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The N X N Fourier matrix is one distinguished element within the group U(V) of all N X N unitary matrices. It
has the geometric property of being a fourth root of unity and is close to the dynamics of harmonic oscillators.
The dynamical correspondence is exact only in the N — o contraction limit for the integral Fourier transform
and its fractional powers. In the finite-N case, several options have been considered in the literature. We com-
pare their fidelity in reproducing the classical harmonic motion of discrete coherent states. © 2007 Optical

Society of America
OCIS codes: 070.2590, 070.6020, 030.1670.

1. INTRODUCTION

The integral Fourier transform (IFT) participates in the
foundations of quantum mechanics and is ubiquitous in
signal processing. Geometrically, the IFT is a fourth root
of unity; its fractionalization is not unique, but one distin-
guished fractional IFT (FrIFT)! is the one-parameter cy-
clic subgroup U(1) of the Lie group Sp(2,R) of linear ca-
nonical transformations in one-dimensional quantum
mechanics,? describing the time evolution of the quantum
harmonic oscillator (see, e.g., Ref. 3, Part IV). Its applica-
tions to optics include the paraxial wave model,* and in
signal processing these have been widely documented by
Ozaktas et al.” Here we examine analog finite structures
that satisfy both the geometry of the FrIFT as fourth
roots of unity and the dynamics of discrete coherent
states as finite counterparts of the classical and quantum-
mechanical harmonic motion.

The discrete Fourier transform (DFT) is approximately
realized in planar multimodal optical or acoustical
paraxial Waveguides6 and in symmetric one-lens
setups,%9 where the input signal is produced by a linear
array of N-emitting points (with controlled phases) and
measured by a similar array of sensors. A corresponding
fractional DFT (FrDFT) occurs for any length along the
guide or for spaces around the lens setup. In the litera-
ture we find several approaches to define a FrDFT (five of
which we review in this paper), presenting various com-
putational and mathematical advantages. Although we
refrain from selecting a “best” FrDFT, we compare differ-
ent versions in terms of their rendering of the motion of
coherent states.

In Section 2 we recall some of the remarkable proper-
ties of the FrIFT, its integral kernel, and its relation with
the harmonic oscillator wave functions and coherent
states. The DFT matrix F and a standard modulo-4 frac-
tionalization of any fourth root of unity are presented in
Section 3. In Section 4 we fractionalize the powers « of F*
determined by Fourier eigenbases V; these are all one-
parameter cyclic groups of matrices Fyj e U(1)yCU(N)
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that pass through F and its integer powers. We also pro-
pose a simple analog definition of coherent states. The
time evolution of these states is explored computationally
in Section 5 for the “Taipei” basis of Pei and Yeh! and Pei
et al.,11 the eigenbasis of Mehta,12 and the “Ankara” basis
of Candan, Ozaktas, and coauthors®!* (see also Ref. 5,
Chap. 4). As expected, coherent states of low energy have
Gaussianlike shapes and oscillate harmonically; differ-
ences between the models arise only at high energies. In
Section 6 we briefly recall the “Cuernavaca” Fourier—
Kravchuk transform and its coherent states.1%'6 A suc-
cinct concluding Section 7 ends the discussion.

2. FrIFT AND THE HARMONIC OSCILLATOR

There exists a close relation between the IFT operator F
acting on the Hilbert space £2(R) of quantum mechanics
and the harmonic oscillator evolution at one-quarter pe-
riod [Ref. 3, Eq. (7.197)],

F=elmt exp[— iiv‘r(P2 + Qz)], (1)

where we have the Schrodinger operators of position
(Q:H(x):=xf(x) and momentum (P:/)(x):=-idf(x)/dx, and
where e(iw/4) is the metaplectic phase (Ref. 17, Appendix
C). This leads to the definition of the fractional IFT op-
erators F“ through a number operator N,

F9 = eXp(— 1%’776!./\/’), N:: %(,PZ + QZ) - %1 (2)

The spectrum of N in £2(R) is 2 {0,1,2, ...}, nondegen-
erate, and F*=1 is the unit operator. The normalized
eigenfunctions of N are the well-known quantum har-
monic oscillator functions,

Wy(x) = exp(- 50%) H,(x)/\ 2"k | | 7. (3)

The ground state is W((x), and there is no “top” state.

Acting on functions fe £2(R), F¢ is a unitary integral
transform that one can write, using either powers or
angles ¢:= %776!, as
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(F4(x) = J da' F'(x,x")f(x'), (4)
R
el 2 (2% +x'?)cos ¢ — 2xx’
F9(x,x") = —————— exp1i - (5)
2 sin ¢ 2sin ¢
= Wy (x)exp(- ik g) Wyx")". (6)
k=0

In the closed-form Eq. (5), the square root is understood to
be \is = explil 7 sign s)1]s|, and there are Dirac singulari-
ties at FO(x,x")=8(x-x")=F¥(x,x') and FP(x,x')=8x
+x'). The bilinear generating function form of Eq. (6) (Ref.
18) exposes the role of the orthonormal and complete os-
cillator basis ¥, (x) in Eq. (3), which are eigenfunctions of
F with the four infinitely degenerate eigenvalues, (-i)*
e{l,-1,-1,i}.

The probability density of the oscillator functions,
|¥,(x)|?, are the invariants under a-evolution. Functions
that are covariant should have one parameter undergoing
harmonic motion; these are the coherent states, which
can be defined equivalently as ground states displaced by
a complex parameter c, or as linear generating functions
of the oscillator functions, also with powers of c,

Y, (x) = 2 W(x - \20) (7)
=>» —V¥ 8
%\yk, ). (8)

The evolution cycle of Y.(x) under F“ is evinced in the
harmonic motion of the parameter c(«),

FY o)) = Yo@), (@) =c(0)exp(-izma).  (9)

3. DISCRETE FOURIER TRANSFORM

The standard N XN DFT matrix is F=|F,, [, with ele-
ments that involve powers of the Nth roots of unity,

(10)

2mmm'’
N .

1
Foy = \TT/' exp| —

It is periodic (F,, ;s =F 1N m =Fpm ey for k,k' inte-
gers), symmetric (F,,,, =F, ), and unitary (F'F=1
=FF"), so |detF| 1. Its square is the inversion matrix
(F2 Ymm' = Om.—m’, and F*=1 is a fourth root of the unit ma-
trix.

A. Eigenvalues and Projectors

The eigenvalues of the N XN standard DFT matrix are
the fourth roots of unity, to be denoted by ¢(n):=(-1)"
=expl-igmn) e {1,-i,-1,i}, for n €{0,1,2,3}. This divides
the space of N-point complex signals into four Fourier-
invariant subspaces whose dimensions N, are the multi-
plicities of the eigenvalues ¢, which have a peculiar
modulo-4 recurrence in the dimension N=:4J+n, given
by
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Dimension Multiplicities N,
N =1 -i -1 i detF
4J J+1 J J J-1 -i(-1)y
4J +1 J+1 J J J (=17
4J + 2 J+1 J J+1 J (-1
4J +3 J+1 J+1 J+1 J  i(-1)

(11)

for J>0, i.e., roughly N,~ %N; of course 2 ,N,=N. These
Fourier subspaces are mutually orthogonal; their projec-
tor matrices are

P=; , ¢ F F'=3 JP, (12)
¢

satisfying P P, =6, ,P,.

B. Standard Fractionalization

Fourth roots of unity, such as F, have “standard” frac-
tional powers Fg that we consider to be purely geometri-
cal. They are given by

3 : —a
F§:= 2 exp(i%ﬂ'(n - a))MFn (13)

=0 4 sin iﬂ-(n -a)
3
Ng:= >, nP,). (14)

n=0

=exp(— i%ﬂ'aNs) ,

They satisfy composition, FSFﬁ—F‘”ﬁ, and Eq. (13) en-
sures that for integer a=n, Fg=F". This U(1)g Lie group
is displayed in Eq. (14) as generated by a “number ma-
trix” Ng, in the same form as in Eq. (2). The Fourier
eigenspaces with eigenvalues ¢(0)=1, ¢(1)=-1, ¢(2)=-1,
and ¢(3)=i are also eigenspaces of the number matrix
with eigenvalues n=0, 1, 2, 3, respectively.

However simple and universal the standard FrDFT
[Eq. (13)] appears to be, it is not the fractionalization we
want to consider, because while for N — o« the DFT matrix
(10) contracts to the IFT kernel e=**'/ /27, the standard
FrDFT matrix (13) does not contract to the canonical in-
tegral transform kernel (5), belonging to the continuous
FrIFT group on £%(R).

4. FRACTIONALIZATION OF DFT IN A
BASIS V

The last paragraph justifies considering a number matrix
different from the standard Ng in Eq. (14). Its spectrum
should be £ €{0,1,...,N-1} and increase only the inter-
val [0,N] under contraction N — co.

A. Fourier Eigenbases and Their FrDFTs

Within each ¢-subspace one can find orthonormal bases V
of N-column vectors, Whlch we indicate by v(¢/)=[v!#/],

labeled by je{0,1,...,N,-1}, and with rows m
e{1,2,...,N}. They will satisfy
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N1
E vedyledt - P, (15
Jj=0

(e Ty (9" ") =
v\ P Tyled _5(/),<p'6j,j’7

and can be arranged in four N XN, rectangular matrices
V(‘P)=||vf7f 7). There are slight and nonessential differences
in the expressions of the four ¢-cases in Eq. (11); we shall
not need their explicit forms.

Next we build the bilinear generating function analo-
gous to Eq. (6) for the finite bases V characterized above.
For noninteger a we must further specify that ¢*
=(¢(n))*:=expl-izmna) with n {0,1,2,3}. We define the
V-FrDFT by the N XN matrices Fy, whose elements are

Nw—l
F = > Dy viexp[-izm(4j+n)a]ol)” (16)
¢(n) j=0
=E @“(V(‘P)Q(‘P)(a)v(‘*’”)m,m,, (17)
(o]
®'¥)(a) := diag(exp(- 2imja)) is N, X N, (18)

The last line defines the matrix ®¥)(«), which is diagonal
and independent of g—except for its dimension. The con-
ditions of Eq. (15) ensure the multiplication property
F¢FE=F¢* modulo 4, and the unitarity (F&)"=Fy, of
each set of V-FrDFT matrices. When « is integer,
®9(@)=1, and the matrix (17) becomes the sum of the
projectors in Eq. (12), so Fy=F". The V-FrDFT matrices
thus belong to subgroups U(1)yyC U(N), all of which pass
through the standard DFT matrix and its integer powers.

B. Number Matrix of an Eigenbasis
Note that in each ¢-subspace, the numbering of the N,
basis vectors v(®) by je{0,1,...,N, »—1} is arbitrary; our
construction is still purely geometric, since no dynamic
“energy spectrum” is used to suggest any prefered order.
(Three bases will be examined in the next section.) Start-
ing with one V basis, represented by the N X N matrix V,
we can subject each ¢-subspace to an N, XN, unitary
transformation U@ e UV, ), 80 that through right multi-
plication we obtain a new W-basis associated to the prod-
uct of matrices W=VU as well as a new one-parameter cy-
clic group of W-FrDFTs that will also pass through the
standard DFT matrix F and its integer powers. The mani-
fold of these U(1)y FrDFT subgroups within the
NZ2-dimensional manifold of U(N) has dimension Eq,Ni
and can be characterized by its tangent at the origin,
namely, its number matrix.

The V-FrDFT matrix in Eqgs. (16)—(18) has the form of
Eq. (2) in continuous systems; they are Lie exponentials
of an N XN number matrix associated to the basis V,
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Fy= exp(— i%ﬂ'an) R

2d
Ny:= i—F§| (19)
mda w0
N1
=D > v diag(4j + n)v'#T, (20)
o(n) j=0

The eigenvectors of the number matrix are v(¢™v) with
nondegenerate eigenvalues 4j+n e{0,1,2,...,N-1}. Fi-
nally, note that the number operator in Egs. (19) and (20)
can serve equally well to define the V-FrDFT group of ma-
trices proposed in Egs. (16)—(18).

C. Discrete Coherent States
The requirement that the bilinear generating function
form of the V-FrDFT proposed in Eq. (16) contract in the
N —o limit to the FrIFT in Eq. (6) suggests that we
should propose discrete or discretized oscillatorlike func-
tions, numbered by k=4j+n as above, to have “good”
V-bases for the fractionalization of the DFT matrix F. The
three models of the next section comprise essentially
identical low-lying eigenvectors, and they differ most
sharply in the highest ones. The FrDFTs of sampled func-
tions, such as centered rectangles,lo’11 do not provide a
sufficient and reliable impression of their overall fidelity
to the FrIFT. Our proposal here is to examine the exis-
tence and behavior of associated coherent states.
Associated to the V-FrDFT in Eq. (16), we search for
states given by N-vectors Yy(m) that contract to the con-
tinuous coherent states Y .(x) in Egs. (7) and (8). This can
be made by truncating the infinite sum to the N available
functions or by displacing the ground state. The latter can
be done when the system is periodic and has a well-
identified ground state (j,n)=(0,0). For generic, nonperi-
odic V-bases, we opt for the former choice, Eq. (8), defin-
ing discrete coherent states as linear generating functions
of the V-basis vectors, namely, as N-point column vectors
of components

N,-1 4j+n

When multiplied on the left by Fy;, each summand is mul-
tiplied by a phase that is collected by the complex param-
eter c(a):c(O)exp(—i%wa), exactly as in Eq. (9), so that the
V-FrDFT is a uniform rotation of the complex c-plane. For
“arbitray” bases V, the vectors defined by Eq. (21) may not
mean much, but for “good” bases (closely related to the os-
cillator wave functions), the discrete coherent state YX
should initially resemble a displaced Gaussian and
should oscillate as its continuous counterparts without
undue distorsion.

5. APPROACHES TO DISCRETE
OSCILLATOR DYNAMICS

Since the FrIFT has close connection with the dynamics
of the quantum harmonic oscillator, so should their
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V-FrDFT analogs. In this section we describe three ap-
proaches: two of them based on the oscillator wavefunc-
tions V,(x) in Eq. (3), and one based on importing sym-
metry to a discrete and concrete physical model.

A. Sampled Harmonic Oscillator: Taipei Bases

It is suggestive to build bases for V-FrDFTs using
sampled oscillator functions ¥,(x,,) in Eq. (3). Pei and
Yeh'? and Pei et al.,™! working in Taipei, have constructed
FrDFTs defined through the bilinear generating function
(16). They first define the vectors ¢*), £ e[0,N-1],

2
oM =, ~") where (22)

-] |
[-3N-1),;(N-1)] Nodd

These N-vectors are not quite orthogonal, except for par-
ity (-1)* (we call this the uncorrected Taipei basis); they
are not naturally periodic in & nor m, unless so defined
beyond their natural range; and they are not guaranteed
to have £ changes of sign in m as the continuous functions
do. However, they do provide an approximate FrDFT
when replaced directly in Eq. (16), which produces cred-
ible harmonic motion on its coherent states.

We display the uncorrected Taipei basis d)fﬁ) by the
gray-tone matrix (m,k) in Fig. 1; there we can see the
relative signs and the regions where the components are
near zero. The errors are small in this uncorrected basis
for the lower-lying states. For example, when N=33 as in

N even
(23)

our figures, the maximum of the overlaps (¢®, ¢*") for
k#k’522=§N is 0.01. The coherent states constructed
according to Eq. (21), with the uncorrected Taipei basis
(23) are shown in Fig. 2 for three values of ¢(0), over one-
quarter of the Fourier cycle. The center of the Gaussian-
like bumps is at m (@)= \J’mRe c(a); in the figure, for
N=33, the peak of a c¢c=5, coherent state is at m .y
=16.2, just outside the interval m €[-16,16], yet it oscil-
lates quite harmonically and does not unduly disperse.

The refinement of this construction constitutes the
work of Pei and Yeh'® and Pei et al.,!! who first projected
the basis functions (22) by Eq. (12) to separate them into
the four ¢-eigenspaces and then applied a modified
Gramm—Schmidt computer orthonormalization process
within each eigenspace, with the numbering provided
naturally by the energy quantum label k.

B. Mehta Eigenbasis

We consider next a (previous and) very elegant basis for
FrDFTs given by Mehta in 1987 .12 who found that the
sums of periodically displaced oscillator functions (3),

- [2
Ew wk( Nﬂ(m +Ns)> , (24)

are N eigenvectors of the DFT matrix, Fu® =(-i)ku®),
which (as the Taipei basis) is not quite orthogonal. Except
for orthogonality, this Mehta basis also fulfills most ex-
pectations of Eq. (16) with k=4j+n; appears in Fig. 3.
Comparison with Fig. 1 shows that they differ only at the

k k
= iy
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highest values of energy k. The coherent states built out
of the Mehta basis are shown in Fig. 4; since they are pe-
riodic, for large c they “spill over” the ends of the interval
at +3(N-1).

Generalizations of these Mehta functions to other simi-
larly summed Fourier eigensets of special functions have
been shown by Atakishiyev and others'®?° to extend into
the much wider field of discrete g-special functions.

C. Ankara Lattice and FrDFT

A group of researchers and students based in Ankara in-
troduced, by analogy with continuous systems, the Hamil-
tonian for a periodic vibrating lattice model.’®!* This sys-
tem consists of N points of equal mass, numbered
cyclically by me{1,2,...,N=0}, that are on a circle,
joined to their equilibrium positions and to one another
by springs. The states of the system are given by the N
complex quantities {f,,,(7)} subject to time-7 Schrodinger
evolution by a real Hamiltonian matrix Hy = ||Hf‘n |l (A for
Ankara); solving a difference equation, the solution is a
Green matrix Gu(7),

d
H\f(7) = id—f(r) < (1) = GA(7)E(0), (25)

16

-16

Fig. 1. Matrix (m,k) of the uncorrected Taipei basis goﬁ,’j) of
sampled oscillator functions in Eq. (22) for N=33. Light and dark
elements indicate positive and negative values, respectively.

- Amm 16 } 1é"-16 1é"

y&éﬂ i6 bm 3
. 18" - 1s 14” 1% VEV
A

.18 ,, >

Fig. 2. Motion of coherent states built out of the uncorrected
Taipei basis of sampled oscillator functions in Eq. (22) for N
=33. In the three columns ¢(0)=1, 3, 5. The rows show their evo-
lution over a quarter-period for a=0, 0.2,...1.0. Dashed curve,
real parts; dotted curve, imaginary parts; solid curve, absolute
values.
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16

o ol (o o |

1 E

T

-16

Fig. 3. Matrix (m,k) of the Mehta of oscillator functions ,uﬁ) in
Eq. (24). It differs significantly from that in Fig. 1 only in the
highest k-columns.

-16 14" - 16 14" - 16 I 18"
-6 vV 1d" - 16 /\%{”16{ Jié”

-16 . 18" - 16 16’"-1
.16 X\> 14" - 16 @16‘7’-6 7

-e{"-16 "" 16" - 16 T

/ PN .
-16 1 W LT

Fig. 4. Motion of Mehta coherent states built out of the basis

,ug';) in Eq. (24). The rows and columns have the same parameters

as those in Fig. 2.

GA(7) = exp(—iTHy). (26)

The revolution of the lattice defines a group of
“A-transforms” that is expected to lie approximately on an
A-FrDFT closed cycle (still to be defined), i.e.,

F37 = exp[- in(Ha — hol)]. (27

Here h is the lowest (vacuum) energy; this is an analog of
the metaplectic phase correction in Eqgs. (1) and (2) in the
continuous case.

The group in Ankara
ference analog of Eq. (2),

51814 onsidered the natural dif-

Hy=-5(A+4), (28)
A := cire(- 2,1,0, ...,0,1), (29)
A = FAF! = diag(- 4 sin®(7m/N)). (30)

This Hamiltonian contains the kinetic energy of the cir-
culating second-difference matrix A, which is due to equal
springs between first neighbors along the circle. The po-
tential energy is contained in the springs that tie each

mass to its equilibrium position by the diagonal A, soft
around m=N=0 and stiff around m = %N .

As in the continuous case, the Ankara oscillator system
in Eq. (28) is invariant under the DFT; F and H, can be
simultaneously diagonalized with a common set of eigen-
vectors,

Vol. 24, No. 3/March 2007/J. Opt. Soc. Am. A 655

H,h® =E;h®, Fh® = g(n)h®), (31)

where the numeration follows that of Eq. (16) with k=45
+n. The energy eigenvalues {E,} are the roots of an Nth
degree polynomial; they are real and nondegenerate (ex-
cept for one double degeneracy when N is a multiple of
413), and they are naturally ordered in %2 by the number of
sign alternations in m. Yet they are not equally spaced
nor rational nor algebraic (for N>4), so they have to be
computed numerically. The hgs)’s have been named
Harper functions;* they are bona fide orthonormal and
periodic N-point signals; their matrix is shown in Fig. 5
(cf. Figs. 1 and 3).

D. Importation of Symmetry

The time evolution of the Ankara lattice is produced by
the Green matrix in Eq. (26), whose matrix elements are
the bilinear generating functions

N-1

Gy (D=2 hPexp(-irEhy). (32)
k=0

The Green matrix is unitary for all 7e R; but since the
{E}} are not commensurable, the 7-line of Green matrices
does not close into a U(1) circle but is a Lissajous-type
curve in the N2-dimensional manifold of U(N).

To produce a FrDFT with a modulo-4 cycle, the Ankara

16

-16

0 32
Fig. 5. Matrix (m,k) of the Ankara oscillator with the Harper
functions hff). Note the “jump” at £~ 1/2N between states where

the soft springs contain most of the energy and those where the
lattice vibration is largest in the stiff zone.

-16 & - 1§ 1é"-1l\6 Hem
. 16%%@ -16 1T
-16 % 1é" - 1% " % yun

AN A by
ETIRVET e (G ANy e

A\ A
- 1é" -16 W 1

Fig. 6. Motion of coherent states built out of the Harper func-
tions h(n}j) of the Ankara oscillator [Eq. (31)] with imported sym-
metry. The parameters are the same as in Figs. 2 and 4. In the
last column we see the effect of the stiff-mode dominance.
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group imported the symmetry of the continuous system
by replacing the physical spectrum {E;} of the vibrating
lattice with the linear number spectrum {&} between 0
and N-1. The action of this A-FrDFT on the Harper co-
herent states, defined as in Eq. (21) is shown in Fig. 6. For
large ¢, the stiff modes at the interval ends overwhelm
the soft modes, so most of the energy lingers there
throughout the cycle.

Symmetry importation has maintained dialogue with
many of the works on finite models of quantum
mechanics®™2* and discrete models with number-phase
uncertainty relations.?>"2® Here, the importation of sym-
metry both evinces and bridges the gap between the dy-
namics of the physical system on one hand and the geo-
metric requirement of a fractional DFT generated by a
number matrix.

E. Discrete Toroidal and Plane Phase Spaces
In order to associate a phase space to discrete systems
along the lines of continuous classical or quantum Hamil-
tonian systems, we must put in place proper definitions of
position and momentum; such may also be based on the
dynamics of coherent states, although we should be pre-
pared for mismatches between the two.

The simplest analogy consists in assigning to the row
numbers of the state N-vectors f=||f,,| the meaning of
discrete position, and to the row numbers of its DFT

Ff=|f,, || the meaning of discrete momentum. Their inter-
twining by F implies that these discrete sets of points
should be considered periodic with the period N, so phase
space is a discrete torus of points (m,m’). Integer trans-
lations along the position or momentum circles are well
defined, as well as a discrete Heisenberg—Weyl group with
a phase composition, and a discrete Wigner function can
also be defined?®! with the most important properties of
its continuous counterpart. On this construction, how-
ever, understanding the role of the fractional DFT is dif-
ficult, because classically it is supposed to rotate the po-
sition circle continuously onto the momentum circle—in
spite of the topological obstruction presented by the hole
of the torus.

Discrete coherent states YX as defined in Eq. (21) pro-
vide for another picture of phase space, namely, the com-
plex c-plane, whose real and imaginary parts take the
role of continuous position and momentum variables. The
action of the FrDFT is then in complete accordance with
classical expectations but collides with the notion that the
phase space of discrete systems should be compact.

6. su(2) FINITE OSCILLATOR MODEL

A discrete, finite system with the geometry and dynamics
of the harmonic oscillator was proposed in Ref. 6 (see also
Ref. 16), realized as a planar paraxial, shallow multimo-
dal waveguide that processes N-point complex signals in
parallel, and produced and received at linear arrays of
point emitters and sensors. This model, developed in Cu-
ernavaca, follows with a “discrete quantization” of the
classical harmonic oscillator. It has natural coherent
states whose behavior was analyzed in Ref. 15. Here we
highlight only the main postulates and results in terms
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comparable to the models of Section 5.

A. Position, Momentum, and Number

Discretely quantized, the classical observables of position
g and momentum p are assigned not to the eigenvalues of
the Schrodinger operators Q and P seen above, but to the
eigenvalues of the operators £; of the Lie algebra of angu-
lar momentum and spin su(2), which is characterized by

L X L=il. The new asignments (with overbars) and their
spectra are

position: O — £, mef{-1,-1+1,...,1}, (33)
momentum: P « L, pel{-l-1+1,..,0, (34)

number: N £, +11, ke{0,1,...,20}, (35)

within the spin-/ representation of su(2), for fixed [
€10,3,1,...}. This representation has dimension N=2/
+1, as determined by the quadratic Casimir operator,

Q2+ P2+ (N=11)2=1(+1)1. (36)

B. Eigenvectors of Number

The signals sensed along the waveguide evolve through a
discrete version of the FrIFT, the fractional Fourier—
Kravchuk transform (FrFKT), which is built exactly as in
Eq. (2), but with the number operator N in Eq. (35). It is a
rotation around the z axis that carries the position x axis
onto the momentum y axis. The basis ¢§el) of the FrFKT
are the eigenvectors of the number operator £,, measured

in the position basis of £,, and are known as the Wigner
little-d functions [Ref. 32, Eq. (3.65)],

P(m) = din,k—l(_ %77) = dé—l,m(%w) (37)

(-DF [f21\[ 2 )
= Vo gy R+ ms5,21). (38)

The last form shows that the m-dependence is contained
in the square root of the binomial distribution, lfm s
times the symmetric Kravchuk polynomial of degree & in
l+me[0,1,... ,2l].33 Kravchuks® are discrete orthogonal
counterparts to the Hermite polynomials [Ref. 35, Eqgs.
(5.2.13) and (5.2.14)] and binomials to Gaussians.

In Fig. 7 we show the matrix of the Cuernavaca basis.
Note that the top states (k= 2[) mirror the bottom states
(k=0) with alternating signs between consecutive points,
z/f(zl;_k(m)=(—1)l‘k+m¢g)(—m). This figure should be com-
pared with Figs. 1, 3, and 5 of the previous bases.

C. Fourier-Kravchuk Transform Matrix
The FrFKT of power « is a rotation around the z axis by

an angle qﬁ:%ﬂ'a, generated by N, which carries the Q x
axis onto the Py axis, with a phase [cf. Eq. (2)],

K= exp(— i%ﬂ'a/v) =g imal2 exp(— i%ﬂ'aﬁz). (39)

The FrFKT matrix elements are built as bilinear generat-
ing functions of the wave functions in Eq. (38) for N=2/
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+1, as in Eq. (16); using standard results from angular
momentum theory,32 they can be summed to a closed
form,

Kﬁiﬂ) E l)(m)e—lﬂ'ka l)(mr) =im —mdl

w(37a)-
(40)

The set of FrFKT matrices form a group
U(1)gCSU(2)CU(2[+1). However, note that this group
does not contain the Fourier matrix F of Eq. (10); instead,
for a=1, K&V is the real matrix shown in Fig. 7, multi-
plied by a circulating phase, as can be seen by comparing
Eqgs. (40) and (37). Also, the Cuernavaca model is not pe-
riodic: In signals of N=2[+1 points, m=+/[ are not first
neighbors, but the two ends of the signal.

D. Coherent States in su(2)
The ground state of the su(2) finite oscillator is

21
W) =d' s (5m) = 5 <l+m>~ “

It is even and centered in m € [-/,l]; this we can imagine
as a density bump on the south pole of a sphere, which is
projected on the position x axis as a discrete Gaussianlike
function. Rotation of this sphere around the y axis of mo-
mentum through an angle -6, will translate the projec-
tion of its density bump in Eq. (41) along the position axis
by sin 6 [cf. Eq. (7)] without exceeding the interval. The
center of the bump reaches the equator at 0:%77 and ex-
tends up to the north pole of the sphere for 6=m. Simi-
larly, rotation of the sphere around the x axis with

exp(iQ) will multiply the signal values by linear phases,
and this translates the momentum of the ground state in
Eq. (41).

We defined the coherent states of the Cuernavaca
model for 0= 6= = by

) == exp(i6P) ), (42)

KP(m)=d., (- 37~ 0) (43)
21

—2< D), (0 (m), (44)

{21
dé,l—k(a) = (cos %0)1 ( B ) (sin %0)k. (45)

Equation (43) follows from angular momentum ‘cheory,32
and Eq. (44) displays coherent states as the linear gener-
ating function of the number eigenvector set wg)(m) [cf.
Egs. (8) and (21)]; however, the coefficients of the trun-
cated exponential series c*/ (k! are here replaced by Eq.
(45) as ~(sin 20/ [k !(21-F)..

The FrFKT in Eq. (39) will rotate the sphere around
the z axis by ¢= %776!, so the Gaussian bump projection on
the x axis of K(Hl) will oscillate harmonically with & modulo
4, while the coherent state parameter c(0,6):=sin %6’
in Eq. (45) is multiplied by a phase, c(¢,0)

Vol. 24, No. 3/March 2007/J. Opt. Soc. Am. A 657

16

-16

Fig. 7. Matrix (m,k) of the Cuernavaca discrete wave functions
of the finite oscillator, ¢#(m) in Eq. (37), for /=16 (N=33). See the
m -« m and k< 2[—Fk parity covariances with the signs (-1)* and
(=1)/~k*m_ respectively.

-16 y\lé" 16 I 1é" - i I 1’5”

.é"-m " - 16 | '46"
N ‘A -15 A" - 16 @l

'é" -16

Aﬁ

Fig. 8. Motion of the coherent states K ) in Eqgs. (42)—(45) under
fractional Fourier-Kravchuk transformatlons In the three col-
umns, #=30°, 60°, and 90°. The rows have the same parameters
as those in Figs. 2, 4, and 6.

= exp(—i%ﬂ'a)c(O, 0), which is the exact analog of Egs. (9)
and (21). The basic commutator here is [Q,P]=i(N-I1)
instead of the standard quantum mechanical [Q,P]=i1.
In Fig. 8 we show the motion of Cuernavaca coherent
states over one-quarter Fourier cycles.

E. Phase Space of Discrete Systems

The Cuernavaca model is based on the manifold of the Lie
algebra su(2) with the operators of Eqs. (33)—(35). A
proper covariant Wigner distribution is a function of
(q,p,n) eR3 that we called meta-phase space.’®3” An
N-point discrete system belongs to the spin-/ representa-
tion (N=2[+1), whose Casimir [Eq. (36)] classically re-
duces the manifold to a sphere of radius =/, which is an
easily visualized symplectic manifold. Tangent to the
south pole is ordinary phase space (¢,p) € R2. Evolution
along the harmonic guide (modulo a “metaplectic” phase)
is rotation of the sphere around its vertical axis; prisms
rotate the sphere around its y axis; inclined slabs trans-
late signals in x, across the guide and with “reflection” at
the endpoints. Consideration of transformations gener-
ated by elements in the universal enveloping algebra of
su(2) allow for the introduction of aberrations on the
phase space of complex signals, such as those due to the
Kerr effect.®®
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7. CONCLUSION

It should be interesting to compare the different versions
of the FrDFT with the actual output of a planar optical
Fourier signal processor, particularly a waveguide, at fi-
nite linear arrays of sensors. We expect that in such
guides, well-collimated coherent beams will evolve with
close-to-harmonic motion. Then we could select a “best”
V-basis so that its V-FrDFT approximates the close-to-
Fourier action of that particular signal processor.
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