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The N�N Fourier matrix is one distinguished element within the group U�N� of all N�N unitary matrices. It
has the geometric property of being a fourth root of unity and is close to the dynamics of harmonic oscillators.
The dynamical correspondence is exact only in the N→� contraction limit for the integral Fourier transform
and its fractional powers. In the finite-N case, several options have been considered in the literature. We com-
pare their fidelity in reproducing the classical harmonic motion of discrete coherent states. © 2007 Optical
Society of America
OCIS codes: 070.2590, 070.6020, 030.1670.
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. INTRODUCTION
he integral Fourier transform (IFT) participates in the

oundations of quantum mechanics and is ubiquitous in
ignal processing. Geometrically, the IFT is a fourth root
f unity; its fractionalization is not unique, but one distin-
uished fractional IFT (FrIFT)1 is the one-parameter cy-
lic subgroup U�1� of the Lie group Sp�2,R� of linear ca-
onical transformations in one-dimensional quantum
echanics,2 describing the time evolution of the quantum
armonic oscillator (see, e.g., Ref. 3, Part IV). Its applica-
ions to optics include the paraxial wave model,4 and in
ignal processing these have been widely documented by
zaktas et al.5 Here we examine analog finite structures

hat satisfy both the geometry of the FrIFT as fourth
oots of unity and the dynamics of discrete coherent
tates as finite counterparts of the classical and quantum-
echanical harmonic motion.
The discrete Fourier transform (DFT) is approximately

ealized in planar multimodal optical or acoustical
araxial waveguides6 and in symmetric one-lens
etups,7–9 where the input signal is produced by a linear
rray of N-emitting points (with controlled phases) and
easured by a similar array of sensors. A corresponding

ractional DFT (FrDFT) occurs for any length along the
uide or for spaces around the lens setup. In the litera-
ure we find several approaches to define a FrDFT (five of
hich we review in this paper), presenting various com-
utational and mathematical advantages. Although we
efrain from selecting a “best” FrDFT, we compare differ-
nt versions in terms of their rendering of the motion of
oherent states.

In Section 2 we recall some of the remarkable proper-
ies of the FrIFT, its integral kernel, and its relation with
he harmonic oscillator wave functions and coherent
tates. The DFT matrix F and a standard modulo-4 frac-
ionalization of any fourth root of unity are presented in
ection 3. In Section 4 we fractionalize the powers � of F�

etermined by Fourier eigenbases V; these are all one-
arameter cyclic groups of matrices F� �U�1� �U�N�
V V

1084-7529/07/030651-8/$15.00 © 2
hat pass through F and its integer powers. We also pro-
ose a simple analog definition of coherent states. The
ime evolution of these states is explored computationally
n Section 5 for the “Taipei” basis of Pei and Yeh10 and Pei
t al.,11 the eigenbasis of Mehta,12 and the “Ankara” basis
f Candan, Ozaktas, and coauthors13,14 (see also Ref. 5,
hap. 4). As expected, coherent states of low energy have
aussianlike shapes and oscillate harmonically; differ-
nces between the models arise only at high energies. In
ection 6 we briefly recall the “Cuernavaca” Fourier–
ravchuk transform and its coherent states.6,15,16 A suc-

inct concluding Section 7 ends the discussion.

. FrIFT AND THE HARMONIC OSCILLATOR
here exists a close relation between the IFT operator F
cting on the Hilbert space L2�R� of quantum mechanics
nd the harmonic oscillator evolution at one-quarter pe-
iod [Ref. 3, Eq. (7.197)],

F = ei�/4 exp�− i 1
4��P2 + Q2�� , �1�

here we have the Schrödinger operators of position
Q : f��x�ªxf�x� and momentum �P : f��x�ª−idf�x� /dx, and
here e�i� /4� is the metaplectic phase (Ref. 17, Appendix
). This leads to the definition of the fractional IFT op-
rators F� through a number operator N,

F�
ª exp�− i 1

2��N�, N ª

1
2 �P2 + Q2� − 1

21. �2�

he spectrum of N in L2�R� is k� �0,1,2, . . . �, nondegen-
rate, and F4=1 is the unit operator. The normalized
igenfunctions of N are the well-known quantum har-
onic oscillator functions,

�k�x� = exp�− 1
2x2�Hn�x�/�2kk ! � �. �3�

he ground state is �0�x�, and there is no “top” state.
Acting on functions f�L2�R�, F� is a unitary integral

ransform that one can write, using either powers or
ngles �ª

1 ��, as
2

007 Optical Society of America
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�F�:f��x� =�
R

dx�F����x,x��f�x��, �4�

F����x,x�� =
ei�/2

�2�i sin �
exp i

�x2 + x�2�cos � − 2xx�

2 sin �
�5�

=	
k=0

�

�k�x�exp�− ik���k�x��*. �6�

n the closed-form Eq. (5), the square root is understood to
e �isªexp�i 1

2� sign s��
s
, and there are Dirac singulari-
ies at F�0��x ,x��=��x−x��=F�4��x ,x�� and F�2��x ,x��=��x
x��. The bilinear generating function form of Eq. (6) (Ref.
8) exposes the role of the orthonormal and complete os-
illator basis �k�x� in Eq. (3), which are eigenfunctions of

with the four infinitely degenerate eigenvalues, �−i�k

�1,−i ,−1, i�.
The probability density of the oscillator functions,

�k�x�
2, are the invariants under �-evolution. Functions
hat are covariant should have one parameter undergoing
armonic motion; these are the coherent states, which
an be defined equivalently as ground states displaced by
complex parameter c, or as linear generating functions

f the oscillator functions, also with powers of c,

�c�x� ª ec2/2�0�x − �2c� �7�

=	
k=0

� ck

�k!
�k�x�. �8�

he evolution cycle of �c�x� under F� is evinced in the
armonic motion of the parameter c���,

F��c�0��x� = �c����x�, c��� = c�0�exp�− i 1
2��� . �9�

. DISCRETE FOURIER TRANSFORM
he standard N�N DFT matrix is F= �Fm,m��, with ele-
ents that involve powers of the Nth roots of unity,

Fm,m� ª
1

�N
exp�− i

2�mm�

N 
 . �10�

t is periodic (Fm,m�=Fm+kN,m�=Fm,m�+k�N for k ,k� inte-
ers), symmetric �Fm,m�=Fm�,m�, and unitary �F†F=1
FF†�, so 
det F 
 =1. Its square is the inversion matrix

F2�m,m�=�m,−m�, and F4=1 is a fourth root of the unit ma-
rix.

. Eigenvalues and Projectors
he eigenvalues of the N�N standard DFT matrix are
he fourth roots of unity, to be denoted by 	�n�ª �−i�n

exp�−i 1
2�n�� �1,−i ,−1, i�, for n� �0,1,2,3�. This divides

he space of N-point complex signals into four Fourier-
nvariant subspaces whose dimensions N	 are the multi-
licities of the eigenvalues 	, which have a peculiar
odulo-4 recurrence in the dimension N= :4J+n, given

y

Dimension Multiplicities N	

N 	 = 1 − i − 1 i det F

4J J + 1 J J J − 1 − i�− 1�J

4J + 1 J + 1 J J J �− 1�J

4J + 2 J + 1 J J + 1 J − �− 1�J

4J + 3 J + 1 J + 1 J + 1 J i�− 1�J

,

�11�

or J
0, i.e., roughly N	� 1
4N; of course 		N	=N. These

ourier subspaces are mutually orthogonal; their projec-
or matrices are

P	 = 1
4 	

n=0

3

	−nFn, Fn = 	
	

	nP	, �12�

atisfying P	P	�=�	,	�P	.

. Standard Fractionalization
ourth roots of unity, such as F, have “standard” frac-

ional powers FS
� that we consider to be purely geometri-

al. They are given by

FS
�
ª 	

n=0

3

exp�i 3
4��n − ���

sin ��n − ��

4 sin 1
4��n − ��

Fn �13�

=exp�− i 1
2��NS�, NS ª 	

n=0

3

nP	�n�. �14�

hey satisfy composition, FS
�FS

� =FS
�+�, and Eq. (13) en-

ures that for integer �=n, FS
n=Fn. This U�1�S Lie group

s displayed in Eq. (14) as generated by a “number ma-
rix” NS, in the same form as in Eq. (2). The Fourier
igenspaces with eigenvalues 	�0�=1, 	�1�=−i, 	�2�=−1,
nd 	�3�=i are also eigenspaces of the number matrix
ith eigenvalues n=0, 1, 2, 3, respectively.
However simple and universal the standard FrDFT

Eq. (13)] appears to be, it is not the fractionalization we
ant to consider, because while for N→� the DFT matrix

10) contracts to the IFT kernel e−ixx� / �2�, the standard
rDFT matrix (13) does not contract to the canonical in-

egral transform kernel (5), belonging to the continuous
rIFT group on L2�R�.

. FRACTIONALIZATION OF DFT IN A
ASIS V
he last paragraph justifies considering a number matrix
ifferent from the standard NS in Eq. (14). Its spectrum
hould be k� �0,1, . . . ,N−1� and increase only the inter-
al �0,N� under contraction N→�.

. Fourier Eigenbases and Their FrDFTs
ithin each 	-subspace one can find orthonormal bases V

f N-column vectors, which we indicate by v�	,j�= �vm
�	,j��,

abeled by j� �0,1, . . . ,N	−1�, and with rows m
�1,2, . . . ,N�. They will satisfy
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v�	,j�†v�	�,j�� = ��,	��j,j�, 	
j=0

N	−1

v�	,j�v�	,j�† = P	 �15�

nd can be arranged in four N�N	 rectangular matrices
�	�= �vm

�	,j��. There are slight and nonessential differences
n the expressions of the four 	-cases in Eq. (11); we shall
ot need their explicit forms.
Next we build the bilinear generating function analo-

ous to Eq. (6) for the finite bases V characterized above.
or noninteger � we must further specify that 	�

�	�n���
ªexp�−i 1

2�n�� with n� �0,1,2,3�. We define the
-FrDFT by the N�N matrices FV

� , whose elements are

�FV
��m,m� ª 	

	�n�
	
j=0

N	−1

vm
�	,j�exp�− i 1

2��4j + n���vm�
�	,j�* �16�

=	
	

	��V�	���	����V�	�†�m,m�, �17�

��	���� ª diag�exp�− 2i�j��� is N	 � N	. �18�

he last line defines the matrix ��	����, which is diagonal
nd independent of 	—except for its dimension. The con-
itions of Eq. (15) ensure the multiplication property

V
�FV

� =FV
�+� modulo 4, and the unitarity �FV

��†=FV
−�, of

ach set of V-FrDFT matrices. When � is integer,
�	����=1, and the matrix (17) becomes the sum of the

rojectors in Eq. (12), so FV
n =Fn. The V-FrDFT matrices

hus belong to subgroups U�1�V�U�N�, all of which pass
hrough the standard DFT matrix and its integer powers.

. Number Matrix of an Eigenbasis
ote that in each 	-subspace, the numbering of the N	

asis vectors v�	,j� by j� �0,1, . . . ,N	−1� is arbitrary; our
onstruction is still purely geometric, since no dynamic
energy spectrum” is used to suggest any prefered order.
Three bases will be examined in the next section.) Start-
ng with one V basis, represented by the N�N matrix V,
e can subject each 	-subspace to an N	�N	 unitary

ransformation U�	��U�N	�, so that through right multi-
lication we obtain a new W-basis associated to the prod-
ct of matrices W=VU as well as a new one-parameter cy-
lic group of W-FrDFTs that will also pass through the
tandard DFT matrix F and its integer powers. The mani-
old of these U�1�V FrDFT subgroups within the

2-dimensional manifold of U�N� has dimension 		N	
2

nd can be characterized by its tangent at the origin,
amely, its number matrix.
The V-FrDFT matrix in Eqs. (16)–(18) has the form of

q. (2) in continuous systems; they are Lie exponentials
f an N�N number matrix associated to the basis V,
FV
� = exp�− i 1

2��Nv� ,

NV ª �i
2

�

d

d�
FV

��
�=0

, �19�

= 	
	�n�

	
j=0

N	−1

v�	,j� diag�4j + n�v�	,j�†. �20�

he eigenvectors of the number matrix are v�	�n�,j� with
ondegenerate eigenvalues 4j+n� �0,1,2, . . . ,N−1�. Fi-
ally, note that the number operator in Eqs. (19) and (20)
an serve equally well to define the V-FrDFT group of ma-
rices proposed in Eqs. (16)–(18).

. Discrete Coherent States
he requirement that the bilinear generating function

orm of the V-FrDFT proposed in Eq. (16) contract in the
→� limit to the FrIFT in Eq. (6) suggests that we

hould propose discrete or discretized oscillatorlike func-
ions, numbered by k=4j+n as above, to have “good”
-bases for the fractionalization of the DFT matrix F. The

hree models of the next section comprise essentially
dentical low-lying eigenvectors, and they differ most
harply in the highest ones. The FrDFTs of sampled func-
ions, such as centered rectangles,10,11 do not provide a
ufficient and reliable impression of their overall fidelity
o the FrIFT. Our proposal here is to examine the exis-
ence and behavior of associated coherent states.

Associated to the V-FrDFT in Eq. (16), we search for
tates given by N-vectors �c

V�m� that contract to the con-
inuous coherent states �c�x� in Eqs. (7) and (8). This can
e made by truncating the infinite sum to the N available
unctions or by displacing the ground state. The latter can
e done when the system is periodic and has a well-
dentified ground state �j ,n�= �0,0�. For generic, nonperi-
dic V-bases, we opt for the former choice, Eq. (8), defin-
ng discrete coherent states as linear generating functions
f the V-basis vectors, namely, as N-point column vectors
f components

�c
V�m� = 	

	�n�
	
j=0

N	−1 c4j+n

��4j + n�!
vm

�	,j�. �21�

hen multiplied on the left by FV
� , each summand is mul-

iplied by a phase that is collected by the complex param-
ter c���=c�0�exp�−i 1

2���, exactly as in Eq. (9), so that the
-FrDFT is a uniform rotation of the complex c-plane. For

arbitray” bases V, the vectors defined by Eq. (21) may not
ean much, but for “good” bases (closely related to the os-

illator wave functions), the discrete coherent state �c
V

hould initially resemble a displaced Gaussian and
hould oscillate as its continuous counterparts without
ndue distorsion.

. APPROACHES TO DISCRETE
SCILLATOR DYNAMICS

ince the FrIFT has close connection with the dynamics
f the quantum harmonic oscillator, so should their
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-FrDFT analogs. In this section we describe three ap-
roaches: two of them based on the oscillator wavefunc-
ions �k�x� in Eq. (3), and one based on importing sym-
etry to a discrete and concrete physical model.

. Sampled Harmonic Oscillator: Taipei Bases
t is suggestive to build bases for V-FrDFTs using
ampled oscillator functions �k�xm� in Eq. (3). Pei and
eh10 and Pei et al.,11 working in Taipei, have constructed
rDFTs defined through the bilinear generating function

16). They first define the vectors ��k�, k� �0,N−1�,

�m
�k�

ª �k��2�

N
m
, where �22�

m ���− 1
2N, 1

2N − 1� N even

�− 1
2 �N − 1�, 1

2 �N − 1�� N odd
. �23�

hese N-vectors are not quite orthogonal, except for par-
ty �−1�k (we call this the uncorrected Taipei basis); they
re not naturally periodic in k nor m, unless so defined
eyond their natural range; and they are not guaranteed
o have k changes of sign in m as the continuous functions
o. However, they do provide an approximate FrDFT
hen replaced directly in Eq. (16), which produces cred-

ble harmonic motion on its coherent states.
We display the uncorrected Taipei basis �m

�k� by the
ray-tone matrix �m ,k� in Fig. 1; there we can see the
elative signs and the regions where the components are
ear zero. The errors are small in this uncorrected basis
or the lower-lying states. For example, when N=33 as in
ur figures, the maximum of the overlaps ���k� ,��k��� for
�k��22= 2

3N is 0.01. The coherent states constructed
ccording to Eq. (21), with the uncorrected Taipei basis
23) are shown in Fig. 2 for three values of c�0�, over one-
uarter of the Fourier cycle. The center of the Gaussian-
ike bumps is at mmax�����N /�Re c���; in the figure, for

=33, the peak of a c=5, coherent state is at mmax
16.2, just outside the interval m� �−16,16�, yet it oscil-

ates quite harmonically and does not unduly disperse.
The refinement of this construction constitutes the

ork of Pei and Yeh10 and Pei et al.,11 who first projected
he basis functions (22) by Eq. (12) to separate them into
he four 	-eigenspaces and then applied a modified
ramm–Schmidt computer orthonormalization process
ithin each eigenspace, with the numbering provided
aturally by the energy quantum label k.

. Mehta Eigenbasis
e consider next a (previous and) very elegant basis for
rDFTs given by Mehta in 1987,12 who found that the
ums of periodically displaced oscillator functions (3),


m
�k� = 
m+N

�k�
ª 	

s=−�

�

�k��2�

N
�m + Ns�
 , �24�

re N eigenvectors of the DFT matrix, F��k�= �−i�k��k�,
hich (as the Taipei basis) is not quite orthogonal. Except

or orthogonality, this Mehta basis also fulfills most ex-
ectations of Eq. (16) with k=4j+n; appears in Fig. 3.
omparison with Fig. 1 shows that they differ only at the
ighest values of energy k. The coherent states built out
f the Mehta basis are shown in Fig. 4; since they are pe-
iodic, for large c they “spill over” the ends of the interval
t ± 1

2 �N−1�.
Generalizations of these Mehta functions to other simi-

arly summed Fourier eigensets of special functions have
een shown by Atakishiyev and others19,20 to extend into
he much wider field of discrete q-special functions.

. Ankara Lattice and FrDFT
group of researchers and students based in Ankara in-

roduced, by analogy with continuous systems, the Hamil-
onian for a periodic vibrating lattice model.13,14 This sys-
em consists of N points of equal mass, numbered
yclically by m� �1,2, . . . ,N�0�, that are on a circle,
oined to their equilibrium positions and to one another
y springs. The states of the system are given by the N
omplex quantities �fm���� subject to time-� Schrödinger
volution by a real Hamiltonian matrix HA= �Hm,m�

A � (A for
nkara); solving a difference equation, the solution is a
reen matrix GA���,

HAf��� = i
d

d�
f��� ⇔ f��� = GA���f�0�, �25�

ig. 1. Matrix �m ,k� of the uncorrected Taipei basis 	m
�k� of

ampled oscillator functions in Eq. (22) for N=33. Light and dark
lements indicate positive and negative values, respectively.

ig. 2. Motion of coherent states built out of the uncorrected
aipei basis of sampled oscillator functions in Eq. (22) for N
33. In the three columns c�0�=1, 3, 5. The rows show their evo-

ution over a quarter-period for �=0, 0.2,…1.0. Dashed curve,
eal parts; dotted curve, imaginary parts; solid curve, absolute
alues.
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GA��� ª exp�− i�HA�. �26�

he �-evolution of the lattice defines a group of
A-transforms” that is expected to lie approximately on an
-FrDFT closed cycle (still to be defined), i.e.,

FA
���� � exp�− i��HA − h01��. �27�

ere h0 is the lowest (vacuum) energy; this is an analog of
he metaplectic phase correction in Eqs. (1) and (2) in the
ontinuous case.

The group in Ankara5,13,14 considered the natural dif-
erence analog of Eq. (2),

HA ª − 1
2 �� + �̃�, �28�

� ª circ�− 2,1,0, . . . ,0,1�, �29�

�̃ ª F�F−1 = diag�− 4 sin2��m/N��. �30�

his Hamiltonian contains the kinetic energy of the cir-
ulating second-difference matrix �, which is due to equal
prings between first neighbors along the circle. The po-
ential energy is contained in the springs that tie each
ass to its equilibrium position by the diagonal �̃, soft

round m�N�0 and stiff around m� 1
2N.

As in the continuous case, the Ankara oscillator system
n Eq. (28) is invariant under the DFT; F and HA can be
imultaneously diagonalized with a common set of eigen-
ectors,

ig. 3. Matrix �m ,k� of the Mehta of oscillator functions 
m
�k� in

q. (24). It differs significantly from that in Fig. 1 only in the
ighest k-columns.

ig. 4. Motion of Mehta coherent states built out of the basis

m
�k� in Eq. (24). The rows and columns have the same parameters
s those in Fig. 2.
HAh�k� = Ekh�k�, Fh�k� = 	�n�h�k�, �31�

here the numeration follows that of Eq. (16) with k=4j
n. The energy eigenvalues �Ek� are the roots of an Nth
egree polynomial; they are real and nondegenerate (ex-
ept for one double degeneracy when N is a multiple of
13), and they are naturally ordered in k by the number of
ign alternations in m. Yet they are not equally spaced
or rational nor algebraic (for N
4), so they have to be
omputed numerically. The hm

�k�’s have been named
arper functions;14 they are bona fide orthonormal and
eriodic N-point signals; their matrix is shown in Fig. 5
cf. Figs. 1 and 3).

. Importation of Symmetry
he time evolution of the Ankara lattice is produced by

he Green matrix in Eq. (26), whose matrix elements are
he bilinear generating functions

Gm,m�
A ��� = 	

k=0

N−1

hm
�k�exp�− i�Ek�hm�

�k� . �32�

he Green matrix is unitary for all ��R; but since the
Ek� are not commensurable, the �-line of Green matrices
oes not close into a U�1� circle but is a Lissajous-type
urve in the N2-dimensional manifold of U�N�.

To produce a FrDFT with a modulo-4 cycle, the Ankara

ig. 5. Matrix �m ,k� of the Ankara oscillator with the Harper
unctions hm

�k�. Note the “jump” at k�1/2N between states where
he soft springs contain most of the energy and those where the
attice vibration is largest in the stiff zone.

ig. 6. Motion of coherent states built out of the Harper func-
ions hm

�k� of the Ankara oscillator [Eq. (31)] with imported sym-
etry. The parameters are the same as in Figs. 2 and 4. In the

ast column we see the effect of the stiff-mode dominance.
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roup imported the symmetry of the continuous system
y replacing the physical spectrum �Ek� of the vibrating
attice with the linear number spectrum �k� between 0
nd N−1. The action of this A-FrDFT on the Harper co-
erent states, defined as in Eq. (21) is shown in Fig. 6. For

arge c, the stiff modes at the interval ends overwhelm
he soft modes, so most of the energy lingers there
hroughout the cycle.

Symmetry importation has maintained dialogue with
any of the works on finite models of quantum
echanics21–24 and discrete models with number-phase
ncertainty relations.25–28 Here, the importation of sym-
etry both evinces and bridges the gap between the dy-

amics of the physical system on one hand and the geo-
etric requirement of a fractional DFT generated by a

umber matrix.

. Discrete Toroidal and Plane Phase Spaces
n order to associate a phase space to discrete systems
long the lines of continuous classical or quantum Hamil-
onian systems, we must put in place proper definitions of
osition and momentum; such may also be based on the
ynamics of coherent states, although we should be pre-
ared for mismatches between the two.
The simplest analogy consists in assigning to the row

umbers of the state N-vectors f= �fm� the meaning of
iscrete position, and to the row numbers of its DFT
f= �f̃m�� the meaning of discrete momentum. Their inter-

wining by F implies that these discrete sets of points
hould be considered periodic with the period N, so phase
pace is a discrete torus of points �m ,m��. Integer trans-
ations along the position or momentum circles are well
efined, as well as a discrete Heisenberg–Weyl group with
phase composition, and a discrete Wigner function can

lso be defined29–31 with the most important properties of
ts continuous counterpart. On this construction, how-
ver, understanding the role of the fractional DFT is dif-
cult, because classically it is supposed to rotate the po-
ition circle continuously onto the momentum circle—in
pite of the topological obstruction presented by the hole
f the torus.

Discrete coherent states �c
V as defined in Eq. (21) pro-

ide for another picture of phase space, namely, the com-
lex c-plane, whose real and imaginary parts take the
ole of continuous position and momentum variables. The
ction of the FrDFT is then in complete accordance with
lassical expectations but collides with the notion that the
hase space of discrete systems should be compact.

. su„2… FINITE OSCILLATOR MODEL
discrete, finite system with the geometry and dynamics

f the harmonic oscillator was proposed in Ref. 6 (see also
ef. 16), realized as a planar paraxial, shallow multimo-
al waveguide that processes N-point complex signals in
arallel, and produced and received at linear arrays of
oint emitters and sensors. This model, developed in Cu-
rnavaca, follows with a “discrete quantization” of the
lassical harmonic oscillator. It has natural coherent
tates whose behavior was analyzed in Ref. 15. Here we
ighlight only the main postulates and results in terms
omparable to the models of Section 5.

. Position, Momentum, and Number
iscretely quantized, the classical observables of position
and momentum p are assigned not to the eigenvalues of

he Schrödinger operators Q and P seen above, but to the
igenvalues of the operators Li of the Lie algebra of angu-
ar momentum and spin su�2�, which is characterized by
� �L� = iL� . The new asignments (with overbars) and their
pectra are

position: Q̄ ↔ Lx, m � �− l,− l + 1, . . . ,l�, �33�

momentum: P̄ ↔ Ly, p � �− l,− l + 1, . . . ,l�, �34�

number: N̄ ↔ Lz + l1, k � �0,1, . . . ,2l�, �35�

ithin the spin-l representation of su�2�, for fixed l
�0, 1

2 ,1 , . . . �. This representation has dimension N=2l
1, as determined by the quadratic Casimir operator,

Q̄2 + P̄2 + �N̄ − l1�2 = l�l + 1�1. �36�

. Eigenvectors of Number
he signals sensed along the waveguide evolve through a
iscrete version of the FrIFT, the fractional Fourier–
ravchuk transform (FrFKT), which is built exactly as in
q. (2), but with the number operator N̄ in Eq. (35). It is a

otation around the z axis that carries the position x axis
nto the momentum y axis. The basis �k

�l� of the FrFKT
re the eigenvectors of the number operator Lz, measured
n the position basis of Lx, and are known as the Wigner
ittle-d functions [Ref. 32, Eq. (3.65)],

�k
�l��m� = dm,k−l

l �− 1
2�� = dk−l,m

l � 1
2�� �37�

=
�− 1�k

2l ��2l

k 
� 2l

l + m
Kk�l + m; 1
2 ,2l� . �38�

he last form shows that the m-dependence is contained

n the square root of the binomial distribution, � 2l

l+m �,
imes the symmetric Kravchuk polynomial of degree k in
+m� �0,1, . . . ,2l�.33 Kravchuks34 are discrete orthogonal
ounterparts to the Hermite polynomials [Ref. 35, Eqs.
5.2.13) and (5.2.14)] and binomials to Gaussians.

In Fig. 7 we show the matrix of the Cuernavaca basis.
ote that the top states �k�2l� mirror the bottom states

k�0� with alternating signs between consecutive points,

2l−k
�l� �m�= �−1�l−k+m�k

�l��−m�. This figure should be com-
ared with Figs. 1, 3, and 5 of the previous bases.

. Fourier–Kravchuk Transform Matrix
he FrFKT of power � is a rotation around the z axis by
n angle �= 1

2��, generated by N̄, which carries the Q̄ x
xis onto the P̄ y axis, with a phase [cf. Eq. (2)],

K�
ª exp�− i 1

2��N̄� = e−i�l�/2 exp�− i 1
2��Lz� . �39�

he FrFKT matrix elements are built as bilinear generat-
ng functions of the wave functions in Eq. (38) for N=2l
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1, as in Eq. (16); using standard results from angular
omentum theory,32 they can be summed to a closed

orm,

Km,m�
�l,�� = 	

k=0

2l

�k
�l��m�e−i�k��k

�l��m�� = im�−mdm,m�
l � 1

2��� .

�40�

The set of FrFKT matrices form a group
�1�K�SU�2��U�2l+1�. However, note that this group
oes not contain the Fourier matrix F of Eq. (10); instead,
or �=1, K�l,1� is the real matrix shown in Fig. 7, multi-
lied by a circulating phase, as can be seen by comparing
qs. (40) and (37). Also, the Cuernavaca model is not pe-
iodic: In signals of N=2l+1 points, m= ± l are not first
eighbors, but the two ends of the signal.

. Coherent States in su„2…
he ground state of the su�2� finite oscillator is

�0
�l��m� = d−l,m

l � 1
2�� = 1

2l�� 2l

l + m
 . �41�

t is even and centered in m� �−l , l�; this we can imagine
s a density bump on the south pole of a sphere, which is
rojected on the position x axis as a discrete Gaussianlike
unction. Rotation of this sphere around the y axis of mo-
entum through an angle −�, will translate the projec-

ion of its density bump in Eq. (41) along the position axis
y sin � [cf. Eq. (7)] without exceeding the interval. The
enter of the bump reaches the equator at �= 1

2� and ex-
ends up to the north pole of the sphere for �=�. Simi-
arly, rotation of the sphere around the x axis with
xp�i�Q̄� will multiply the signal values by linear phases,
nd this translates the momentum of the ground state in
q. (41).
We defined the coherent states of the Cuernavaca
odel for 0���� by

��
�l�
ª exp�i�P̄��0

�l�, �42�

��
�l��m� = dm,−l

l �− 1
2� − �� �43�

=	
k=0

2l

�− 1�kdl,l−k
l ����k

�l��m�, �44�

dl,l−k
l ��� = �cos 1

2��l��2l

k 
�sin 1
2��k. �45�

quation (43) follows from angular momentum theory,32

nd Eq. (44) displays coherent states as the linear gener-
ting function of the number eigenvector set �k

�l��m� [cf.
qs. (8) and (21)]; however, the coefficients of the trun-
ated exponential series ck / �k! are here replaced by Eq.
45) as ��sin 1

2��k / �k ! �2l−k�!.
The FrFKT in Eq. (39) will rotate the sphere around

he z axis by �= 1
2��, so the Gaussian bump projection on

he x axis of ��
�l� will oscillate harmonically with � modulo

, while the coherent state parameter c�0,��ªsin 1
2�

n Eq. (45) is multiplied by a phase, c�� ,��
exp�−i 1
2���c�0,��, which is the exact analog of Eqs. (9)

nd (21). The basic commutator here is �Q̄ , P̄�=i�N̄− l1�
nstead of the standard quantum mechanical �Q ,P�= i1.
n Fig. 8 we show the motion of Cuernavaca coherent
tates over one-quarter Fourier cycles.

. Phase Space of Discrete Systems
he Cuernavaca model is based on the manifold of the Lie
lgebra su�2� with the operators of Eqs. (33)–(35). A
roper covariant Wigner distribution is a function of
q ,p ,n��R3 that we called meta-phase space.36,37 An
-point discrete system belongs to the spin-l representa-

ion �N=2l+1�, whose Casimir [Eq. (36)] classically re-
uces the manifold to a sphere of radius �l, which is an
asily visualized symplectic manifold. Tangent to the
outh pole is ordinary phase space �q ,p��R2. Evolution
long the harmonic guide (modulo a “metaplectic” phase)
s rotation of the sphere around its vertical axis; prisms
otate the sphere around its y axis; inclined slabs trans-
ate signals in x, across the guide and with “reflection” at
he endpoints. Consideration of transformations gener-
ted by elements in the universal enveloping algebra of
u�2� allow for the introduction of aberrations on the
hase space of complex signals, such as those due to the
err effect.38

ig. 7. Matrix �m ,k� of the Cuernavaca discrete wave functions
f the finite oscillator, �k�m� in Eq. (37), for l=16 �N=33�. See the
↔m and k↔2l−k parity covariances with the signs �−1�k and

−1�l−k+m, respectively.

ig. 8. Motion of the coherent states ��
�l� in Eqs. (42)–(45) under

ractional Fourier–Kravchuk transformations. In the three col-
mns, �=30°, 60°, and 90°. The rows have the same parameters
s those in Figs. 2, 4, and 6.
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. CONCLUSION
t should be interesting to compare the different versions
f the FrDFT with the actual output of a planar optical
ourier signal processor, particularly a waveguide, at fi-
ite linear arrays of sensors. We expect that in such
uides, well-collimated coherent beams will evolve with
lose-to-harmonic motion. Then we could select a “best”
-basis so that its V-FrDFT approximates the close-to-
ourier action of that particular signal processor.
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0. T. Hakioğlu, “Linear canonical transformations and
quantum phase: a unified canonical and algebraic
approach,” J. Phys. A 32, 4111–4130 (1999).
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