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Wavefunctions with rotational symmetry (i.e., zero angular momentum) in D dimensions, are called s-
waves. In quantum quadratic systems (free particle, harmonic and repulsive oscillators), their radial parts
obey Schrödinger equations with a fictitious centrifugal (for integer D ≥ 4) or centripetal (for D = 2)
potential. These Hamiltonians close into the three-dimensional Lorentz algebra so(2, 1), whose exceptional
interval corresponds to the critical range of continuous dimensions 0 < D < 4, where they exhibit a one-
parameter family of self-adjoint extensions in L2(�+). We study the characterization of these extensions in
the harmonic oscillator through their spectra which – except for the Friedrichs extension – are not equally
spaced, and we build their time evolution Green function. The oscillator is then contracted to the free particle
in continuous-D dimensions, where the extension structure is mantained in the limit of continuous spectra.
Finally, we compute the free time evolution of the expectation values of the Hamiltonian, dilatation generator,
and square radius between three distinct sets of ‘heat’-diffused localized eigenstates. This provides a simple
group-theoretic description of the purported contraction/expansion of Gaussian-ring s-waves in D > 0
dimensions.

c© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction: s-waves

Rotationally symmetric states of central potentials, including the free particle, are called s-waves for short;
they are of interest especially in low dimensionsD = 1, 2, 3 and 4, both for quantum and wave phenomena
[1]. In this paper we study the dependence of s-waves on continuous dimension D > 0. We note that the
range 0 < D < 4 is especially interesting because it corresponds to the exceptional interval – identified
by Bargmann [2] – of unitary irreducible representations of the three-dimensional Lorentz group SO(2, 1).
In this interval, the radial quantum harmonic oscillator and free particle Hamiltonians admit one-parameter
families of self-adjoint extensions. In this context we examine the Green functions that drive time evolution
unitarily; this analysis is made on the quantum harmonic oscillator, which is then contracted to the free
limit. The expectation values of so(2, 1) generators are computed between normalized ‘radial Gaussians’
that are obtained through ‘heat’ diffusion of their δ-type eigenfunctions. In particular, we find the generic
behavior of the expectation value of the square radius.
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1084 K. B. Wolf and F. Aceves-de-la-Cruz: Dependence of s-waves on continuous dimension

Models of wave and diffusion phenomena are ruled by the Laplacian which, inD-dimensional spherical
coordinates �q(ρ,Ω) ∈ �D, is

∇2
�q =

∂2

∂ρ2 +
D − 1
ρ

∂

∂ρ
+
L(Ω)2

ρ2 , (1)

whereL2(Ω) is the square angular momentum operator. The s-waves are independent of Ω, so Ψ(�q ) = Ψ(ρ)

depend only on the radial coordinate ρ = |�q |, and L2(Ω) Ψ(ρ) = 0.
The Laplacian ∇2 and its Fourier transform, the square-position operator Q2, can be linearly combined

and commuted to yield the operators

J0 := 1
4 (−∇2 +Q2), J1 := 1

4 (−∇2 −Q2), J2 := −i 1
4 (Q · ∇ + ∇ ·Q), (2)

which form a vector basis for the three-dimensional Lorentz Lie algebra so(2, 1), with the well-known
commutation relations,

[J0, J1] = iJ2, [J2, J0] = iJ1, [J1, J2] = −iJ0. (3)

Also relevant for our study are the linear combinations

J+ := J0 + J1 = − 1
2 ∇2, J− := J0 − J1 = 1

2Q
2, (4)

and the Casimir invariant

J2 := J2
1 + J2

2 − J2
0 . (5)

When the Casimir invariant is a multiple k(1−k)1 of the unit operator, it essentially determines (modulo
a label related to the spectrum) the irreducible representations of the algebra, and the Lie group to which
it exponentiates. For k a positive integer, this is the proper pseudo-orthogonal Lorentz group SO(2, 1); for
k half-integer, one has its double cover SU(1, 1) = Sl(2,�) = Sp(2,�) (pseudo-unitary, real linear, and
real symplectic groups); for k a quarter-integer, the four-fold cover is the metaplectic group Mp(2,�), and
the universal cover Sp(2,�) results when k is irrational [3, Sect. 9.4]. The fundamental representation of
SO(2, 1) is by 3 × 3 matrices, and 2 × 2 matrices for its double cover (Mp(2,�) and higher covers have no
faithful finite matrix realization).

Further properties pertain the action of the algebras and groups on a Hilbert space of functions. Most
of the early work on so(2, 1) used the realization of the algebra by first-order differential operators on the
Hilbert space of Lebesgue square-integrable functions on the circle. Here the realization is given by the
second-order differential operators (2) and (4), acting on functions of the radial coordinate relevant for s-
waves, in the Hilbert space L2(�+) of square-integrable functions on the positive half-line. This realization
of the algebra so(2, 1) on L2(�+) was examined in [4] and [5], and was exponentiated to unitary radial
canonical integral transforms, forming the group Sp(2,�) in even-D dimensions, and Mp(2,�) in odd-D
dimensions. The kernel of these integral transforms include the Green functions for the quantum harmonic
and repulsive oscillators (generated by J0 and J1), the free particle (generated by J+), scaling and chirp
phase (generated byJ2 andJ−). Second-order differential operators have extra properties over the first-order
ones; one of them is the possibility that operators have a manifold of self-adjoint extensions.

We should emphasize that in adopting the group theoretical approach for the description of so(2, 1) =
sp(2,�) quadratic systems, we are taking advantage of the isomorphism that exists between their Sp(2,�)
transformations in classical and quantum mechanics. Thus we refer to the square-radius operator and
observable, and not to its ‘square root’ radius, as other authors have done and treated with Taylor expansions
for time development. In this regard, our results are exact.

In Sect. 2 we perform this analysis for the D-dimensional quantum harmonic oscillator. The results are
contracted to the free particle in Sect. 3, so that we can examine the Green function in Sect. 4. The free
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time evolution of the expectation values of the square radius J1 is addressed in Sect. 5 as a radial canonical
transformation among the three so(2, 1) generators; its matrix representation succintly leads to closed-form
results for three families of Gaussian-ring-type initial conditions. As shown by Andreata and Dodonov [6],
different powers of the radius and/or of its measure lead to different quantifications of the shrinking and/or
expansion of the radial wavepackets. The appeal of the square-radius expectation value for s-states is the
simplicity of its time evolution under all quadratic potentials with a γ/r2 term that realizes isotropic systems
in continuous-D dimensions. In Sect. 6 we present some relevant conclusions.

2 The D-dimensional harmonic oscillator

It is well known that the physical eigenfunctions of the harmonic oscillator Schrödinger equation, for mass
m, energy E, and angular frequency ω (Hooke constant 1

2mω
2), are the solutions to

HHO Ψ(�q ) :=
(
− �

2

2m
∇2

�q +
mω2

2
ρ2
)
Ψ(�q ) = EΨ(�q ). (6)

For s-waves Ψ(ρ) = Ψ(|�q |), we change functions and variables through

Ψ(ρ) =:
(mω

�

)1/4
ρ−(D−1)/2ψ(r), ρ =:

√
�

mω
r, E =: 2�ω µ, (7)

so that the wavefunctions ψ(r) satisfy a dimensionless form of (6),

K0 ψ(r) :=
1
4

(
− d2

dr2
+

γ

r2
+ r2

)
ψ(r) = µψ(r), (8)

r > 0, γ := 1
4 (D − 1)(D − 3). (9)

They are normalized under the D-independent form of the inner product that defines the Hilbert space
L2(�+),

(φ, ψ)L2(�+) :=
∫ ∞

0
dr φ(r)∗ ψ(r) =

1
SD−1

(Φ,Ψ)L2(�D) , (10)

where SD−1 := 2πD/2/Γ( 1
2D) is the (D − 1)-dimensional surface of the unit sphere and L2(�D) is the

usual Hilbert space of D-dimensional quantum mechanics.

2.1 The radial Lorentz algebra

Eq. (8) is the realization of the generator J0 in (2) on L2(�+), i.e., K0 := J0|L2(�+). On this space, its
companion generators J1, J2 are

K1 :=
1
4

(
− d2

dr2
+

γ

r2
− r2

)
, K2 := −i

1
2

(
r
d

dr
+

1
2

)
. (11)

The free-particle Hamiltonian and the square radius are

K+ := K0 +K1 =
1
2

(
− d2

dr2
+

γ

r2

)
, K− := K0 −K1 = 1

2 r
2. (12)

In this realization, the quadratic Casimir invariant is a number,

K2 := K2
1 +K2

2 −K2
0 = 3

16 − 1
4 γ = 1

4D(1 − 1
4D) =: k(1 − k), (13)
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k

D

Fig. 1 The exceptional interval of dimensions 0 < D < 4. The
horizontal axis is the Bargmann parameter k = 1

4 D, the vertical
axis is the ‘interference’ parameter γ ∈ �. The potential γ/r2 is
a barrier for γ > 0, and a well for γ < 0. Inside the exceptional
interval, barriers and wells are weak; outside, they are strong. The
pure harmonic half-oscillator γ = 0 sits at k = 1

4 and at 3
4 (D = 1

and 3). For strong wells γ = − 1
4 − κ2 < − 1

4 , the Bargmann
parameter is complex, k = 1

2 (1 ± iκ).

where k, the Bargmann index [2], is

k(γ) := 1
2 (1 ±

√
γ+ 1

4 ) =

{
1
4D,

1− 1
4D,

(14)

γ(k) = (2k−1)2 − 1
4 = γ(1−k), (15)

γ ∈ � ⇒
{
γ ≥ − 1

4 ⇒ k > 0 real,

γ < − 1
4 ⇒ k = 1

2 (1 ± iκ), κ > 0 real.
(16)

The Bargmann indexk characterizes the self-adjoint irreducible representations of the algebra [7]; it is plotted
with γ in Fig. 1. The interval where the function k(γ) is two-valued, 0 < k < 1, is called exceptional; it
corresponds to the critical interval of dimensions 0 < D < 4.

The termγ/r2 in (8) is due to geometry, so it is a ‘fictitious’potential, its nature is centrifugal or centripetal,
according to the sign of γ. It has been called interference potential by Schleich and coworkers [1,8], who
consider it to be part of the kinetic energy, since it originates in the Laplacian (1) and derives from the
Sommerfeld superposition of quantum plane waves in D-dimensional spaces. This fictitious potential term
is absent in D = 1 and 3 dimensions (k = 1

4 ,
3
4 ), for which γ = 0; it attains its most attractive value in

D = 2 dimensions, with γ = − 1
4 (k = 1

2 ). We shall treat γ/r2 as a bona fide potential for the full range
γ ∈ �. Thus we shall distinguish between centrifugal barriers γ > 0, centripetal wells γ < 0, and the
pure oscillator γ = 0. In the exceptional interval − 1

4 ≤ γ < 3
4 these potentials will be called weak, and

outside, strong.

2.2 Solutions proper at infinity

The differential equation (8) has one regular singular point at the origin r = 0, and an irregular one at
infinity r → ∞; this characterizes the confluent hypergeometric equation, whose independent solutions
are 1F1(a; c;x) and x1−b

1F1(1+a−b; 2−b;x). The asymptotic behavior r → ∞ can be found keeping
only the second-derivative and r2 terms; the solutions are ∼ 1/

√
r exp(∓ 1

2 r
2), and only the decreasing

Gaussian is acceptable in a spatially constraining potential. This is the defining property of the Whittaker
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Fortschr. Phys. 54, No. 12 (2006) 1087

functions of the second kind, Wα,β(x) x̃→∞ e−x/2xα [9, Sect. 13.1], [10, Eq. 9.227], so that

ψk
µ(r) = ckµ

1√
r
Wµ,k−1/2(r2)

= ckµ e
−r2/2

(
Γ(1−2k)

Γ(1−k−µ)
r2k−1/2

1F1

(k−µ
2k

; r2
)

+
Γ(2k−1)
Γ(k−µ)

r−2k+3/2
1F1

(1−k−µ
2−2k

; r2
))

.

(17)

Here ckµ is the normalization constant obtained in Appendix A,

ckµ := σk
µ

√
2 sin 2πk

π

Γ(1−k−µ) Γ(k−µ)
ψ(1−k−µ) − ψ(k−µ)

= c1−k
µ , (18)

where σk
µ is a sign that may be adjusted to convention when necessary, ψ(z) is the digamma function

(logarithmic derivative of the Γ-function [9, Sect. 6.3]), and we note that the radicand is real and positive
both for k > 0 and for k = 1

2 (1 + iκ), κ ∈ �.
When k is integer or half-integer, (18) is apparently singular because sin 2πk = 0; these cases are found

as well-behaved limits in the Appendix, Eqs. (129)–(132). Particularly, when k = 1
2 – the crucial case

of D = 2 dimensions – both (17) and (18) will merit special considerations. We note that the reflection
k ↔ 1 − k across k = 1

2 (γ = − 1
4 , D = 2) formally exchanges the two summands of (17).

2.3 Solutions proper at the origin

The behavior of the solutions (17) at the origin r → 0+ determines whether they belong to L2(�+) or not.
We recall that the power function rα is square-integrable on (0, R), 0 < R < ∞, when

∫ R

0
dr |rα|2 =

r2α+1

2α+1

∣∣∣∣
R

0
< ∞, i.e., for Reα > − 1

2 . (19)

Since 1F1(a; c; 0) = 1, near to the origin (17) behaves as

ψk
µ(r) r̃→0+ ckµ

(
Γ(1−2k)

Γ(1−k−µ)
r2k−1/2 +

Γ(2k−1)
Γ(k−µ)

r−2k+3/2
)
. (20)

Also, to respect the quantum mechanical interpretation, the kinetic energy (12) of the s-wave should be
finite,

(ψk
µ, K+ ψ

k
µ)L2(�+) =

1
2

∫ ∞

0
dr

∣∣∣∣∣
dψk

µ(r)

dr

∣∣∣∣∣
2

+
γ

2

∫ ∞

0
dr

∣∣∣ψk
µ(r)

∣∣∣
2

r2
< ∞, (21)

so we write the behavior of the derivative at the origin,

dψk
µ(r)

dr
r̃→0+ ckµ

(
(2k− 1

2 )
Γ(1−2k)

Γ(1−k−µ)
r2k−3/2 + (−2k+ 3

2 )
Γ(2k−1)
Γ(k−µ)

r−2k+1/2
)
. (22)

The first summand in (20) is square-integrable for all Re k > 0, and thus all dimensionsD > 0 (γ ≥ − 1
4 ),

including k = 1
2 (1 + iκ) for the strong well case γ < − 1

4 ; it is a constant for k = 1
4 (D = 1) and singular

for 0 < k < 1
4 (0 < D < 1). The second summand in (20) is square-integrable in the exceptional interval

0 < Re k < 1 of dimensions 0 < D < 4 (− 1
4 ≤ γ < 3

4 ) and in strong wells; it is constant at k = 3
4

(D = 3) and singular for 3
4 < k < 1 (3 < D < 4). The behavior of the derivatives (22) is more restrictive:
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1088 K. B. Wolf and F. Aceves-de-la-Cruz: Dependence of s-waves on continuous dimension

the first term is square-integrable for k > 1
2 (D > 2), constant for k = 3

4 (D = 3) and singular for
1
2 < k < 3

4 (2 < D < 3), while the second is square-integrable for 0 < k < 1
2 (0 < D < 2), constant for

k = 1
4 (D = 1) and singular for 1

4 < k < 1
2 (1 < D < 2). Although these ranges exclude the crucial value

Re k = 1
2 corresponding to dimensionD = 2, cancellation occurs between the summands of both (20) and

(22) because limε→0 Γ(ε)/Γ(−ε) = −1.

2.4 Equally-spaced spectra

In the strong-barrier interval ruled by Eq. (8) for γ ≥ 3
4 (k ≥ 1, D ≥ 4), the behavior of the first summand

in (20) is adequate for square-integrability; however, the second one is not, so its coefficient must be vanish.
This occurs for values of µ ∈ � where in the denominator Γ(k−µ) has poles, namely when k − µ is zero
or a negative integer. This reasoning leads to the well-known equally-spaced spectrum of K0 in (8),

µ = k +m, m ∈ Z+
0 , Σ(K0) = {k, k+1, . . .}. (23)

For these values of µ, the remaining 1F1 series truncates to an associated Laguerre polynomial, and the
normalized wavefunctions are

ψk
k+m(r) =

√
2m!

Γ(2k+m)
e−r2/2 r2k−1/2 L(2k−1)

m (r2), (24)

with the choice of sign σk
k+m = (−1)m in (18).

We note that the associated Laguerre polynomials L(α)
m (r2) are well defined for the range α > −1, i.e.,

for k > 0, corresponding to continuous dimensions D > 0, and the range γ ≥ − 1
4 . This includes strong

barriers and, in the exceptional interval, weak barriers and wells, as shown in Fig. 1. In particular, for the
lowest integer dimensions, one has the well-known results

D = 1 : ψ1/4
1/4+m(r) = (−1)me−r2/2H2m(r)

/
22m−1/2

√
m! Γ( 1

2 +m), (25)

D = 2 : ψ1/2
1/2+m(r) =

√
2r e−r2/2 Lm(r2)

/√
m!, (26)

D = 3 : ψ3/4
3/4+m(r) = (−1)me−r2/2H2m+1(r)

/
22m+1/2

√
m! Γ( 3

2 +m). (27)

We noted above that in the exceptional interval, where γ(k) is two-valued, the reflection k ↔ 1−k
across k = 1

2 only exchanges the two summands in (17). For a fixed value γ of the potential, if we restrict
1
2 < k < 1 as done by Bargmann [2] and shown in Fig. 2, we have thus a second branch of solutions for
(9), characterized by the spectrum

µ = 1 − k +m, m ∈ Z+
0 , Σ(K0) = {1−k, 2−k, . . .}, (28)

and the two branches coalesce at k = 1
2 .

The ‘half’-harmonic oscillator on r > 0 with γ = 0, corresponds to s-states in one dimension (k = 1
4 )

and in three (k = 3
4 ). The first contains the even states of the full oscillator (on r ∈ �) while the second

contains the odd ones, which vanish at r = 0. That they belong to distinct values of k is usually overlooked
(and is unnecessary) in elementary treatments of the oscillator. The full oscillator is recovered introducing
the two-element group O(1) of identity and inversion, to connect the two L2(�+) subspaces into one L2(�).

2.5 Non-equally-spaced spectra

Standard quantum mechanics seems ambiguous when the Hamiltonian operator has a family of self-adjoint
extensions [11, 12], because this leads to spectra that are not unique. The Aharonov-Bohm model [13]

c© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.fp-journal.org
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1 2 3 4 5

1/4

1/2

3/4

1

1/4 1/2 3/4 1 5/4

0

µ

k

D

Fig. 2 Equally-spaced spectra {µ} of oscillators with
barriers and weak wells for the Bargmann index range k > 0
and continuous dimensions D > 0. In the exceptional in-
terval, the same value γ of the central potential corresponds
to both k and 1 − k (joined by the two-headed arrow). The
Bargmann index unravels the bivaluation of k(γ) in (15).
The •’s above k = 1

4 (D = 1) and the distinct 3
4 (D = 3),

correspond to the r > 0-half of even and odd states in the
pure one-dimensional harmonic oscillator on �.

incorporates this feature successfully to describe the physics of �3-space pierced by a magnetic line. In our
case however, this interpretation is not sought; rather, we aim at understanding the role of these extensions in
the time evolution of s-waves in oscillators and free particles within the exceptional interval of continuous
dimension 0 < D < 4.

We remind the reader that an operatorH is self-adjoint in a complex Hilbert space H with a sesquilinear
inner product (φ, ψ)H, when

(H†φ, ψ)H := (φ, H ψ)H = (H φ, ψ)H, and (29)

the domain of H† is equal to the domain of H . (30)

Elementary consequences of self-adjointness are that the spectra are real and that eigenfunctions correspond-
ing to distinct eigenvalues are orthogonal. So, when integrability and boundary conditions allow for more
than one set of mutually orthogonal eigenfunctions, there are correspondingly more than one self-adjoint
extensions of the same formal operator H(k).

We can find the inner product of two solutions (17),ψk
ν (r) andψk

µ(r), ν = µ, by means of their Wronskian
W(ψk ∗

ν , ψk
µ), considering

(µ− ν)ψk
ν (r)∗ ψk

µ(r) = ψk
ν (r)∗Hψk

µ(r) − (Hψk
ν (r))∗ψk

µ(r)

= − 1
2
d

dr

(
ψk

ν (r)∗
dψk

µ(r)

dr
− dψk

ν (r)∗

dr
ψk

µ(r)
)

=: − 1
2
d

dr
W(ψk ∗

ν , ψk
µ).

(31)

Integrating from 0 to ∞ we have the inner product (10); at infinity, the Wronskian is zero because of the
Gaussian decrease of the Whittaker wavefunctions (17). Hence, the inner product of two s-waves is given
by

(ψk
ν , ψ

k
µ)L2(�+) =

1
2(µ− ν)

W(ψk ∗
ν , ψk

µ)
∣∣∣
r→0+

. (32)
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This can be computed both when k∗ = k > 0 is real, and also in the strong well case, where k = 1
2 (1±iκ)

and k∗ = 1 − k. Using (20) and (22), we arrive at

W(ψk ∗
ν , ψk

µ)
∣∣∣
r→0+

= ck ∗
ν ckµ

π

sin 2πk
×
(

1
Γ(k−ν) Γ(1−k−µ)

− 1
Γ(1−k−ν) Γ(k−µ)

)
.

(33)

The limit k → 1
2

±
yields the Wronskian for D = 2 dimensions,

W(ψ1/2 ∗
ν , ψ1/2

µ )
∣∣∣
r→0+

= c1/2 ∗
ν c1/2

µ

π

sin 2πk
ψ( 1

2 − ν) − ψ( 1
2 − µ)

Γ( 1
2 − ν) Γ( 1

2 − µ)
. (34)

Now we can choose one wavefunction ψk
ν – with a fixed ν, generally distinct from k+ n or 1 − k+ n –

and search for the all the wavefunctions ψk
µ that are orthogonal to it. This is achieved when the Wronskian

(33) vanishes, i.e., when

fk(µ) =
1

f1−k(µ)
:=

Γ(k − µ)
Γ(1 − k − µ)

=
Γ(k − ν)

Γ(1 − k − ν)
= constant. (35)

For k → 1
2

±
, the vanishing condition becomes

ψ( 1
2 − µ) = ψ( 1

2 − ν) = constant, (36)

in terms of the digamma function. The roots {µ} of these transcendental equations determine the spectrum
Σ(K0, ν) ofK0 (one-half the oscillator Hamiltonian) in the Hilbert space Hk[ν] spanned by the orthonormal
basis {ψk

µ}µ∈Σ(K0,ν).
The function fk(µ) in (35) is shown in Fig. 3 for three values of k > 1

2 and for k = 1
2 in (36); the

horizontal lines fk(ν) intersect the graphs at the spectrum points {µ} ∈ Σ(K0, ν) that include the chosen
ν. There is one negative eigenvalue ν = µmin < 0 when the constant in (35) is fk > Γ(k)/Γ(1−k) for
1
2 < k < 1, and also for 0 < k < 1

2 when 0 < fk < Γ(k)/Γ(1−k). The only equally-spaced spectra
occur for ψk

k+n, n ∈ Z+
0 , when fk(k) = ±∞, belonging to the spectrum (23), and for ψk

1−k+m when
fk(1−k) = 0, belonging to the distinct spectrum (28). These are the two Friedrichs self-adjoint extensions
of the so(2, 1) generator K0, characterized for having finite kinetic energy (21), as can be determined from
(22).

Strong wells γ < − 1
4 correspond to complex Bargmann indices k = 1

2 (1± iκ), κ ∈ �+, so k∗ = 1−k.
In this case |fk(µ)| = 1, so we find the spectrum using its phase, fk(µ) = exp(iηk(µ)),

ηk(µ) = −η1−k(µ) = 2 arg Γ( 1
2 [1 + iκ] − µ) = constant, (37)

which is shown in Fig. 4 on a cylinder cut open. Again, by choosing a fixed ν, the companion µ’s in the
spectrum are found at the intersections of the phase arg fk(ν) with the graph of ηk(µ).

Finally, we note that eigenfunctions of the two Friedrichs extensions k and 1 − k (k = 1
2 ) are not

orthogonal; their Wronskian is also r-independent and nonvanishing,

(ψk ∗
k+n, ψ

1−k
1−k+m)L2(�+) =

2
π

sin 2πk√
n!m!

√
Γ(2k+m) Γ(2−2k+n)

1 − 2k + n−m
, (38)

as can be checked using [10, Eq. 7.414.9]. For k = 1
2 , the right-hand side of (38) is zero unless n = m,

because the two solutions are the same; for reasons to be seen below, we need not detail the second,
logarithmic solution to the differential equation (8).
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ψ(1/2−µ) k=1/2
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Fig. 3 The spectra {µ} ∈ Σ(K0, ν) of oscillators with weak barriers and wells are found by drawing the horizontal
line fk(ν) through the graphs of fk(µ). (a) for k = 0.85 (D = 3.4, a barrier γ = 0.24). (b) For k = 0.75 = 3

4
(D = 3, pure oscillator γ = 0). (c) For k = 0.55 (D = 2.2, a well γ = −0.24). (d) For k = 1

2 (D = 2, a well
γ = − 1

4 ). Having chosen ν = −1.25, marked by the ascending arrow, one thus finds the rest of the spectrum. In
(a)–(c), the reflection k ↔ 1 − k also yields spectra for k = 0.15, 0.25, 0.45 (D = 0.6, 1, 1.8) using the reciprocal
scale f1−k(µ) = 1/fk(µ).

−5 10

−π

π

0 µ

arg fk

ν

Fig. 4 The spectra µ ∈ Σ(K0, ν) of oscilla-
tors with strong wells, shown for k = 1

2 (1 + i),
corresponding to γ = −1.25. This graph differs
from the previous ones in that here we plot the
phase arg fk(µ), which is periodic modulo2π. The
spectrum here includes the value ν, here chosen
as ν = −1.25. In this strong well case, the spectra
are not bounded from below.

2.6 Green function for oscillator systems

The time-dependent Schrödinger equation of the system ruled by the Hamiltonian given in the left-hand
side of Eq. (6), is found replacing the right-hand side with the diffusive-oscillatory time derivative i�∂/∂t.
Separated solutions are ΨE(ρ) exp(−iEt/�) for energies E = 2�ω µ in the spectrum of the operator.
Translated to the dimensionless form for K0 in Eq. (9), with r and τ := ωt, the eigenfunctions satisfy

2K0 ψ
k
µ(r, τ) = i

∂

∂τ
ψk

µ(r, τ), ψk
µ(r, τ) = ψk

µ(r) exp(−2iµτ), (39)

where according to the value k (and in the exceptional interval also by the self-adjoint extension label ν),
the spectra are (23), (28), or (35)–(36).

The time evolution of s-waves in the quantum harmonic oscillator is obtained applying the exponentiated
operator K0 to the initial waveform ψ0(r) = ψ(r, 0); this yields generally integral transforms where the
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kernel is the Green function of the system:

ψ(r, τ ) = exp(−2iτK0)ψ0(r)

=
∫ ∞

0
dr′GHO

k (r, r′; τ)ψ0(r′), (40)

GHO
k (r, r′; τ) :=

∑
µ∈Σ(K0,ν)

ψk
µ(r) e−2iµτ ψk

µ(r′)∗. (41)

The Green function is the time development of an initial Dirac δ(r − r′), and is a solution to the time-
dependent Schrödinger equation (39) in (r, τ ) and in (r′, τ ). Time evolution is a one-parameter Lie group
of unitary transformations, so the Green function must satisfy

composition:
∫ ∞

0
dr′Gk(r, r′; τ1)Gk(r′, r′′; τ2) = Gk(r, r′′; τ1+τ2). (42)

unit: Gk(r, r′; 0) = δ(r−r′), (43)

inverse: Gk(r, r′; −τ) = Gk(r′, r; τ)∗. (44)

For equally-spaced spectra (i.e. real k > 0, and Friedrichs extensions in the exceptional interval), the
series (41) is one of the bilinear generating functions of the Laguerre polynomials [10, Eq. 8.976.1] in (24),

GHO
k (r, r′; τ) =

∑

m∈Z+
0

ψk
k+m(r) e−2i(k+m)τ ψk

k+m(r′)∗ (45)

= e−iπk

√
r r′

sin τ
exp

(
i
r2 + r′2

2 tan τ

)
J2k−1

( r r′

sin τ

)
(46)

= Ck

(
cos τ sin τ

− sin τ cos τ

)
(r, r′). (47)

The expression (46) is a well-known result from [4]; it is the fractional Hankel transform built from the
eigenfunction set (45) (see [14] and [15, pp. 175–180]). In (47) we write the radial canonical integral

transform kernel following [16, Chap. 9] and [3, App. C]. Recall that for every Sp(2,�) matrix M =
(

a b
c d

)
,

canonical transforms C(M) act linearly on the phase space operators of position �Q and momentum �P ; on
L2(�+)-functions they act through

C(M) : f (r) =
∫ ∞

0
dr′ Ck(M)(r, r′) f (r′), (48)

Ck

(
a b

c d

)
(r, r′) = e−iπk

√
r r′

b
exp

(
i
dr2 + ar′2

2b

)
J2k−1

( r r′

b

)
, (49)

Ck

(
a 0
c a−1

)
(r, r′) = a2k−1 exp

(
i
c r2

2a

)
δ(r′ − r/a). (50)

The trigonometric arguments of the Green function (46) show that τ has a fundamental periodicity interval
of 2π; the phase exp(−iπk) is important because it determines the cover of the oscillator cycle realized
on SO(2) ⊂ SO(2, 1). For rational k = p/q (p and q relatively prime), one has a q-fold cover of the
evolution subgroup SO(2), with only a phase difference between values of τ separated by 2π. The two
pure half-oscillators at k = 1

4 ,
3
4 (D = 1 and 3), intertwined with parity to the full line r ∈ �, yield the

one-dimensional canonical transform kernel [16,17] with the proper metaplectic phase e−iπ/4 – Mp(2,�)
covers SO(2, 1) four times – where the difference between its values at τ = 2π and 4π is a sign.
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There is thus a correspondence between three distinct mathematical objects: canonical integral trans-
forms, Sp(2,�) matrices, and the exponentials of the sp(2,�) Lie algebra generators Kα in Eqs. (8), (11)
and (12). Particularly,

C
(

cos τ sin τ
− sin τ cos τ

)
= exp(−2iτK0), C

(
1 β

0 1

)
= exp(−iβK+),

C
(
eα 0
0 e−α

)
= exp(−2iαK2), C

(
1 0
γ 1

)
= exp(−iγK−).

(51)

The non-equally spaced spectra obtained for the non-Friedrichs extensions in the exceptional interval
0 < k < 1, break the Hamiltonian away from the Lorentz algebra so(2, 1), because the companion raising
and lowering operators J1 ± iJ2 would map the domains Hk[ν] out of themselves. A Green function that
we could build according to the general bilinear generating formula (41), but with non-equally spaced
powers of e2iτ , is not calculable in closed form. We surmise that only if we initially were to write ψ0(r)
as
∑

µ∈Σ(K0,ν)A
k
µψ

k
µ(r′), could we state that the coefficients will evolve in time as Ak

µ exp(−2iµτ). The
time evolution operator exp(−2iµK0) would be then representable by a diagonal matrix acting on column
vectors {Ak

µ}µ∈Σ(K0,ν), but not by an integral kernel. We should recall that Bargmann’s treatment of the
representations of the three-dimensional Lorentz group [2] used various Hilbert spaces, among them L2(S1)
on the circle, in which the first-order differential operators representing the algebra are self-adjoint, and their
spectra equally-spaced. Such operators do not have self-adjoint extension families with non-equal spacing;
this refinement appears with second-order differential ones. Our work in [18] consisted in providing a
two-component L2(�+) Hilbert space to restore equal spacing in all representation series. It turns out that
this refinement is mantained in the contraction limit of the oscillator to the free particle, where the spectra
are continuous, and where the impediment of using non-Friedrichs extensions to form Green functions will
become more evident.

3 Contraction of the oscillator to the free particle

Having seen the spectra of s-waves in theD-dimensional quantum harmonic oscillator, we shall now contract
this system, its Hamiltonian operator, its spectrum and its eigenfunctions, to those of the free particle. This is
our method to analyze spectra that are continuous and common to the whole family of self-adjoint extensions
of free Hamiltonians having the interference potential γ/r2 – centrifugal barrier or centripetal well. To this
end, we first determine the asymptotic behavior of the the non-equally spaced spectra at high energies.

3.1 Asymptotic spectra in the exceptional interval

The non-equal spacing between energy levels of the non-Friedrichs extensions of the oscillator Hamiltonians
in the exceptional interval 0 < k < 1 (0 < D < 4), is most visible between the lowest levels. As we go to
higher energies µ → ∞, the behavior of the function fk(µ) in (35) can be traced using the reflection and
Stirling formulas [9, Eqs. 6.1.17 and 6.1.37]), to be

fk(µ) =
Γ(k − µ)

Γ(1 − k − µ)
=

sinπ(k + µ)
sinπ(k − µ)

Γ(k + µ)
Γ(1 − k + µ)

µ̃→+∞ − sinπ(k + µ)
sinπ(k − µ)

µ1−2k, for 1
2 < k < 1.

(52)

As we can see in Fig. 3, as µ → ∞, the distance between two adjoining levels decreases asymptotically to
unity. Setting µ = k +M + εM with integer M → ∞, we inquire into the difference εM , finding

f 1
2 <k<1(µ) M̃→∞

sin(2k−1)π
π εM

M1−2k (53)
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⇒ εM M̃→∞
sin(2k−1)π
π fk(ν)

1
M2k−1 → 0+. (54)

On the other hand, for the second branch 0 < k < 1
2 and µ = 1 − k +M + εM , we obtain

f0<k< 1
2
(µ) M̃→∞

sin 2πk
π εM

M2k−1 (55)

⇒ εM M̃→∞
sin 2πk
π fk(ν)

1
M1−2k

→ 0+. (56)

For the special case k = 1
2 , fk(µ) is replaced by its derivative, leading to the spectrum given by the

roots of the digamma function in (36). We then take µ = 1
2 +M + εM with integer M → ∞, and use the

reflection and asymptotic formulas for the digamma function [9, Eqs. 6.3.7 and 6.3.18]), finding

ψ( 1
2 −ν) = ψ( 1

2 −µ) µ̃→+∞ ln(M+εM−1) + π cotπεM ⇒ εM → 0−, (57)

irrespective of the value or sign of ψ( 1
2 −ν).

The asymptotic spectra in strong wells (37) can be found also with relative ease. For positive energies
µ → ∞, the recurrence relation

ηk(µ+ 1) = ηk(µ) + 2 arctan
κ

2µ+ 1
µ̃→+∞ ηk(µ) +

κ

µ
modulo 2π, (58)

shows that the separation between neighboring spectrum points at higher energies decreases asymptotically
to unity, and so tends to equal spacing. For negative energies µ → −∞, the behavior of this phase can be
found using [9, Eq. 6.1.39],

ηk(µ) = 2 arg Γ( 1
2 [1 + iκ] − µ) µ̃→−∞ κ ln |µ| modulo 2π, (59)

which grows ever slower with |µ|, but without a lower bound.

3.2 Scaling parameters, coordinates and functions

To proceed with the contraction, we now consider a sequence of harmonic oscillators (6) with decreasing
spring constants; their angular frequencies {ωN}∞

N=1 are chosen to be ωN := ω1/N , for any starting
frequencyω1 ≡ ω; the limit of the sequence will be the quantum free particle. Recalling that the dimensional
variables of radius ρ and energyE in (6) were converted to the dimensionless r and µ through (7), we scale
the latter to suit our sequence of oscillators as follows:

rN :=
√
ωN

ω1
r1 =

r1√
N

=:
1
2 pr√
µ
> 0, r1 ≡ r, (60)

E = �ω1
p2

2
≈ 2�ωN µ = 2�ω1

µ

N
, (61)

where p :=
√

2E
�ω1

≈ 2
√

µ

N
defines momentum. (62)

[We write E and p as ‘approximately equal’ in (61) and (62), because the oscillators in the sequence have
their energies quantized to 2�ωNµ.] When N → ∞ and ωN → 0, all finite energy levels collapse to zero,
and we must go to ever larger |µ|’s concurrently withN → ∞, in the dimensionless proportion µ/N ≈ 1

4 p
2

to match the chosen finite energy E.
The dimensionless differential equation (8) for the N th oscillator in the sequence is written in terms of

the variable rN ; in terms of r through (60), it reads

1
2

(
− d2

dr2
+

γ

r2
+

r2

N2

)
ψk

µ

( r√
N

)
=

2µ
N

ψk
µ

( r√
N

)
= 1

2 p
2 ψk

µ

( r√
N

)
. (63)
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When N → ∞, this becomes the quantum free particle radial equation in D dimensions (12), namely

HF φk
p(r) :=

1
2

(
− d2

dr2
+

γ

r2

)
φk

p(r) = 1
2 p

2φk
p(r). (64)

The limit of the oscillator wavefunctions (17) is found from

φk
p(r) := 1

2 p lim
N→∞

√
N ψk

µ

( r√
N

)
, for µ ≈ 1

4N p2 =
N E

�ω1
. (65)

3.3 Contraction for equally-spaced spectra

For equally-spaced spectra µ = k+m, m ∈ Z+
0 , where µ, N and p are related by (65), we adapt standard

limit formulas for the confluent hypergeometric to Bessel functions (cf. [9, Eq. 13,3,2]), finding

1F1

(−m
2k

;
r2

N

)
=

Γ(2k)m!
Γ(2k +m)

L(2k−1)
m

( r2
N

)
Ñ→∞ Γ(2k) ( 1

2 pr)
1−2k J2k−1(pr). (66)

The prefactors of this expression in Eq. (17), using (134) from Appendix A, follow

ckk+m

Γ(1 − 2k)
Γ(1 − k −m)

e−r2/2N
( r√

N

)2k−1/2
Ñ→∞

√
2
µ

( 1
2 pr)

2k−1/2

Γ(2k)
, (67)

so the limit functions, which in (65) are multiplied by 1
2 p

√
N =

√
µ, become

φk
p(r) =

√
pr J2k−1(pr) = φk

r (p), (68)

for all p > 0 and k > 0. We recognize here the kernel of the Hankel transform, which is real, orthogonal,
and Dirac-normalized,

(φk
p, φ

k
p′)L2(�+) =

√
p p′

∫ ∞

0
dr r J2k−1(p r) J2k−1(p′ r) = δ(p− p′). (69)

In particular, for D = 1 and 3 dimensions there is no barrier nor well (γ = 0, k = 1
4 and 3

4 ), and we
have the even and odd positive halves of the solutions to the full (r ∈ �) free Schrödinger equation,

φ1/4
p (r) =

√
prJ−1/2(pr) =

√
2/π cos pr = (eipr + e−ipr)/

√
2π, (70)

φ3/4
p (r) =

√
prJ+1/2(pr) =

√
2/π sin pr = (eipr − e−ipr)/i

√
2π, (71)

for p ≥ 0. In dimension D = 2, the weak well limit to γ = − 1
4 , i.e. k = 1

2 , is uneventful: s-waves√
pr J0(pr) are well known.
The dimensional form of the free Schrödinger equation for a particle of mass m, energy E = �υ, and

�q(ρ,Ω) ∈ �D, is regained from (64) after the transformation that undoes (7), namely

− �
2

2m
∇2

�qΦυ(ρ) = E Φυ(ρ), E =: �υ, (72)

Φυ(ρ) :=
(

�

mυ

)1/4
ρ− 1

2 (D−1)φp(r), ρ =:

√
�

mυ

pr

2
, (73)

where it is understood that the s-waves Φυ(ρ) are spherically symmetric.
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3.4 Contraction in exceptional interval

In the exceptional dimension range 0 < D < 4, self-adjoint extensions are characterized, as we saw above,
by the value ν of some eigenvalue in its spectrum through the constant fk(ν) ∈ � in (35). The asymptotic
relations (54) and (56) imply that for large |µ|’s the eigenvalues become equally spaced and tend to 1−k+M
for 0 < k ≤ 1

2 , or to k +M for 1
2 ≤ k < 1, with M ∈ Z+

0 . Yet the value of ν persists in the ratio of the
two summands in (17), which after the contraction we write as the linear combination

φk[ν]
p (r) =

√
pr [cos θk

[ν] J2k−1(pr) + sin θk
[ν] J1−2k(pr)], (74)

with the angle θk
[ν]. This angle is related to the constant fk(ν) that characterizes the self-adjoint extension

in (35), through

cot θk
[ν] =

Γ(1 − 2k)
Γ(2k − 1)

Γ(k − µ)
Γ(1 − k − µ)

=
Γ(1 − 2k)
Γ(2k − 1)

fk(ν) = tan θ1−k
[ν] . (75)

We note that the wavefunctions (74) are real and have the k ↔ 1−k symmetry φk[ν]
p (r) = φ1−k,[ν]

p (r) =
φk[ν]

p (r)∗. The ratio (75) is well defined throughout the exceptional interval, including the case k = 1
2

(D = 2), where limε→0 Γ(ε)/Γ(−ε) = −1. As we approach the Friedrichs extensions, fk(ν) → 0 and
→ ±∞, one of the two terms of (74) disappears as θk

[ν] → 0 and → ± 1
2π, but for all others both are present,

and are square-integrable. One of them is singular at the origin: the first for 0 < k < 1
4 , and the second

for 3
4 < k < 1. And as in the oscillator case, the eigenfunction spaces belonging to different self-adjoint

extensions of the same free Hamiltonian, are not orthogonal, except for dimensions D = 4k = 1 and 3.
While all oscillator spectra in the exceptional interval are lower-bound, with at most one finite negative value,
after contraction all self-adjoint extensions of the free Hamiltonian will have the same spectrum 1

2 p
2 ≥ 0.

The distinction between self-adjoint extensions in the free Hamiltonians would not have been evident had
we not studied oscillators first, with their discrete and distinct spectra, characterized by fk(ν) ∈ �.

3.5 Contraction in the strong well case

Although the dimensional interpretation breaks down in the strong well case [γ < − 1
4 , k = 1

2 (1 + iκ),
κ > 0] because D = 2(1 + iκ) is complex, the limit of the oscillator to the free wavefunctions, (66)–(67)
leading to (74), is surprisingly insensitive to this situation. For positive energies, |fk(µ)| = 1 and the self-
adjoint extension in (37) are characterized by the phase ηk(ν) = arg fk(ν). Asymptotically, the eigenvalues
become equally spaced by (58), and the indices of the Bessel functions are 2k− 1 = iκ. Analogous to (74),
but with phases e±iζκ(ν), we now have

φk[ν]
p (r) =

√
1
2 pr

(
eiζκ(ν) Jiκ(pr) + e−iζκ(ν) J−iκ(pr)

)
, (76)

with the phase ζk(ν) fixed as before from the ratio of the two (now complex conjugate) coefficients in (17),

ζκ(ν) = 1
2 arg

(Γ(−iκ)
Γ(iκ)

Γ(k − µ)
Γ(1 − k − µ)

)
= 1

2 ηk(ν) − arg Γ(iκ). (77)

On the other hand, for the negative energy levels E < 0 of the strong well potential, whose asymptotic
spacing is ∼ κ ln |µ| according to the result (59) and Fig. 4, the linear ratioµ/N ≈ E/�ω1 cannot accumulate
them to a continuum – as the positive-µ levels do. The contraction process (60)–(62) for positive levels
would seem to obliterate the negative ones from the spectrum of a free particle in a strong well. It is possible
that a

√
δ-type trapped state accumulates at infinite negative energy, as in the one-dimensional hydrogen

atom [19]; we need not treat this case further in the present paper however, since it corresponds to unphysical,
complex dimensions.
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4 Green function for free systems

The contraction process of the harmonic oscillator to the free particle in D dimensions applies also to
the time-dependent systems. The sequence of oscillator frequencies ωN = ω/N , led to a rescaling of the
position coordinates through rN = r/

√
N in (60); the physical time, being t = τ/ω, leads thus to the

change of scale in the dimensionless time variable τN = τ/N .

4.1 Green function from equally-spaced spectra

The Green function of quantum oscillators (45)–(46) contracts to the Green function of free systems when
we write it in terms of the variables rN , r′

N , and τN , and let N → ∞. The case of equally-spaced spectra
for dimensions D = 4k > 0 (γ ≥ − 1

4 ), including strong barriers and the Friedrichs extension of the
Hamiltonians in the exceptional interval, is straightforward. The arguments of the Gaussian and Bessel
factors have the asymptotic behavior

r2N + r′2
N

2 tan τN
Ñ→∞

r2 + r′2

2τ
,

rN r′
N

sin τN
Ñ→∞

r r′

τ
, (78)

with the prefactor
√
rNr′

N/ sin τN leading to Dirac normalization (65). Alternatively, the Green function is
the generating function, an integral instead of a sum, over the momentum variable p of two wavefunctions
(68). Both ways yield an expression valid for k > 0,

GF
k(r, r′; τ) =

∫ ∞

0
dp φk

p(r) e−ip2τ/2φk
p(r′)∗ (79)

=
√
r r′
∫ ∞

0
dp p J2k−1(pr) e−ip2τ/2 J2k−1(pr′) (80)

= e−iπk

√
r r′

τ
exp

(
i
r2 + r′2

2τ

)
J2k−1

( r r′

τ

)
(81)

= Ck

(
1 τ
0 1

)
(r, r′), (82)

where in the last line we write again the radial canonical transform kernel. Represented by matrices, the
contraction process is

lim
N→∞

(√
N 0
0 1/

√
N

)(
cos τ/N sin τ/N

− sin τ/N cos τ/N

)(√
N 0
0 1/

√
N

)−1

=

(
1 τ

0 1

)
. (83)

As its harmonic oscillator counterpart, the free Green function solves the time-dependent free Schrödinger
differential equations in (r, τ ) and in (r′, τ ), and represents the time evolution of the initial condition δ(r−r′);
and it must satisfy the group properties (43)–(44). It is interesting that to verify the group composition
property (42), one uses the same integral (80)–(81), replacing p by r′, and other substitutions for r, r′′ and
τ . The integral (80)–(81) is valid for all k’s where

∫ R

0 dp · · · is finite, i.e., for all Re k > 0, including the
strong well case with the Bessel factor Jiκ(rr′/τ).

We draw attention again to the particular cases of D = 1 and 3 dimensions, where the wavefunctions
(70)–(71) are the even and odd parts of the one-dimensional free waves ∼ eipr on the full range r ∈ �.
The Green functions (81) follow suit:GF

1/4(r, r
′; τ) is the τ -evolution of the positive parity initial condition

δ(r−r′) + δ(r+r′), while GF
3/4(r, r

′; τ) is the evolution of the initial condition δ(r−r′) − δ(r+r′) with
negative parity; the first has zero derivative at the origin, while the second has zero value.
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4.2 Green function from non-Friedrichs extensions

We now follow with extensions of the oscillator Hamiltonian in the exceptional interval 0 < k < 1,
distinguished by the label ν through the constant fk(ν) ∈ � in (35). Attempts to write a Green function out
of the non-Friedrichs wavefunctions (74), with arguments now based on the Dirac completeness relation,
will confirm their futility, as suggested at the end of Sect. 3.

Wavefunctions belonging to the non-Friedrichs extensions, φk[ν]
p (r) in (74), have two summands, φk

p(r)

and φ1−k
p (r), each of which belongs to a Friedrichs extension, and which are exchanged under k ↔ 1 − k.

Abbreviating c := cos θk
[ν] and s := sin θk

[ν], their inner product is

(φk[ν]
p (r), φk[ν]

p′ (r))L2(�+) = c2(φk
p, φ

k
p′)L2(�+) + s2(φ1−k

p , φ1−k
p′ )L2(�+)

+ sc[(φk
p, φ

1−k
p′ )L2(�+) + (φ1−k

p , φk
p′)L2(�+)].

(84)

The first two terms sum to δ(p− p′), while the cross term in sc is not zero, but

√
p p′
(∫ ∞

0
dr r J2k−1(p r) J1−2k(p′ r) + { k ↔ 1 − k }

)

= 2 cosπ(2k−1) δ(p− p′) +
2 sinπ(2k−1)
π(p2 − p′2)

(( p
p′
)2k−1

−
( p′

p

)2k−1
)
.

(85)

(See [20, Eq. (22)] and [21, Eq. (12)], with a sign correction.)
Although Dirac normalization holds by construction, orthogonality does not; a Green function built as

the bilinear generating integral (79) between φk[ν]
p (r)’s, does not satisfy Dirac completeness [cf. Eq. (69)]

because of the non-δ term in (85). Hence it can not satisfy the basic group properties (42)–(43). Except,
that is, when sc = 0 (θk

[ν] = 0 or ± 1
2π), i.e., for the Friedrichs extensions. The same argument applies

to the Green function in the strong well case γ < − 1
4 , where the wavefunctions are (76); there, the cross

coefficient never vanishes because there are no Friedrichs extensions.

5 Radial expectation values

In [1,8] attention was drawn to the time evolution of the expectation value of the radius for real wavefields
in D = 2 dimensions. This property was attested by numerical experimentation with the Green function
(81) and initial wavefields (73) of Gaussian shape Φ(ρ) ∼ ρ2e−αρ2

. In this section we take advantage of
the Lie-algebraic structure of the space of quadratic operators.

5.1 Transformations under the Sp(2,�) group

Under the group Sp(2,�) of linear isotropic canonical transformations (49) of the D-dimensional position
and momentum operators �Q and �P , the three quadratic Schrödinger operators J−, J2 and J+ in (2) and (4)
transform as

(
a b

c d

)(
�Q
�P

)
⇒



a2 2ab b2

ac ad+bc bd

c2 cd d2







Q2

1
2 ( �Q·�P+�P · �Q)

P 2


 . (86)

The expectation values of the square radius Q2 in a free s-wavefield Φ(�q) = Φ(ρ), and of its sp(2,�)
companion generators, including the kinetic energy (free Hamiltonian)P 2 are, in terms of the inner products
on �D and in �+,

(Φ, Q2Φ)L2(�D) = SD−1 (φ, r2 φ)L2(�+) =: SD−1 〈r2〉φ, (87)
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with SD−1 the surface of the unit sphere; and similarly for the two other operators. Under free evolution

generated by C(τ ) := C
(

1
0
τ
1

)
on φo(r) = φ(r, 0), their expectation values will thus evolve through

〈r2〉φ(τ) := (φ(τ ), r2φ(τ ))L2(�+) =
∫ ∞

0
dr φ(r, τ)∗ r2 φ(r, τ) (88)

=
(
C(τ )φo, r

2 C(τ )φo

)
=
(
φo, C(τ )−1 r2 C(τ )φo

)

= 〈r2〉φo
+ 2τ 〈−i 1

2 (r ∂r+∂rr)〉φo + τ2 〈(−∂2
r+γ/r2)〉φo , (89)

〈−i 1
2 (r ∂r+∂rr)〉φ(τ) = 〈−i 1

2 (r ∂r+∂rr)〉φo
+ τ 〈(−∂2

r+γ/r2)〉φo , (90)

〈(−∂2
r+γ/r2)〉φ(τ) = 〈(−∂2

r+γ/r2)〉φo invariant, (91)

where we write ∂r := d/dr. Both 2K− = r2 and 2K+ = −∂2
r+γ/r2 are nonnegative operators that belong

to the same orbit under Sp(2,�); one is the Hankel transform C
(

0
1

−1
0

)
of the other.

The third operator, namely 2K2 = −i 1
2 (r ∂r+∂rr) is self-adjoint between wavefunctions φ(r) whose

boundary term r |φ(r)|2|∞0 vanishes. Its spectrum is �, and it lies in the same orbit as the repulsive oscillator

Hamiltonian 2K1 in (11); they are related by the square root of the Hankel transform C 1√
2

(
1
1

−1
1

)
. And

because 1
2 ( �Q·�P+�P · �Q) = −i 1

4 [Q2, P 2], its expectation value is bounded by

∣∣∣〈−i 1
2 (r ∂r+∂rr)〉φ

∣∣∣
2

≤ 1
4 〈r2〉φ 〈(−∂2

r+γ/r2)〉φ, (92)

which ensures that the expectation value of r2 in (89) remains positive.
For small τ , the behavior of the expectation value (89) depends on the sign of the term linear in τ ; if this

is negative, the s-wavepacket will start contracting before the τ2 term dominates and the packet disperses.
To explore this phenomenon we study the evolution of the expectation values for three distinguished sets of
s-states: localized states (eigenfunctions ofQ2) diffused into ‘radial Gaussians’as if by heat propagation, the
energy eigenstates (eigenfunctions of 1

2P
2), and Gaussian-weighted superpositions of dilatation-invariant

functions [eigenfunctions of 1
2 ( �Q·�P+�P · �Q)].

5.2 Diffused δ’s: radial Gaussian states

The s-states that are localized at a radius ro ∈ �+, are the Dirac states δro(r) = δ(r − ro); they evolve

in time into the canonical transform kernel and Green function (82) given by Ck

(
1
0

τ
1

)
(r, ro). For τ > 0

this is a chirping function with a phase factor exp(ir2/2τ), so computing integrals for expectation values
is analytically difficult and numerically unstable. However, we can let this Dirac delta diffuse driven by the
heat equation, into the same Green function but with a pure-imaginary ‘time’ −iω, ω > 0, thus:

GF
k(r, ro; −iω) =

√
r ro
ω

exp
(
− r2 + r2o

2ω

)
I2k−1

( r ro
ω

)
= Ck

(
1 −iω
0 1

)
(r, ro). (93)

This is a complex radial canonical transform kernel [5] defining a ‘radial Gaussian’ function of square width
ω. The real-time free evolution of this Gaussian (93) will be given by

GF
k(r, ro; τ − iω) = Ck

(
1 τ − iω
0 1

)
(r, ro), (94)
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Fig. 5 Radial Gaussians GF
k(r, ro; τ−iω), centered on ro = 1, as functions of radius r, and their time evolution in

τ for various dimensions D = 4k. The columns contain the cases k = 1
8 (D = 1

2 ), k = 1
4 (D = 1), k = 1

2 (D = 2),
and k = 3

2 (D = 6), and the rows τ = 0, 0.5, 1, 2. The behavior at the origin is ∼ r2k−1/2; in higher dimensions,
heat can escape in more directions. Dashed, dotted and continuous lines are the real, imaginary and absolute values of
the functions.

because the composition property holds for the canonical transform kernels Ck

(
a
c

b
d

)
(r, ro) in (49), under

analytic continuation of b into the lower complex half-plane and a, d > 0 [5]. In Figs. 5 we show a sample
of these time-evolving radial Gaussians for various dimensions.

The complex transform (93) conserves the linear norm of total heat,
∫∞
0 dr GF

k(r, ro; −iω) = 1; but
the transform is not unitary in L2(�+). Yet, diffusion of the initial δ(r − ro) yields functions of finite
L2(�+)-norm that we can calculate using matrices, as follows:

‖GF
k(ro; τ−iω)‖2 :=

∫ ∞

0
dr |GF

k(r, ro; τ−iω)|2 (95)

=
∫ ∞

0
dr
[
Ck

(
1
0

τ−iω
1

)
(r, ro)

]∗
Ck

(
1
0

τ−iω
1

)
(r, ro)
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=
∫ ∞

0
dr Ck

(
1
0

−τ−iω
1

)
(ro, r)Ck

(
1
0

τ−iω
1

)
(r, ro)

= Ck

(
1
0

−2iω
1

)
(ro, ro) =

ro
2ω

exp
(
− r2o

2ω

)
I2k−1

( r2o
2ω

)
, (96)

where we have used the complex conjugation property stemming from the analytic form of (49),

Ck

(
a b

c d

)
(r, ro)∗ = Ck

(
a −b∗

−c∗ d

)
(r, ro) = Ck

(
d −b∗

−c∗ a

)
(ro, r), (97)

which is valid for a, d > 0 and Im b < 0. [Compare with the unitarity condition (44) for the Green function.]
We can follow the process (95)–(96) to find the expectation values of the operators that generate the

canonical transforms [see (51)], between these radial Gaussian states normalized by (95). Thus, for P 2 ∼
2K+ in (88) and (91),

〈(−∂2
r+γ/r2)〉Gk(ro;τ,ω) × Ck

(
1
0

−2iω
1

)
(98)

= 2i
∂

∂β

∫ ∞

0
dr
[
Ck

(
1
0

τ−iω
1

)
(r, ro)

]∗
C
(

1 β
0 1

)
Ck

(
1
0

τ−iω
1

)
(r, ro)

∣∣∣∣
β=0

= 2i
∂

∂β
Ck

(
1 β − 2iω
0 1

)
(ro, ro)

∣∣∣∣
β=0

. (99)

The result is independent of τ , as expected from (91). By replacing the functional form (49) this can be
computed to be

2i
∂

∂β

[ ro
β − 2iω

exp
(
i

r2o
β − 2iω

)
J2k−1

( r2o
β − 2iω

)]∣∣∣∣
β=0

(100)

= −2i
z2

r2o

d

dz

(
z eiz J2k−1(z)

)∣∣∣
z=ir2

o/2ω
(101)

=
2ω − r2o

2ω2 Ck

(
1
0

−2iω
1

)
+ i

ro
2ω2 z e

izJ ′
2k−1(z)

∣∣∣
z=ir2

o/2ω
. (102)

The derivative of the Bessel function J2k−1(z) yields (2k−1) J2k−1(z)/z minus J2k(z); the latter returns i
times the kernel Ck+1/2

(
1
0

−2iω
1

)
(ro, ro). Dividing by the square norm (96) and noting that its dependence

on k is exclusively through the index of the modified Bessel function, we find the expectation value of
(twice) the free Hamiltonian for radial Gaussian functions, which is

〈(−∂2
r+γ/r2)〉Gk(ro;τ,ω) =

r2o
2ω2

( 4kω
r2o

+
I2k(r2o/2ω)
I2k−1(r2o/2ω)

− 1
)
. (103)

The quantity in parentheses is a function of dimensionless r2o/2ω which is positive for all k > 0.
Next, the expectation value of 1

2 ( �Q·�P+�P · �Q) can be calculated following (98)–(99), and arriving at

〈−i 1
2 (r ∂r+∂rr)〉Gk(ro;τ,ω) × Ck

(
1
0

−2iω
1

)
(104)

= i
∂

∂α
Ck

(
eα −2i(ω coshα−τ sinhα)
0 e−α

)
(ro, ro)

∣∣∣∣
α=0

(105)

= i
∂

∂α

[ ro
B(α)

exp
(
i
r2o coshα
B(α)

)
J2k−1

( r2o
B(α)

)]∣∣∣∣
α=0

. (106)
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Comparison with (100) shows that here we have a derivative with respect to a group parameter that we must
turn into a derivative with respect to z = r2o/B(α), now with B(α) = −2i(ω coshα− τ sinhα), instead of
β−2iω before; but note that their limit z|α=0 = ir2o/2ω is the same. There is one more summand, stemming
from the α-derivative of the exponent; this will yield a factor of sinhα, which vanishes in the limit α → 0.
In front, there will be a new factor ∂B(α)/∂α|α=0 = 2iτ that multiplies the expression (103), as predicted
in (90), with an initial expectation value that vanished in the limit α → 0. The important result is thus that
for the set of radial Gaussian functions,

〈−i 1
2 (r ∂r+∂rr)〉Gk(ro; τ=0,ω) = 0, (107)

and therefore that s-wavefields with radial Gaussian profiles will not exhibit any initial contraction.
Lastly, we compute the expectation value of the square radiusQ2 through (88). It will be sufficient to do

this for τ = 0, since we know that τ -evolution will only add a summand of τ2 times (103). We follow the
derivation (98)–(99) for the third time, using the last of Eqs. (51), to compute

〈r2〉Gk(ro;0,ω) × Ck

(
1
0

−2iω
1

)
(108)

= 2i
∂

∂γ
Ck

(
1−iωγ −ω2γ−2iω
γ 1−iωγ

)
(ro, ro)

∣∣∣∣
γ=0

(109)

= 2i
∂

∂γ

[ ro
C(γ)

exp
(
i
r2o(1−iωγ)
C(γ)

)
J2k−1

( r2o
C(γ)

)]∣∣∣∣
γ=0

, (110)

where now C(γ) = −ω2γ−2iω. Again there are two terms, one stemming from the derivative of the
exponent which returns 1

2 r
2
o times the norm (96), and the second being (99), but now for z = r2o/C(γ) and

again z|γ=0 = ir2o/2ω; the overall factor is ∂C(γ)/∂γ|γ=0 = 1
4 r

4
0 . We are thus led to the result

〈r2〉Gk(ro;0,ω) =
r2o
2

( 4kω
r2o

+
I2k(r2o/2ω)
I2k−1(r2o/2ω)

+ 1
)
, (111)

which differs from (103) only in the last sign. Now the function of r2o/2ω in parentheses is greater than 2
for finite values of the argument. We note that when ω → 0+, limz→∞ I2k(z)/I2k−1(z) = 1; hence, the
expectation value of r2 for a Dirac δ at ro is indeed r2o , and increases as the Gaussian width ω grows.

5.3 Diffused energy eigenstates

The energy eigenstates φk
p(r), p > 0, are the normal modes given in (68); they evolve in time τ through

multiplication by a phase: φk
p(r, τ ) = e−iτp2/2φk

p(r). Diffusion by imaginary time −iω will turn this phase

into e−ωp2/2e−iτp2
, so that the norm of the diffused functions is e−ωp2

, taking the place of Ck

(
1
0

−2iω
1

)

in (98) and (104). The expectation values of r2 in a fixed-po state φk
po

(r, τ ) will be invariant, because the
phases cancel in the inner product (88), and the norms cancel in the definition. Indeed, when we apply the

D-dimensional Fourier transform F = eiπkC
(

0
1

−1
0

)
to (86), or equivalently the Hankel transform to (98),

(107) and (111), we exchange Q2 and P 2 while 2K2 changes sign. We thus obtain

〈r2〉φk
po

(τ,ω) = 〈(−∂2
r+γ/r2)〉Gk(po; 0,ω), (112)

〈−i 1
2 (r ∂r+∂rr)〉φk

po
(τ,ω) = −〈−i 1

2 (r ∂r+∂rr)〉Gk(po; τ,ω) = 0, (113)

〈(−∂2
r+γ/r2)〉φk

po
(τ,ω) = 〈r2〉Gk(po;τ,ω). (114)

In other words, we have a diffused δ in momentum p (energy 1
2 p

2) around po, in the same way that we
previously had a diffused δ in position r around ro.
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5.4 Dilatation Gaussian states

The last set of functions that we use to study the time dependence of expectation values are the eigenfunctions
of 1

2 ( �Q·�P+�P · �Q), the generator of dilatations. The eigenfunctions of 2K2 are

−i 1
2 (r ∂r+∂rr)χλ(r) = λχλ(r), χλ(r) =

riλ−1/2
√

2π
, (115)

for λ ∈ �, and Dirac-normalized, (χλ, χλ′)L2(�+) = δ(λ−λ′). They are inappropriate to form expectation
values, because all oscillate (except λ = 0) and grow ∼ 1/

√
r at the origin.

The dilatation eigenbasis (115) is independent of dimension D = 4k, and serves as the kernel for the
unilateral Mellin transform [16, Sect. 8.2], which becomes essentially the (inverse) Fourier transform after
the change of variables r = es. This facilitates the computation of Gaussian superpositions that we can
build as normalized wavefunctions centered on the dilatation factor λo ∈ �,

fλo,ω( r = es ) :=
∫ ∞

−∞
dλGω(λ−λo)χλ(r) =

e−s/2
√

2π

∫ ∞

−∞
dλGω(λ−λo) eiλs, (116)

with a (true) L2(�)-normalized Gaussian of square width ω,

Gω(λ) := (πω)−1/4 exp(−λ2/2ω). (117)

The integration (116) then yields the wavefield

fλo,ω( r=es ) = exp(iλo− 1
2 )G1/ω(s) (118)

= (ω/π)1/4 r(iλo−1/2) exp
(
− 1

2ω(ln r)2
)
, (119)

whose generic form is shown in Fig. 6.
It is now easy to compute the expectation value of 1

2 ( �Q·�P+�P · �Q) noting that

−i 1
2 (r ∂r+∂rr) fλo,ω(r) = −i(∂s + 1

2 ) fλo,ω( r=es ) = (λo + iωs) fλo,ω(r). (120)

When we introduce this into the inner product with dr = es ds and fλo,ω(r)∗, the imaginary summand with
iωs will vanish due to parity, hence

〈−i 1
2 (r ∂r+∂rr)〉f(λ,ω;r) = λ. (121)

1 2 3 4 5

−0.4

−0.2

0.2

0.4

r

fλ0, ω(r)

Fig. 6 Generic form of the Gaussian dilatation wave-
functions fλo,ω(r) in (119), for center λo = 10 and
square width ω = 1. The real and imaginary parts of the
function (dashed and dotted lines) oscillate with a loga-
rithmic chirp proportional to λ; only for λo = 0 it is real.
The absolute value (continuous line) is independent of λ,
and only scales with width ω. We mark the expectation
value e of r2.
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Fig. 7 Time evolution of the expectation values of square radius 〈r2〉f(λ,ω;r), with initial value 2, between dilatation
Gaussian functions. (a) For fixed negative value λ = −1 and dimensions D = 0, 0.5, 1, . . . , 6; integer dimensions
are marked with heavy lines, half-integer ones with thin lines; in the exceptional interval, dimensions D and 4 − D
result in the same lines. (b) For D = 2 dimensions (k = 1

2 ) and the range of λ allowed by (92); heavy lines indicate
the minimum, zero and maximum values of λ according to (125).

The expectation value of any power of the radius, rα = eαs, can be computed between these functions;
it is

〈rα〉f(λ,ω;r) = exp
( α2

4ω

)
. (122)

In particular,

〈r2〉f(λ,ω;r) = e1/ω. (123)

In Fig. 6 we mark the expectation value of r2 for ω = 1, which is e. Similarly, for the free Hamiltonian,

〈−∂2
r+γ/r2〉f(λ,ω;r) =

(
λ2 + 1

2ω + (2k−1)2
)
e1/ω. (124)

The range allowed to λ is curtailed by (92), which from (123) and (124) results in −λmax ≤ λ ≤ λmax, with

λ2
max = 1

4 e
2/ω[ 1

2ω + (2k−1)2]/(4 − e2/ω). (125)

In Fig. 7(a) we show the time-τ evolution of the expectation value of the square radius for the dilatation
Gaussian s-state fλ,ω(r, τ ) in (119), characterized by the fixed negative valueλ = −1, in various dimensions
D = 4k, according to Eqs. (89) and (124). For all D, this wavepacket initially contracts and then expands,
but we note that inD = 2 dimensions (k = 1

2 ) it descends closest to zero. In Fig. 7(b) we show the possible
behaviors in D = 2 dimensions when we let λ range over the interval allowed to it by the inequality (92).
As we may expect, s-wavepackets that contract the most, will also eventually expand as fast as the packet
that initially expands fastest, because (124) depends only on λ2.

To characterizes-wavefieldsf (r, τ ) that contract, i.e., for which the expectation value 〈−i 1
2 (r ∂r+∂rr)〉fo

< 0, it is sufficient to test its unilateral Mellin transform at τ = 0,

fM
o (λ) =

∫ ∞

0
dr fo(r)χλ(r)∗, fo(r) =

∫ ∞

−∞
dλ fM

o (λ)χλ(r). (126)

The expectation value of the dilatation generator is then

〈−i 1
2 (r ∂r+∂rr)〉fo =

∫ ∞

−∞
dλλ |fM

o (λ)|2. (127)
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Thus, when the Mellin transform of the initial wavefield fo(r) has most of its area in the negative-λ half-
axis, it will contract; when it is in the positive-λ half-axis, it will expand. When the wavefield is purely
real, its Mellin transform fM

o (λ) is an even function of λ, and the expectation value (127) of the dilatation
generator will be zero, independently of the dimension D. This characterization also applies to wavefields
in the D-dimensional quantum harmonic oscillator.

6 Conclusions

The theory of representations of the Lorentz algebra so(2, 1) and covering groups which is realized by
second-order differential operators, contains the models of s-waves in theD-dimensional quantum harmonic
oscillator and free particle, and their time evolution. We considered continuous dimensions D > 0, and
reduced expressions to radial coordinates, where dimension enters as a fictitious centrifugal barrier for
0 < D < 1 and D > 3, or a centripetal well for 1 < D < 3.

We noted that the critical range of low dimensions 0 < D < 4 corresponds to the exceptional interval
of so(2, 1) = sp(2,�) representations studied by Bargmann [2] – which is indeed intrincate. Dimension
D = 2 in particular, connects not only to both its sides in the real-D line of ‘discrete’-series representations,
but also to the line of ‘continuous’-series representations D = 2(1 + iκ) of strong centripetal wells. In
the exceptional interval, the oscillator and free Hamiltonians exhibit a one-parameter family of self-adjoint
extensions in L2(�+), two of which are the physically relevant Friedrichs extensions having finite kinetic
energy. The members of this family can be distinguished readily by their oscillator spectrum; we followed
this characterization under contraction to the free system, whose spectra are continuous.

We used results from real and complex radial canonical transforms [4, 5] to exponentiate so(2, 1) to
the universal cover of the Lorentz group SO(2, 1); in fractional dimension D = p/q (relatively prime)
we have a 4q-fold cover given by a phase in the oscillator Green function. This phase is inherited in the
contraction limit to the free particle. Also, we noted that non-Friedrichs extensions cannot be used to build
Green functions that satisfy the one-parameter group composition property.

Finally, we obtained the expectation values of three linearly independent generators for three function
sets: eigenfunctions of square radius, energy, and dilatation – and their ‘heat’-diffused wavefunctions. These
expectation values were found as derivatives of the radial canonical transform kernels with respect to their
parameters. Since time evolution of a free system is a linear canonical transformation in phase space, the
question of contraction or expansion of s-wave wavefields becomes a matter of computing the expectation
value of the generator of dilatations. When the sign of this is negative, the wavepacket will initially contract;
when positive, it will expand – quite independently of the dimension D. As noted above, dimension D = 2
is special in several respects, but it is a smooth limit of the Friedrichs extensions in the D > 0 line.

For integer dimension D ≥ 2, the angular momentum term in (1) can have eigenvalues L(L+D − 2),
L ∈ Z+

0 ; this entailsD �→ D+2L in all subsequent formulas, although of course the geometric interpretation
breaks down for non-integer dimension. The purpose of considering continuous dimensions here, as was
done in [22] for square wells, is to elucidate whether certain properties are peculiar to some specific
dimension, or generic for an open dimensional range, within the freedom allowed by mathematics beyond
the physics of quantum mechanics and optics. In particular, the initial decrease of the expectation value of
the radius in D = 2 dimensions for annular Gaussian wavefunctions [1,8], is absent for the square radius,
because classical and quantum mechanics follow each other for quantities quadratic in the coordinates of
phase space.

The Lorentz algebra has three Hamiltonian orbits: the harmonic oscillator (K0, elliptic, timelike), the
free particle (K+ orK−, parabolic, lightlike), and the repulsive oscillator (K1 orK2, hyperbolic, spacelike).
This last system was not addressed here, but a very similar analysis can be performed to understand the time
evolution of s-wavepackets under D-dimensional paraxial divergent lenses or radial repulsive oscillators
with barriers or wells. From another point of view, one can separate the plane in hyperbolic coordinates
(instead of polar), with ‘s-waves’defined as wavefields that are constant over a set of concentrical hyperbolas,
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and evolving through Green functions that are hyperbolic canonical transforms [23]. The overlap coefficients
between the eigenfunctions in the three orbits were computed in [24].

In a following paper we shall examine s-wavefields that obey the d’Alembert wave equation, which is
also enthralled to the Lorentz group. The wave equation is of second order in time, so the phase-space
description requires both the field, its time derivative, and causality; it is perplexing that in odd dimensions
the Huygens principle holds, while in even dimensions there is a reverberation behind the wavefront. These
features make the description of continuous-D s-wave systems interesting.

Appendix

A Normalization of oscillator wavefunctions

Here we find the normalization constants ckµ of the wavefunctions in (17), by calculating the inner product
(10) of ψk

µ(r) with the slightly-displaced wavefunction ψk
µ+ε(r), and then letting ε → 0. We use Eq. (32) to

put this integral in terms of the value of the Wronskian at the space origin r → 0+, i.e., the result follows
from

1 = lim
ε→0

(ψk
µ, ψ

k
µ+ε)L2(�+) = lim

ε→0

1
2ε

W(ψk ∗
µ , ψk

µ+ε)
∣∣∣
r→0+

= |ckµ|2 π

2 sin 2πk

(
1

Γ(1 − k − µ)
∂

∂ν

1
Γ(k − ν)

− 1
Γ(k − µ)

∂

∂ν

1
Γ(1 − k − ν)

)∣∣∣∣r→0+

ν→µ

= |ckµ|2 π

2 sin 2πk
ψ(1 − k − µ) − ψ(k − µ)
Γ(1 − k − µ) Γ(k − µ)

, (128)

where ψ(z) is the digamma function. From here follows the result quoted in Eq. (18), which has a positive
radicand.

Now we examine the special case k = 1
2 , where (18) appears to be indeterminate. This point corresponds

to the important case of dimension D = 2, which is the boundary between weak wells in the exceptional
interval 0 < k < 1, and strong wells where k = 1

2 (1+ iκ). To find the expression for c1/2
µ we can approach

it either from k = 1
2 + ε, ε → 0±, or from k = 1

2 (1 + iε); up to the sign σk
µ, the result in all cases is

ck=1/2
µ = σ1/2

µ Γ( 1
2 − µ)

/√
1
2ψ

′( 1
2 − µ), (129)

where we have the trigamma function ψ′(z) = dψ(z)/dz, and we must exclude the cases when µ = 1
2 +m,

m ∈ Z+
0 . For the equally-spaced spectra µ = k+m and µ = 1−k+m,m ∈ Z+

0 , we can use the residues
of the poles of the Γ and ψ functions, to find the limits,

ckk+m = σk
k+m

/√
1
2 m! Γ(2k +m), (130)

ck1−k+m = σk
1−k+m

/√
1
2 m! Γ(2 − 2k +m), (131)

c
k=1/2
1/2+m = σ

1/2
1/2+m

√
2
/
m!, (132)

where in the last line we include the case left out in (129). Lastly, in the strong barrier interval γ ≥ 3
4

(k ≥ 1, D ≥ 4), the two limits in (128) do not commute; we must take ε → 0+ first (since ψk
k+m+ε is not

square-integrable), and r → 0+ last. The result is again given by (130).
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In dealing with contractions, we came to need the asymptotic formulas for the difference of digamma
functions that appears in the normalization constant (18), evaluated at the points of a spectrum determined
by some fk(ν) = constant in (35), which determines the asymptotic spectrum µ = k + M + εM that is
solution to fk(µ) = fk(ν). Using the reflection and Stirling-type formulas for the digammas [9, Eqs. 6.3.7
and 6.3.18], and keeping in mind Eqs. (52)–(56), we find

ψ(1−k−µ) − ψ(k−µ)
sin 2πk

=
ψ(k+µ) − ψ(1−k+µ)

sin 2πk

+ π
(

cosπ(k+µ) − cosπ(1−k+µ)
)

(133)

µ̃→∞
π

sinπ(k + µ) sinπ(k − µ)
, (134)

which is real in all cases.
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