
ISSN 1063-7788, Physics of Atomic Nuclei, 2007, Vol. 70, No. 3, pp. 513–519. c© Pleiades Publishing, Ltd., 2007.

SECOND INTERNATIONAL WORKSHOP ON SUPERINTEGRABLE
SYSTEMS IN CLASSICAL AND QUANTUM MECHANICS

Theory

Noncommuting Limits of Oscillator Wave Functions*

J. Daboul1)**, G. S. Pogosyan2)***, and K. B. Wolf3)****

Received May 16, 2006

Abstract—Quantum harmonic oscillators with spring constants k > 0 plus constant forces f exhibit
rescaled and displaced Hermite–Gaussian wave functions, and discrete, lower bound spectra. We examine
their limits when (k, f) → (0, 0) along two different paths. When f → 0 and then k → 0, the contraction
is standard: the system becomes free with a double continuous, positive spectrum, and the wave functions
limit to plane waves of definite parity. On the other hand, when k → 0 first, the contraction path passes
through the free-fall system, with a continuous, nondegenerate, unbounded spectrum and displaced Airy
wave functions, while parity is lost. The subsequent f → 0 limit of the nonstandard path shows the dc
hysteresis phenomenon of noncommuting contractions: the lost parity reappears as an infinitely oscillating
superposition of the two limiting solutions that are related by the symmetry.
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1. INTRODUCTION:
OSCILLATORS AND FORCES

The one-dimensional harmonic oscillator is a me-
chanical system whose restitution force −kx is pro-
portional to the spring constant k > 0 and opposed
to the separation x between a mass point and the
oscillator center. When this system is subjected to a
constant external force −f (f > 0, such as a gravita-
tional field in the direction of the negative x axis), it is
characterized by the Hamiltonian operator

H(k,f)(x̂, p̂) :=
1
2
p̂2 +

1
2
kx̂2 + fx̂ (1)

for unit mass, where x̂ and p̂ denote the Schrödinger
operators of position and momentum, with units cho-
sen so that [x̂, p̂] = i1 [1]. The pair of parameters
(f, k) thus provide a plane to study the contraction
limits to the free quantum particle at the point (0, 0)
by taking various paths.

The purpose of this paper is to analyze a case
where there are two inequivalent paths to reach the
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free-particle limit, as shown in Fig. 1. There is the
standard path, where first f is turned off so the
oscillator H(k,0) is centered on the origin, followed by
the limit k → 0 to the free H(0,0). And there is the
nonstandard path, which first turns off k, so that the
system H(0,f) is that of free fall, and then lets the
force f vanish [2]. The problem posed by this non-
commutation of deformation and contraction (for N-
dimensional systems), called “dc hysteresis,” was fol-
lowed through the symmetry algebras of the Hamil-
tonians on the paths of Fig. 1. Here, we examine the
case of N = 1-dimensional quadratic systems, where
the symmetry group of (1) is parity under reflections
across the oscillator center, which exchanges the two
turning points of the harmonic motion for every en-
ergy; this continues being a symmetry in the free limit.
In the free-fall system, however, this symmetry under
reflection is lost; there is only one point of return.
In the subsequent free limit, the symmetry cannot
be fully recovered; but—is it lost? Here, we examine
the phenomenon of dc hysteresis in the spectra and
the wave functions of the oscillator, free-fall, and free
systems, with the case of N = 1 dimension show-
ing this phenomenon clearly through the asymptotic
properties of special functions.

In Section 2, we formalize the proposed limits
classically, and in Section 3, we write the Hermite
functions of the displaced harmonic oscillator in a
form suitable for the proposed limits [3]. These are
performed in Section 4 to the free particle, where
Hermite functions limit to trigonometric functions,
and in Section 5 to the free-fall system, where the
limit is to Airy functions. Section 6 examines the
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Fig. 1. Contraction paths in the k−f plane of harmonic
oscillators with spring constant k and an external force f ,
whose Hamiltonian is given in Eq. (1), at the point A. The
half-plane k > 0 belongs to the generic conjugation class
of shifted Hamiltonians. The standard path A → B →
D passes through centered oscillators (k, f = 0) at B
and then undergoes contraction (indicated by the empty
arrowhead) to the free particle (k = 0, f = 0) at D, which
belongs to a conjugation class by itself. The nonstandard
path A → C → D contracts the Hamiltonian first to the
conjugation class of free-fall systems (k = 0, f) at C and
then contracts once again to the free particle at D. The
first path conserves parity; the second one does not. The
difference between the two paths is dc hysteresis.

remaining contraction of Airy to trigonometric func-
tions. Comparing the results of the two contraction
paths, we comment on dc hysteresis in Section 7.

2. DISPLACED OSCILLATORS
AND CONTRACTIONS

The classical parameters that characterize the
motion under the oscillator Hamiltonian (1) are the
constant values of

the energy, E(k,f) := H(k,f)(x, p), (2)

equilibrium point, ṗ = 0 ⇒ xeq := −f/k, (3)

turning points, p = 0 ⇒ xtur
± := xeq (4)

± 1
k

√
f2 + 2kE(k,f),

minimal energy, E
(k,f)
0 := H(k,f)(xeq, p = 0) (5)

= −f2/(2k) ≤ E(k,f).

When the external force f that acts on the oscil-
lator vanishes, the classical observables of the sys-
tem (2)–(5) exhibit regular limits to the centered
equilibrium point xeq = 0 and to the symmetric turn-
ing points at |xtur

± | =
√

2E(k,0)/k; the minimal clas-

sical energy is E
(k,0)
0 = 0. In the limit k → 0, the

symmetric turning points escape to infinity, while the
minimal energy is zero throughout the process. This

contraction limit can be followed also for the clas-
sical trajectories in configuration space x(t), where
trigonometric functions limit to linear functions; and
it can be seen also in phase space (x(t), p(t)), where
centered ellipses limit to two parallel straight lines,
their slope and intercept depending on the initial con-
ditions.

On the other hand, the limit k → 0 of the ob-
servables of the oscillator system (2)–(5), when the
external force persists, f �= 0, is more delicate. We
first appeal to the elementary observation that the
system (1) is only a shifted oscillator, i.e., that, if we
translate the coordinate x to the equilibrium point (3),
xeq = −f/k, the system becomes

H(k,f)(x̂, p̂) :=
1
2
p̂2 +

1
2
k

(
x̂ +

f

k

)2

− f2

2k
, (6)

i.e., an ordinary oscillator centered on xeq = −f/k,
whose turning points are

xtur
± := xeq ± 1

k

√
f2 + 2kE(k,f) (7)

∼
k→0

{
E/f − kE2/(2f3),
−E/f − 2f/k

and whose energy is shifted down according to (5)

E
(k,f)
0 = E

(k,0)
0 − f2/(2k). (8)

Letting k → 0 in the above expressions means that

xeq, xtur
− , E

(0,f)
0 → −∞, and that the argument x of

the limit wave functions should be finite around the
first turning point xtur

+ = E/f . The final step in this
nonstandard path, the limit f → 0, may now appear
indeterminate. Classically, additive constants to the
Hamiltonian do not alter the equations of motion. In
classical phase space (x(t), p(t)), displacing ellipses
will limit to a parabola, and this to one straight line,
whose slope and intercept depend again on the initial
conditions.

3. OSCILLATOR ENERGIES
AND WAVE FUNCTIONS

Quantum mechanics is a theory with more struc-
ture than classical mechanics; it specifies when the
energy spectrum of a system is quantized or when it
is continuous, and the wave functions involve spe-
cific special functions of mathematical physics whose
pointwise limits should match. Here, we perform the
standard contraction from the harmonic oscillator to
the free particle.

The Schrödinger equation for the shifted harmonic
oscillator (6) is

H(k,f)ψ(k,f)
n (x) (9)
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=
(
−1

2
d2

dx2
+

1
2
kx2 + fx

)
ψ(k,f)

n (x)

= E(k,f)
n ψ(k,f)

n (x),

its spectrum is

E(k,f)
n =

√
k

(
n +

1
2

)
− f2

2k
, n ∈ {0, 1, 2, . . .},

(10)

and its square-integrable solutions are well
known [1], namely

ψ(k,f)
n (x) =

k1/8

π1/4

exp[−1
2

√
k(x + f/k)2]√
2nn!

(11)

× Hn(k1/4(x + f/k))

or

ψ(k,f)
n (x) =

k1/8

π1/4
√

n!
U

(
−n − 1

2
, (4k)1/4(x + f/k)

)
.

(12)

These solutions have definite parity under reflections
across the oscillator equilibrium point of the set

{ψ(k,f)
n (x)}∞n=0, (−1)n; it follows that the ground-

state level is even, and that parity alternates as we
go up the energy spectrum.

In (12), we have written the harmonic oscillator
wave functions in terms of the parabolic cylinder
functions U(a, z) = D−a−1/2(z) {[4], Eq. (19.3.1)}
because they are most appropriate for the limiting
procedure. They are defined in terms of 1F1 hyper-
geometric (Hermite) polynomials as

U(−n − 1/2, z) =
cos(πn/2)√

π
· 2n/2 (13)

× Γ
(

1
2
n +

1
2

)
e−z2/4

1F1

(
−1

2
n;

1
2
;
1
2
z2

)

+
sin(πn/2)√

π
· 2n/2+1/2Γ

(
1
2
n + 1

)

× ze−z2/4
1F1

(
−1

2
n +

1
2
;
3
2
;
1
2
z2

)
,

where, owing to the trigonometric coefficients, only
the first or the second summand appears when n is
even or odd, and with a sign (−1)n/2 or (−1)(n−1)/2,
respectively. The limit f → 0 of the wave func-
tions (12) to those of a centered oscillator is perfectly
regular; the argument of the parabolic cylinder func-
tion in (13) simply becomes z := (4k)1/4(x + f/k) →
(4k)1/4x.

4. STANDARD LIMIT TO THE FREE
PARTICLE

For k → 0, the Schrödinger equation of the har-
monic oscillator (9) becomes that of the free particle,
i.e.,

H(0,0)ψ(0,0)
p (x) = − �

2

2m
d2

dx2
ψ(0,0)

p (x) (14)

=
p2

2m
ψ(0,0)

p (x),

whose energy spectrum E = p2/(2m) ≥ 0 is contin-
uous and nonnegative; it is doubly degenerate (except
for E = 0), and one can use parity (under reflections
across the origin) to classify the free-particle wave

functions φp(x) := ψ
(0,0)
p (x) as{

φ+
p (x) = π−1/2 cos(px/�), p ≥ 0,

φ−
p (x) = π−1/2 sin(px/�), p > 0.

(15)

In this section, we show that the limit of the oscil-
lator wave functions ψ(k,0)(x) as k → 0 at constant

energy E yields the above wave functions ψ
(0,0)
p (x).

This condition yields the relation

E = (n + 1/2)�ωn (16)

= (n + 1/2)�
√

kn/m = p2/(2m),

so that we use the following decreasing sequence of
spring constants for n → ∞:

kn =
1

m�2

p4

(2n + 1)2
. (17)

By substituting these values into (12), we obtain

ψ(kn,0)
n (x) =

k
1/8
n

π1/4
√

n!
U

(
−n − 1

2
, zn

)
, (18)

where

z ≡ zn = (4mkn/�
2)1/4x =

px/�√
n + 1/2

. (19)

We now consider the limit of (18) as n → ∞. For this,
we use (13) replacing z by zn. The argument of the
1F1 functions in (13) thus becomes

1
2
z2
n =

1
2n + 1

(px

�

)2
. (20)

Foremost, the limit of the Gaussian factor is

exp
(
−1

4
z2
n

)
= exp(−p2x2/(4n + 2)) → 1.

For even or odd parity, n = 2j or 2j + 1, respec-
tively, the following limits are straightforward to es-
tablish for integer j → ∞ ([5], § 8.955):

lim
j→∞ 1F1

(
−j; 1

2 ; (px/�)2/(4j)
)

= cos(px/�), (21)
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Fig. 2. Contraction of the harmonic oscillator wave func-
tions of increasing energy n to plane waves (24), (25) and
to Airy functions (45). The horizontal x axis is scaled so
as to keep the classical turning points xtur

± fixed [see (4)].
The centered boxes indicate the portion of the function
that converges to a plane wave p, through scaling in x by
p/2

√
n and normalization by n−1/4. The boxes around

the turning points indicate the same in the limit of con-
traction to Airy functions.

lim
j→∞ 1F1

(
−j; 3

2 ; (px/�)2/(4j)
)

= sin(px/�)/(px/�).

The numerical factors in front of the parabolic cylinder
function in (12) have the following asymptotic behav-
ior for n = 2j or 2j + 1, when j → ∞:

k
1/8
2j · 2j

π3/4

Γ(j + 1/2)√
(2j)!

∼
j→∞

√
p

2πj
, (22)

z
k

1/8
2j+1 · 2j

π3/4

Γ(j + 3/2)√
(2j + 1)!

∼
j→∞

px

√
p

π(2j + 1)
. (23)

Thus, for every finite j, an oscillator of the sequence

{kj}∞j=0 has discrete energy levels E
(kj ,0)
n , bounded

from below by a ground state of even parity with

E
(kj ,0)
0 = 1

2

√
kj , equally spaced by

√
kj , nondegen-

erate, and of definite and alternating parity. In the
limit j → ∞, where kj → 0, all states of finite n will
collapse to the ground level, but the correspond-
ing sequence of increasingly higher states n = j →
∞ will limit to a free state with energy E

(kn,0)
n ≈√

knn ≈ Fν = ν and the same parity. The argument

of the oscillator wave functions (12) is (4kn)1/4x =√
2ν/nx = px/

√
n, so from (13), (21), and (22), (23)

we can write for any p ≥ 0 the two parity-respecting
limits in the form

lim
j→∞

j1/4(−1)jψ(k2j ,0)
2j (x) =

1√
π

cos(px), (24)

lim
j→∞

j1/4(−1)jψ(k2j+1,0)
2j+1 (x) =

1√
π

sin(px). (25)

Because the oscillator wave functions are nor-
malized to unity, the norm of the functions in the
sequence of the left-hand side of the previous two
equations is ≈

√
n → ∞. The Kronecker normaliza-

tion of the bound states thus becomes the Dirac nor-
malization for continuous p ≥ 0 and the two values of
parity. In Fig. 2, we show centered harmonic oscilla-
tor wave functions of increasing energy n ≈ 1

2p2 and
the portion of the function that converges pointwise
to a plane wave in the interval −4π ≤ px ≤ 4π. (See
the caption of Fig. 2; the limit to Airy functions will be
detailed in the next section.)

5. LIMIT k → 0 TO THE FREE-FALL SYSTEM

The classical turning point of a particle with en-
ergy E in a potential V (x) is defined by V (xtur

E ) =
E. The Schrödinger equation may there be approxi-
mated by an Airy equation, because the first term of
the expansion of the energy-shifted potential in the
xtur-shifted coordinate is

V (x − xtur
E ) − E ≈ dV (y)

dy

∣∣∣
y=xtur

E

x, (26)

i.e., a linear or free-fall potential due to a constant
force. For quadratic potentials, relation (26) is exact.

The limit k → 0 of the shifted oscillator can be
analyzed through its energy and turning point, which
are

E =
p2

2m
+ fx, xtur

E =
E

f
, E ∈ R. (27)

We rewrite the Schrödinger equation for this system
as

(H(0,f) − E)ψ(0,f)(x) (28)

=
(
− �

2

2m
d2

dx2
+ fx − E

)
ψ(0,f)(x)

= −
(

�
2f2

2m

)1/3 (
d2

dz2
− z

)
ψ(0,f)(x) = 0

in terms of the energy-dependent variable

z = zE =
(

2mf

�2

)1/3 (
x − E

f

)
(29)
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= (2f)1/3(x − xtur
E ).

The square-integrable eigenfunctions of (28) are then
given in terms of Airy functions ([6], § 7.2.8 and 8.5.3)

ψ(0,f)(x,E) = φE(x) = 21/12f−1/6Ai(zE), (30)

which are Dirac-normalized to satisfy
∞∫

−∞

dxφ∗
E(x)φE′(x) = δ(E − E′). (31)

The eigenfunctions (30) have the same form as the
functions of zE in (28); their dependence on the en-
ergy E is through the displacement of their argument
to the turning point, i.e., zE ∝ (x − E/f).

As in Section 4, we consider a sequence of oscil-
lators with spring constants {kj}∞j=1 tending mono-
tonically to zero, also indicated k → 0. The classical
minimal energy of the shifted oscillators (8) drops

without bound, E
(kj ,f)
0 = −f2/(2kj) → −∞, while

the equilibrium point moves without bound to the
left, x

eq
j = −f/kj → −∞. To maintain a finite en-

ergy value E, the integer level number n of the wave
function (12) must grow, in each oscillator kj of the
sequence according to (10), with n = j, as

E(kn,f)
n =

√
kn(n + 1/2) − f2/(2kn) ≈ E, (32)

n ∈ {0, 1, 2, . . .},
and, hence,

2n + 1 ≈ f2 + 2knE

k
3/2
n

∼
kn→0

f2

k
3/2
n

(33)

⇒ kn ∼
n→∞

(
f2

2n + 1

)2/3

[cf. Eq. (17)]. For that energy E, we should assign
a new position coordinate ξ to the oscillator turning
point (7) which escapes to the right, xtur

+ → ∞, while
we contract the old position coordinate x with the
scale

xtur
+ − xeq =

1
k

√
f2 + 2kE (34)

≈ k−1/4
√

2n + 1 ∼
k→0

f

k
+

E

f
,

where it is understood that k ≡ kn and n are asymp-
totically related by (33), and similarly for all n-
dependent quantities such as xtur

+ and xeq. Keeping
only the leading power of k, we define

ξ :=
x − xeq

xtur
+ − xeq

= 1 +
x − xtur

+

xtur
+ − xeq

(35)

or

ξ :=
(4k)1/4(x + f/k)

2
√

n + 1/2
∼

k→0
1 (36)

+
k

f

(
x − E

f

)
=: 1 + y,

where y will be the argument of the free-fall wave
functions φE(x) in (30).

The coordinate ξ in (35) enters the asymptotic
limit of the parabolic cylinder function to the Airy
functions reported in [4], Eq. (19.7.3),

U

(
−n − 1

2
,
√

4n + 2ξ

)
∼

n→∞
Γ(−n/2)

2n/2
(37)

× [(6n + 3)θ]1/6

(ξ2 − 1)1/4
Ai([(6n + 3)θ]2/3),

where

θ := 1
4

[
ξ
√

ξ2 − 1 − ln
(
ξ +

√
ξ2 − 1

)]
. (38)

With the change of variables (36) and keeping the first
two powers of y = ξ − 1 in all expressions, we arrive
at the following asymptotics for the subexpressions
in (38) and those of the factors in (37):

ξ
√

ξ2 − 1 ∼
n→∞

√
2

(
y1/2 +

5
4
y3/2

)
, (39)

ln(ξ +
√

ξ2 − 1) ∼
n→∞

√
2

(
y1/2 − 1

12
y3/2

)
, (40)

⇒ θ ∼
n→∞

1
3

√
2y3/2; (41)

2−n/2Γ(−n/2)√
n!

∼
n→∞

(2π)1/4k3/8f−1/2, (42)

[(6n + 3)θ]1/6

(ξ2 − 1)1/4
∼

n→∞
2−1/6k−1/4f1/3, (43)

[(6n + 3)θ]2/3 ∼
n→∞

(2f)1/3

(
x − E

f

)
= zE . (44)

In this way, for kn ∼
n→∞

f4/3/(2n)3/2, we have proven

that

lim
n→∞

k−1/4
n ψ(kn,f)

n (x − xtur
E ) (45)

= 21/12f−1/6Ai((2f)1/3(x − E/f))

[cf. Eqs. (30)]. The inner product of the left-hand sides

is k
−1/2
n δn,n′ ; in the limit k → 0, this becomes the

Dirac δ(E − E′).
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6. THE FREE FALL TO FREE LIMIT

The limit f → 0 of the free-fall Airy wave func-
tions (30) closes the nonstandard contraction path
in Fig. 1. We recall the asymptotic properties of the
Airy function ([4], § 10.4) for large positive and large
negative arguments,

Ai(z) ∼
z→∞

1
2
√

π
z−1/4 exp

(
−2

3
z3/2

)
, (46)

Ai(−z) ∼
x→−∞

1√
π

(−z)−1/4 sin
(

2
3
(−z)3/2 − 1

4
π

)
.

(47)

For energy E, the argument of the Airy function
in (30)–(45) is

z := (2f)1/3
(
x − E

f

)
= −

√
2E√
f

(
1 − f

E
x
)
, (48)

where the turning point is at xtur = E/f . When we
consider a sequence of free-fall systems with external
forces f → 0+ (we have assumed throughout that
f > 0), their turning points escape to the right for
positive energy (E > 0) or to the left for negative
energy (E < 0). Hence, for a fixed, finite position x,
there exists always a (small) f in the sequence such
that z < 0 for positive energy and z > 0 for negative
energy. In other words, for positive energies, the limit
f → 0 concerns the region x < xtur → ∞, where the
wave function oscillates on the whole x axis, and (47)
applies. For negative energies, the limit concerns x >

xtur → −∞, where (46) applies and the wave function
is reduced to zero; this eliminates the negative-energy
states from the spectrum of the free limit. Finally, the
boundary case E = 0 in the limit f → 0 contains an
Airy function of z =

√
2fx → 0, which indicates that

the wave function (30) becomes the constant φ0(x) =
21/12f−1/6Ai(0) → ∞.

For E > 0, we use (47) further expanding the ar-
gument of the sine function as

2
3
(−z)3/2 =

(2E)3/2

3f

(
1 +

f

E
x

)3/2

(49)

∼
f→0

(2E)3/2

3f
+

√
2Ex.

The free-fall wave functions (30) multiply the previ-
ous limit expressions by the factor 21/12f−1/6, and
thus we have

φE>0(x) ∼
f→0

1√
2π

((cos χ + sin χ) cos(px) (50)

+ (cos χ − sinχ) sin(px)),

where the label p :=
√

2E > 0 is the same as in (14)–
(25), and

χ := (2E)3/2/3f → ∞. (51)

Lastly, φE<0(x) ∼
f→0

0 and φE=0(x) ∼
f→0

π−1/2. This

is the result of following the nonstandard path.

7. CONCLUSIONS

We now compare the results of the standard and
the nonstandard paths of Fig. 1 when contracting
the oscillator with a constant force (1) to the free
system (14). Along the standard path, the discrete
and lower bound spectrum of the oscillator collapsed
to the double positive continuous spectrum of the
free particle classified by parity, and the Hermite–
Gaussian wave functions contracted as expected to
the full set of plane-wave solutions given in (24), (25).
On the other hand, the nonstandard path through the
free-fall system (45) led to the results (50), (51). The
phenomenon of dc hysteresis due to the loss of parity
can be seen by comparing the last result (50), (51)
with the free eigenfunction set (15) for p ∈ R.

As we pointed out in the Introduction, along the
nonstandard path, the discrete lower bound oscillator
energy spectrum first contracts to the real line of the
free-fall spectrum, where the Airy wave functions do
not have definite parity. When the external force is
then made to vanish, the lower half of this spectrum is
lost because the corresponding wave functions van-
ish, while the upper half remains, and expression (50)
indeed becomes a solution to the free-particle system.
Although the sum of squares of the coefficients of
the cos(px) and sin(px) summands is 1/π, their ratio
becomes indeterminate in the limit f → 0 because
their mixing angle χ in (51) grows without bound.
The wave functions in the nonstandard limit exhibit
an infinite oscillation between the two solutions of
distinct parity.

Generally, dc hysteresis is due to the loss of sym-
metry [2] along a nonstandard contraction path; in
one dimension, the symmetry lost is parity. This is
now clearly manifest in the limiting spectra and wave
functions, of which only “half” is recovered, in the
peculiar way in which expression (50) contains the
sum of the two original limit solutions, in an infinitely
oscillating linear combination.
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