

sin �d�

� �dm̄,m
� ����2

sin�2�v cos ��

�v cos � − m���v cos � − m�2 − 1�
,

�40�

here we note that in the integrand, the numerator, and
he denominator have canceling zeros at v cos �
m ,m±1.
The diagonalized matrix W̄����v� still depends on the ra-

ius v�0; but since the SU�2�-invariant Casimir operator
� 2

ª�n=1
3 Ln

2 is ���+1�1, one expects the Wigner function of
ny N=2� +1-point signal to be concentrated to a spheri-
al shell of squared radius v2 � ��+1�. And indeed, calcu-
ation of the trace of Eq. (40) shows that it is strongly
eaked in the range ��v� � +1, with very small values
scillating around zero elsewhere ([12], Fig. 2). Computa-
ion of the Wigner function (38) for various values of �v� �
how suprisingly similar plots differing only in scale. In
act, in [27] it was shown that the radial integration of the
u�2� Wigner function (36) returns the Stratonovich–
garwal Wigner function for spin systems over the sphere

28,29]. Thus we compute and display our results for the
adius v= � + 1

2 and reduce our consideration of meta-
hase space to the phase space sphere S2, with coordi-
ates �� ,��, where the point �=0 is in the positive direc-
ion of the 1-axis of positions, as shown in Fig. 8.

The action of the Fresnel–Kravchuk transform on the
hase space sphere can now be understood in the follow-
ng way: Whereas the fractional Fourier–Kravchuk trans-
orm generated by L3 rotates the sphere of Fig. 8 around
he 3-axis, and generally exp�i�û ·L� � will rigidly rotate
he sphere by � around the axis û�
 ,��, the Fresnel–
ravchuk transform exp�−ia 1

2 P̄2� is a nonrigid (“differen-
ial”) rotation that wrings the sphere around the 2-axis of
omenta as if each p�constant circle were rotated by a

ifferent angle 1
2ap. The “as if” refers to the fact that un-

er nonlinear transformations—aberrations—of phase
pace, the Wigner function is not simply carried along
ith its underlying manifold but develops wiggles and re-
ivals, as was shown in [30,31] for continuous and finite
ystems, respectively.

Thus, given an N-point signal vector f, its Fresnel–
ravchuk transform will be the vector f�a�=F�K��a�f, ob-

ained through straightforward multiplication by the
resnel–Kravchuk matrix (32), and its su�2� Wigner func-
ion will be thereafter obtained from Eq. (38). In Fig. 9 we
isplay the results for the rectangle signal of the previous
ections, using the evolution parameter z=a�N /��2 to
ase the comparison. The su�2� Wigner function of the
ectangle (for z=0) has a well-defined peak (W=5.8164 at

ig. 9. Left, evolution of the rectangle function Rect−5,5�m� un-
er the Fresnel–Kravchuk transform F�K��a� for N=31 ��=15�,
=z�� /N�20.010270z, and z=0,1,2,5,10. Right, the corre-
ponding Wigner functions on the su�2� phase space sphere �� ,��;
t is displayed on the �� ,�� plane as explained in Fig. 8.
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= 1
2�, �=0) that resembles the peak of the continuous

ase in Fig. 2; however, it oscillates far less. We used 40
ontours to emphasize the structure of the regions where
t has small negative values that occur on the line �= 1

2�.
et it is surprising how small they are: For �= ±0.7099,
1.1959,±1.7431, ±2.3003, and ±2.8609 (radians), the
igner function there has values W=−1.1306�10−8,

2.6719�10−8, −4.5053�10−8, −8.2010�10−8, and
5.9180�10−6, respectively. We noted that for rectangle

unctions Rect−n,n�m� there are n of these negative
imples. Outside the main peak the Wigner function is
ery small: For �� ,��= � 1

2� , ±�� it is 0.0114.
Regarding the symmetries of the Wigner function un-

er Fresnel–Kravchuk evolution of the signal, we recall
31] that the su�2� model also provided the description of
he Kerr anomaly generated by the square of the har-
onic oscillator Hamiltonian (here L3), which is only a ro-

ation of the Fresnel transform around the position axis
y 1

2�. The symmetry properties of the Wigner function
hat follow from the parity and complex conjugation sym-
etries of the signal are closely analogous to Eqs. (11)

nd (12). Here they read

f−m = ± fm ⇒ W����f�v,�,�� = W����f�v,� − �,− ��, �41�

fm
* = ± fm ⇒ W����f�v,�,�� = W����f�v,�,− ��. �42�

here are no phantoms on the sphere, and the whole
igner function is living. The symmetries of the Fresnel–
ravchuk transform at a=n� (n modulo 4) that we com-
ented on above can be readily recognized. For a= ±2�,

ow- and high-energy values are exchanged: The peaks in
igs. 9 that are at the bottom pole of Fig. 8, after wiggling
ildly, re-form at the top pole, as if the sphere rotated by
= 1

2a around the position axis [the factor 1
2 is in Eqs.

32)–(35)]. For a= ±� the Wigner function consists of two
pproximate copies of the peak at both the top and bottom
oles, with a small interference smile between them. This
orresponds to the n-eyed Schrödinger cat states shown in
[12], Fig. 5) for coherent states under Kerr evolution at
ractions � /n; since our test function is a sharp-edged
ectangle, this is clearly visible only for n=2. The period-
city reminds us of the Talbot effect.

. CONCLUSIONS
e chose the rectangle step signal to compare the integral

nd the finite Fresnel transforms because it highlights
he oscillatory behavior of the resulting functions in Fig. 2
ersus those in Figs. 5–7 and 9.

The figures suggest four evolution phases: First (up to
=1), the integral transform oscillates rapidly with a
ibbslike chirp overshoot of 17.5% near to the rectangle

dge; the finite versions approximate this by rough pla-
eaus. Second (around z=2), the oscillations of smaller
avelengths dampen, the main body of the function thins,
nd its overshoots grow to 25%, shaping two peaks; this
hase is also apparent in the finite versions but varies
onsiderably from one version to another. Third (around
=5), the two peaks coalesce with an overshoot of 33%;
he finite versions do so, too, roughly. And fourth (z=10
nd beyond), the peak slowly decreases and diffuses over
he full real line; finite versions cannot diffuse indefi-
itely, so the four distinct transforms we examined keep
scillating, each following its own dynamics with occa-
ional revivals, but all resemblance to the continuous case
s lost. As all aberrations, the finite Fresnel transforms
ollow the continuous model only for small values of the
volution parameter. Beyond some point dependent on
he dynamics of the model, the finite approximation will
o longer be faithful to its continuous prototype.
To evaluate the fidelity of the four versions of the finite

resnel transform to approximate the Fresnel integral
ransform, we can choose to compare their action on
hase space, rather than on signals; particularly the
hearing of their Wigner functions shown in the figures.
oth on the torus and on the sphere one can see these
hears, but the topological obstruction of the torus is evi-
ent in the rather chaotic oscillations at the breaking
ines of momentum. In contrast, the geometric deforma-
ion of the sphere, although it makes the su�2� Wigner
unction wiggle slightly, is a smooth process under which
he main peak conserves its integrity.

The su�2� finite oscillator model [10] was conceived to
escribe the fractional Fourierlike transform undergone
y N coherent light signals in a shallow planar multimo-
al waveguide supporting N transverse modes. It allows
or discrete coherent states that move according to the
amilton equations of their continuous counterparts [14].
he fractional Fourier–Kravchuk transform rigidly ro-

ates the sphere of Fig. 8 around its vertical axis; its ac-
ion on the Wigner functions depicted on the �� ,�� plane
f Fig. 9 will rotate it almost rigidly about the center
1
2� ,0�, with increasing distorsion toward the edges.

There are also other valid criteria for prefering periodic
r nonperiodic finite models, such as considerations on
peed and simplicity versus consistency with the geom-
try and dynamics of mechanical and optical systems. To
ompute the Fresnel–Kravchuk transform (34), we cannot
se the FFT algorithm, so its use for real-time analysis of
ost actual signals is compromised. Yet, we regard the

resent analysis of this finite transform as a second step
oward understanding the structure of the group
�N��SU�2� of all unitary transformations of N-point

ignals, regarding them as aberrations of the compact
hase space of finite systems.
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