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Abstract
We find two noncommuting contractions of the Lie algebras u(N ) and gl(N,�),
realized as the symmetry algebras of N-dimensional isotropic harmonic and
repulsive oscillators of spring constant k ∈ �, with a constant force of
magnitude f . The contraction limit to the symmetry algebra of the N-
dimensional free system is (k, f ) → (0, 0). We take two paths in this plane,
determined by the order of contraction of the two parameters, and show that they
yield two closely related—but distinct—Euclidean-type symmetry algebras for
the common contracted system. We also show briefly how the wavefunctions
of the one-dimensional harmonic oscillator reduce to plane waves along the
above two paths.

PACS numbers: 02.20.Hj, 02.20.Qs, 03.65.Fd

1. Introduction

The transition from one system to another is well known in many branches of physics, such
as the c → ∞ limit of relativity to Newtonian mechanics, or the h̄ → 0 limit of quantum to
classical mechanics. In the theory of Lie algebras and groups, the Inönü–Wigner contraction
[1] is paradigmatic in that it shows how the structure of the corresponding symmetry algebras
and its representations changes when one parameter approaches a given limit. There is a large
literature on group and algebra contractions with many applications [2].

In this paper, we examine a limit of Lie algebras under contractions with two parameters,
where we can see that distinct paths in the parameter plane to a given limit can lead to distinct
contracted algebras. The algebras we consider are the symmetry algebras of oscillators (either
harmonic or repulsive) with a constant external force. The two parameters are the spring
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constant k and the magnitude f = |f| of a constant force. In this (k, f ) plane, we examine
two paths leading to the symmetry algebra of the free particle at (0, 0).

In section 2, we recall the symmetry algebras of the N-dimensional harmonic and repulsive
oscillators, and their joint standard contraction k → 0 to a symmetry algebra of the free particle.
In section 3, we add the constant force to the oscillators and show that their symmetry algebra is
preserved. In section 4, we subject the symmetry algebras of the oscillators to the contraction
k → 0, which result in the symmetry algebra of the free-fall system with the constant force.
Finally, in section 5 we complete this nonstandard path through letting f → 0, and thus find
a second Lie algebra which is also the symmetry of the free particle. In section 6 we quote
and discuss some results on how the discrete and normalized wavefunctions of the harmonic
oscillator reduce to continuous plane waves along the above two contraction paths.

In section 7, we comment on the end result of the two contraction paths being two
closely related—but distinct—symmetry Lie algebras for their common limit system. This
phenomenon of noncommutativity of distinct deformation and contraction limits reminds us
of the phenomenon of hysteresis, so we can characterize it as DC hysteresis.

2. The symmetry of oscillators

The Hamiltonian

H0 := p2

2m
+

kx2

2
=

N∑
i=1

(
p2

i

2m
+

kx2
i

2

)
, k ∈ �, (1)

describes the N-dimensional isotropic harmonic oscillator when the spring constant is positive
(k > 0), a repulsive oscillator (sometimes called ‘inverted oscillator’) when it is negative
(k < 0), and for k = 0 it describes a free particle.

Let x = {xi}Ni=1 and p = {pi}Ni=1 denote the operators of position and momentum
respectively, whose commutation relations, we recall, are

[xj , pk] = iδj,k(λ/2π)1̂, [1̂, xj ] = 0, [1̂, pk] = 0, (2)

where 1̂ is the identity operator and λ/2π is the reduced wavelength in paraxial wave optics or,
in quantum mechanics, the reduced Heisenberg constant h̄ = h/2π . This value distinguishes
the unitary irreducible representations of the Heisenberg–Weyl Lie algebra wN , which is
spanned by the 2N + 1 operators xj , pk and 1̂. We consider here natural units, where h̄ = 1.

The generators of the manifest symmetry of the Hamiltonian (1) are the self-adjoint
operators [4]

Ji,j := xipj − xjpi = −Jj,i = J
†
i,j , 1 � i < j � N, (3)

which integrate to joint rotations in the position and in the momentum spaces. Their
commutators close with the structure of the orthogonal Lie algebra so(N ):

[Ji,j , Jk,l] = i(δi,kJj,l − δi,lJj,k − δj,kJi,l + δj,lJi,k), (4)

and form a skew-symmetric tensor. On the other hand, the dynamical (or ‘hidden’) symmetries
of (1) are generated by the self-adjoint operators

Hi,j := pipj

2m
+

k

2
xixj = Hj,i = H

†
i,j 1 � i � j � N. (5)

These generate linear transformations between one position and one momentum coordinate,
and transform under the previous so(N ) as a rank-two symmetric tensor,

[Ji,j , Hk,l] = i(δi,kHj,l + δi,lHj,k − δj,kHi,l − δj,lHi,k). (6)
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Under commutation, they close into the previous rotations (3),

[Hi,j ,Hk,l] = i
k

4m
(δi,kJj,l + δi,lJj,k + δj,kJi,l + δj,lJi,k). (7)

In the harmonic case k > 0 the span of the 1
2N(N − 1) operators (3) and the 1

2N(N + 1)

operators (5) is the unitary Lie algebra u(N ). This algebra was identified long ago as the
symmetry algebra of the N-dimensional isotropic harmonic oscillator [3, 4]. In the repulsive
case k < 0, the generated Lie algebra is the noncompact gl(N,�), the real general linear
algebra studied recently by Daboul [5]. In both cases, the oscillator Hamiltonian (1) is the
trace H0 := ∑N

j=1 Hj,j , which is the centre of each of the algebras. They thus decompose as
the direct sums u(N ) = u(1) ⊕ su(N ) and gl(N,�) = gl(1,�) ⊕ sl(N,�). If we were to get rid
of the factor k/(4m) in (7) we would rescale the generators Hi,j �→ √

4m/|k|Hi,j ; we refrain
to do so because we intend to use ε := √|k|/4m as our first contraction parameter.

When the spring constant vanishes, k → 0±, both u(N ) and gl(N,�) contract to a distinct
algebra, which consists of the same so(N ) subalgebra of J ’s, and a contracted set of new ‘free
Hamiltonian’ generators (see [5, 6]) which are

H F
i,j := lim

k→0
Hi,j = pipj

2m
, 1 � i � j � N, H F

0 :=
N∑

j=1

H F
j,j = p2

2m
. (8)

These continue to transform as a rank-two symmetric tensor (6), but now commute among
themselves because for k = 0 the right-hand side of (7) is zero. The contractions of the
oscillator algebras to the free case are thus

lim
k→0+

u(N ) = i2Nso(N ) = lim
k→0−

gl(N,�), (9)

where we denote the rank-two inhomogeneous orthogonal algebra by

i2Nso(N ) := i2N +⊃ so(N ), with i2N := {pipj |i, j = 1, . . . , N}, (10)

which is the semidirect sum of the orthogonal subalgebra so(N ) with the 1
2N(N+1)-

dimensional Abelian ideal i2N of the operators (8) that are quadratic in momentum. The
latter generate slants of phase space, i.e., (x, p) �→ (x + αVp, p), with a symmetric matrix
V and the evolution parameter α. When V = 1, this is the result of inertial free flight
in mechanics, or free-light propagation in a homogeneous medium in paraxial optics. The
symmetry algebra of the free system still has N2 generators. As emphasized in [5], all Hi,j ’s
are realizations of the symmetric generators of u(N ), multiplied implicitly by the contraction
parameter ε = √|k|/4m. This is why their commutators in (7) vanish in the limit k → 0, and
consequently the above contraction is of the standard Inönü–Wigner type [1, 4].

3. Addition of a constant force

We now deform the isotropic oscillator by adding a constant force f of magnitude f = |f| (this
is a true physical, not fictitious force). We are free to choose the N th coordinate xN of the
system along this force, so that the original classical Hamiltonian (1) becomes

H(k,f ) := H0 − f xN = p2

2m
+

kx2

2
− f xN . (11)

Because of the constant force, space has now a preferred direction, and the full rotational
symmetry of the original system is broken. However, for k 	= 0 we can recover this symmetry
simply by shifting the origin of the position coordinate system, xi �→ ξi := xi − δi,Nf/k, in
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the Hamiltonian (2). This corresponds to the following linear combination with the central
element of the Heisenberg–Weyl algebra

xi �→ ξi = xi − δi,N

f

k
1̂. (12)

In terms of the new position operators ξi , the deformed Hamiltonian operator (11) now
looks exactly as the original Hamiltonian (1), except for a constant additive term f 2/2k,

H(k,f ) := p2

2m
+

kξ 2

2
− f 2

2k
1̂. (13)

The generators of the new symmetry algebra are then linear combinations of the old generators
Ji,j and Hi,j , plus the wN generators xi, pi and 1̂, in (2). Algebraically, this places the symmetry
Lie algebras of the previous section, u(N ), gl(N,�) or i2Nso(N ), within larger non-invariance
algebras, wNu(N ), wNgl(N,�) or wN i2Nso(N ) respectively. The symmetry algebras of the
shifted oscillators are subalgebras of the wN-extended symmetry algebras of the previous
section, with the same structure as before. The new generators have the same expressions in
terms of the shifted operators ξi as the previous ones had in terms of xi , namely

J
(k,f )

i,j := ξipj − ξjpi = Ji,j , 1 � i < j < N, as in (3), (14)

J
(k,f )

i,N := ξipN − ξNpi = Ji,N +
f

k
pi, 1 � i < N, (15)

H
(k,f )

i,j := pipj

2m
+

k

2
ξiξj = Hi,j , 1 � i � j < N, as in (5); (16)

H
(k,f )

i,N := pipN

2m
+

k

2
ξiξN = Hi,N − 1

2
f xi, 1 � i < N, (17)

H
(k,f )

N,N := pNpN

2m
+

k

2
ξNξN = HN,N − f xN +

f 2

2k
1̂. (18)

4. The symmetry of the free-fall system

When the constant force vanishes, f → 0, the symmetry algebras of the oscillators with
constant force contract uneventfully to those of section 1, as is clear from (14)–(18); and when
k → 0, the contraction follows as in equation (9) via the standard Inönü–Wigner procedure.
Our purpose in this paper is to consider the alternative path illustrated in figure 1, namely to
contract first the oscillators through k → 0, to a system subject only to the constant force f ,
i.e., a free-fall system, and then let f → 0, to regain the free particle. This second path will
be examined now.

As long as k 	= 0, for large enough distances the oscillator force −k x eventually becomes
stronger than any constant force f, no matter how small k is. But as we approach k = 0,
the shift f/k in the N th position coordinate ξN in (12) becomes infinite, even though the
Hamiltonian H(k,f ) in (13), which is equivalent to H(k,f ) in (11), remains finite. The constant
term f 2/2k in (13) simply yields a fictitious singularity; on the other hand, the new generators
in (15) and (18) would blow up in the limit k → 0. To make these generators finite, we
contract them through multiplication by the factor k.

In contrast to the standard Inönu–Wigner contraction [1] of section 2, here the contraction
procedure is nonstandard, since we are essentially multiplying different generators of u(N )
and gl(N,�) by three different powers of the contraction parameter ε. As we mentioned
earlier, Hi,j already include an implicit multiplication by a linear power of ε. Hence kH

(k,f )

N,N

is essentially multiplied by ε3, whereas kJ
(k,f )

i,N are multiplied by ε2.
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Figure 1. The (k, f ) plane of contraction parameters for the Lie algebras that are symmetries of N-
dimensional oscillators. The left half-plane k < 0 corresponds to the orbit of repulsive oscillators
with a symmetry algebra gl(N, �), while the right half-plane k > 0 corresponds to the orbit of
harmonic oscillators with a symmetry u(N ). The f -axis contains the limit orbit k = 0 (f 	= 0) of
the symmetry algebra of free-fall systems, and the free system at (k, f ) = (0, 0). We follow two
distinct contraction paths to arrive at the symmetry algebra of the free system, illustrating the ‘DC
hysteresis’ phenomenon in the parameter plane (k, f ). The standard Inönü–Wigner contractions
follow the paths A → B → O and A′ → B ′ → O to the symmetry of rotations and cross-slants
of position space and forming an i2N so(N ) algebra. On the other hand, the nonstandard contraction
along the paths A → C → O and A′ → C → O first contracts k → 0 to the broken symmetry of
the constant-force (free-fall) system at C, which includes translations, and ends up with a distinct
symmetry algebra for the free system at O.

We thus write the generators of the free-fall system in terms of the generators of the free
system (8), indicating the contracted generators by a tilde (cf (14)–(18)),

J
(0,f )

i,j = Ji,j , 1 � i < j < N, as in (14), (19)

J̃
(0,f )

i,N := lim
k→0

kJ
(k,f )

i,N = fpi, 1 � i < N, (20)

H
(0,f )

i,j = H F
i,j , 1 � i � j < N, as in (16), (21)

H
(0,f )

i,N = H F
i,N − 1

2f xi, 1 � i < N, (22)

H̃
(0,f )

N,N := lim
k→0

kH
(k,f )

N,N = 1
2f 2. (23)

To evince the structure of the contracted symmetry algebra (19)–(23) for (k=0, f 	=0), we
first note that all (N−1)2 generators in the first (N−1) coordinates {xi}N−1

i=1 contract as before
(cf equation (9)), to the rank-two inhomogeneous orthogonal algebra in (N−1) dimensions,
i2N−1so(N − 1), while the 2(N−1) + 1 operators,

J̃
(0,f )

i,N , H
(0,f )

i,N , 1 � i < N, H̃
(0,f )

N,N = 1
2f 2, (24)

now form a Heisenberg–Weyl subalgebra wN−1. The commutation relations to check are[
J̃

(0,f )

i,N , J̃
(0,f )

j,N

] = 0,
[
H

(0,f )

i,N ,H
(0,f )

j,N

] = 0,
[
J̃

(0,f )

j,N ,H
(0,f )

k,N

] = iδj,kH̃
(0,f )

N,N , (25)

cf (2). These wN−1 generators also transform covariantly under the previous so(N − 1)
algebra; however, they do not all commute with the previous rank-two inhomogeneous Abelian
subalgebra i2N−1 of generators H

(0,f )

i,j , 1 � i � j < N . Instead,[
H

(0,f )

j,k , J̃
(0,f )

l,N

] = 0,[
H

(0,f )

j,k , H̃
(0,f )

N,N

] = 0,

[
H

(0,f )

j,k , H
(0,f )

l,N

] = i

4m

(
δk,l J̃

(0,f )

j,N + δj,l J̃
(0,f )

k,N

)
. (26)



4178 J Daboul and K B Wolf

The two subalgebras, wN−1 and i2N−1, mesh into an algebra which is not their direct sum,
but a semidirect sum

wN−1i2N−1 := wN−1 +⊃ i2N−1, (27)

where wN−1 transforms under the Abelian group generated by i2N−1. The action can be
understood quite naturally when we identify them as

‘position’ Xi ∼ H
(0,f )

i,N = pipN/2m − 1
2f xi,

‘momentum’ Pi ∼ J̃
(0,f )

i,N = fpi, 1 � i < N,
(28)

and recall that the commuting H
(0,f )

i,j ’s generate the symmetric slants in the i–j planes,
Xl �→ Xl + α(δi,lPj + δj,lPi), Pl �→ Pl , that we commented upon for the free particle at the
end of section 2.

The structure of the symmetry algebra of the free-fall systems (19)–(23) obtained by
the contraction of both the harmonic and repulsive oscillator algebras with constant force,
equations (14)–(18), is therefore given by the following direct sum:

g(0,f ) = (
wN−1i2N−1

)
so(N−1) := (

wN−1i2N−1

)
+⊃ so(N − 1). (29)

The full symmetry algebra (29) still has N2 generators, but its structure is distinct from that
of the precontracted algebras u(N ) or gl(N,�).

Comparing the symmetry algebra of the free-fall system (29) with that of the free case,
i2Nso(N ) in (9), we see that the latter is broken along the xN direction. There remains invariant
the i2N−1so(N − 1) subalgebra that commutes with the coordinate xN , and has (N − 1)2

generators. The other 2N − 1 generators that act on xN were contracted to the Heisenberg–
Weyl algebra wN−1.

5. ‘Deformation–contraction’ (DC) hysteresis

We now close the second path of figure 1 by taking the limit f → 0 to the free particle.
Straightforwardly, in this limit the generators (19)–(23) become

J
(0,0)
i,j = Ji,j , 1 � i < j < N, as in (19), (30)

H
(0,0)
i,j = H F

i,j , 1 � i < j � N, as in (21) and (22) (31)

while the N generators J̃
0,0
i,N and H̃

0,0
N,N vanish. This leaves the N2−N generators (30) and (31)

in a Lie algebra(
iN−1 ⊕ i2N−1

)
so(N−1), (32)

where the generators of iN−1 are H
(0,0)
i,N ’s (1 � i < N) that transform under so(N − 1) as

an (N−1)-dimensional vector. The rotational symmetry so(N ) of the free system cannot be
recovered when the contraction path passes through constant-force systems.

In the limit f → 0, J̃
(0,f )

i,N = fpi and H̃
(0,f )

N,N = f 2/2 would vanish, and the dimension of
the resulting algebra would be diminished by N. However, by multiplying these two generators
by the factor 1/f , we can save one of them. The constant-force symmetry generators, which
span the wN−1 subalgebra, become

˜̃J(0,0)
i,N := lim

f →0

1

f
J̃

(0,f )

i,N = pi, 1 � i < N, (33)

H
(0,0)
i,N = H F

i,N = pipN

2m
, 1 � i < N, (34)
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˜̃H(0,0)

N,N := lim
f →0

1

f
H̃

(0,f )

N,N = 0. (35)

Since ˜̃J(0,0)
i,N now commutes with H

(0,0)
i,N , in the limit f → 0, wN−1 contracts to an Abelian

algebra, as in the classic h̄ → 0 contraction. The symmetry algebra thus obtained has now
N−1 generators (33) more, and one generator (35) less, 1̂ being absent.

The structure of this symmetry algebra is thus(
iN−1 ⊕ iN−1 ⊕ i2N−1

)
so(N − 1), (36)

where we see that the wN−1 subalgebra in (29) has decomposed into a direct sum of two iN−1

without the identity operator 1̂. The first iN−1 in (36) contains the generators of translations
{pi}N−1

i=1 , while the second iN−1 contains the generators of slants into the direction of xN ,
namely {pipN/2m}N−1

i=1 . In this way we obtain N2 − 1 generators—one generator less than
the N2 generators of i2Nso(N ), the symmetry algebra of the free system that we found using
the standard Inönü–Wigner contraction path in (9). Not only are the structures of the algebras
different, but so are the transformations they generate. There are no generators that will rotate
xN and pN , but all other slant generators are present, and now the bonafide translations pi .
As could be anticipated, the full rotational symmetry so(N ) of the free case has been lost and
cannot be recovered.

6. Limits of wavefunctions and spectra

At the behest of one of the referees we annotate some results from [7], where we examine
the one-dimensional harmonic oscillator with a constant force, following the energies and
eigenfunctions of the Hamiltonian (11) under the standard and nonstandard contractions, to
show the effects of the lost symmetry.

Recovering the physical value of h̄, the discrete spectrum and eigenfunctions of the
harmonic oscillator are

E(k,f )
n =

(
n +

1

2

)
h̄ω − f 2/2k, n ∈ {0, 1, 2, . . .} (37)

ψ(k,f )
n (x) = 1

π1/4
√

2nn!a
exp

[
−1

2
(ξ/a)2

]
Hn(ξ/a), (38)

where Hn(z) are Hermite polynomials,

ω :=
√

k/m, ξ := x − f/k, a :=
√

h̄/
√

km, (39)

and we assume that f > 0. The standard limit, first for f → 0+ and second for a sequence
{n} of oscillators with spring constants kn = mω2

n → 0+, such that the energy is kept fixed
at E(kn,0) = (

n + 1
2

)
h̄ωn = p2/2m, yields the well-known parity-classified, Dirac-normalized

free eigenfunctions [8]

φ±
p (x) = 1√

π

{
cos(px/h̄), p � 0,

sin(px/h̄), p > 0.
(40)

On the other hand, when we follow the nonstandard contraction, the same sequence
kn → 0, f > 0, with the classical turning point x tur

E = −E/f for energy E ∈ �, we find the
limit to the Airy functions of free fall in the negative-x direction,

lim
n→∞ k−1/4

n ψ(kn,f )
n

(
x − x tur

E

) = 2m1/12h̄f −1/6Ai((2mf/h̄2)1/3(x + E/f )). (41)
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Finally, when f → 0+, negative-energy eigenfunctions vanish, φE<0(x) f̃ →0 0, while the
positive-energy states behave as

φE>0(x) f̃ →0

1√
2π

((cos χ+ sin χ) cos(px/h̄) + (cos χ− sin χ) sin(px/h̄)), (42)

where χ := √
m(2E)3/2/(3h̄f ) → ∞ and φE=0(x) f̃ →0 π−1/2. Hence, while (42) are solutions

to the free Schrödinger equation, their parity is not recovered, but remains indeterminate. The
detailed proofs of (41) and (42) are nontrivial [7] and lie outside the scope of this paper, which
is the analysis of the non-commutativity in a class of two-parameter Lie algebra contractions.

7. Conclusions

DC hysteresis has been examined here as realized among well-known physical systems:
harmonic and repulsive oscillators, free fall and the free particle in N dimensions. The
contraction along the first path is a standard Inönü–Wigner contraction, while the contraction
along the second path is nonstandard since, as explained in the text, it requires multiplication
by three different powers of the contraction parameter ε = √|k|/4m, namely ε, ε2 and ε3, of
the generators Hi,j (i < j � N), Ji,N (i < N) and HN,N , respectively. On this model we
have seen that symmetry lost on one leg of a multiparameter contraction path is never fully
regained.
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