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Phase reconstruction from intensity measurements
in linear systems
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The phase of a signal at a plane is reconstructed from the intensity profiles at two close parallel screens con-
nected by a small abcd canonical transform; this applies to propagation along harmonic and repulsive fibers
and in free media. We analyze the relationship between the local spatial frequency (the signal phase deriva-
tive) and the derivative of the squared modulus of the signal under a one-parameter canonical transform with
respect to the parameter. We thus generalize to all linear systems the results that have been obtained sepa-
rately for Fresnel and fractional Fourier transforms. © 2003 Optical Society of America
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1. INTRODUCTION
Phase retrieval and local frequency estimation of a signal
from intensity profiles are important problems in radio lo-
cation, optical signal processing, quantum mechanics,
and other fields. Several successful iterative algorithms
for phase reconstruction from the squared modulus of the
signal and its power spectrum, or its Fresnel spectrum,
have been proposed recently,1–4 and related techniques
are applied in various regions of the electromagnetic spec-
trum and in quantum mechanics.5–7 The development of
noniterative procedures for generic systems remains an
attractive research topic.

A noniterative approach for phase retrieval, based on
the so-called transport-of-intensity equation in optics,
was proposed by Teague8 and then further developed by
others.9–11 It was shown that the longitudinal derivative
of the Fresnel spectrum is proportional to the transversal
derivative of the product of the instantaneous power and
the instantaneous frequency of the signal. A similar pro-
cedure was proposed for the fractional Fourier trans-
form.12,13

In this paper we show that a noniterative formulation
applies for general one-parameter canonical trans-
forms.14–17 We show that the local frequency (the first
derivative of the phase of the signal) is directly related to
the derivative of the squared modulus of the one-
parameter canonical transform with respect to the pa-
rameter and is given by the evolution Hamiltonian of the
optical medium. From this relationship we conclude that
the phase of the signal can be reconstructed by letting it
propagate in such systems and measuring the intensity
profiles of the signal for two close values of the parameter.

After a short reminder of definitions in Section 2, in
Section 3 we find the parametric derivative of the inten-
sity under canonical transforms; this is used in Section 4
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to derive our main result; in Section 5 we offer some con-
cluding remarks.

2. PHASE AND LOCAL FREQUENCY
The local spatial frequency p̄(x) of a one-dimensional,
complex, and coherent signal of amplitude c (x) is defined
as the derivative of its phase f(x),

p̄~x ! ª f8~x ! ª

df~x !

dx
, c ~x ! 5 u c~x !uexp@if~x !#.

(1)

This local frequency can be expressed in terms of the sig-
nal itself, c (x), by writing

p̄~x ! 5
df~x !

dx
5 Im

d ln c ~x !

dx

5 Im
c8~x !

c ~x !

5
1

2
iS c8* ~x !

c* ~x !
2

c8~x !

c ~x !
D

5
1

2
i

c8* ~x !c ~x ! 2 c* ~x !c8~x !

c* ~x !c ~x !
.

Thus we obtain a relation that we shall use below:

p̄~x !u c~x !u2 5
1
2 i@ c8* ~x !~ c!~x ! 2 c* ~x !c8~x !#. (2)
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3. ONE-PARAMETER CANONICAL
OPERATORS
In the paraxial regime of two-dimensional geometric op-
tics, a quasi-homogeneous medium of refractive index
n(x) ' no 2 nx2 is characterized by the Hamiltonian
function

h~x, k ! 5
1

2no
k2 1 nx2. (3)

Harmonic fibers have n . 0, a free medium is described
by n 5 0, and repulsive fibers correspond to n , 0. Qua-
dratic functions of phase space (x, k) have a unique
quantization (or wavization); we will generalize our con-
siderations to the generic Hamiltonian operators

H ª

1
2 AP2 1

1
2 B~QP 1 PQ! 1

1
2 CQ2 5 H†, (4)

using the well-known Schrödinger realization of the mo-
mentum (k°P) and position (x°Q) by

P 5 2i
]

]x
, Q 5 x, P 2 5 2

]2

]x2 ,

QP 1 PQ 5 22iS x
]

]x
1

1

2 D , Q2 5 x2, (5)

and acting on the Hilbert space of square-integrable sig-
nals c (x).

The Hamiltonian operator [Eq. (4)] generates the evo-
lution of the signals along the z axis of the fibers or free
space. This evolution is given by a one-parameter group
of unitary canonical transform operators, which act on
signals through the canonical integral transform [Ref. 17,
Eqs. (9.25), (9.73), and (9.74)],

C~a! ª exp~iaH! 5 C~2a!†, a P Re, (6)

C~a!c ~x ! ª ca~x ! 5 E
2`

`

C~a; x, x8!c ~x8!dx8 (7)

Hc ~x ! 5 2i
d

da
E

2`

`

C~a; x, x8!c ~x8!dx8ua50

5 2i
dca~x !

da
U

a50

. (8)

The fractional Fourier transformation is produced in a
harmonic fiber whose Hamiltonian [Eq. (4)] has param-
eter values A 5 C 5 1 and B 5 0 and is

Ce~a; x, x8! 5
1

~2ip sin a!1/2

3 expS 2i
x2 cos a 2 2xx8 1 x82 cos a

2 sin a
D ,

(9)

with a counted modulo 4p to cover the two values of the
metaplectic sign [for abcd parameters near the identity
system, we understand that i21/2

ª exp(2ip/4)]. The
Fresnel transformation of free flight in a homogeneous
medium has the Hamiltonian [Eq. (4)] with A 5 1 and
B 5 C 5 0:
Cp~a; x, x8! 5
1

~2ipa!1/2 expS 2i
x2 2 2xx8 1 x82

2a
D .

(10)

Finally, a repulsive fiber corresponds to A 5 2C 5 1 and
B 5 0; its integral kernel is

Ch~a; x, x8! 5
1

~2ip sinh a!1/2

3 expS 2i
x2 cosh a 2 2xx8 1 x82 cosh a

2 sinh a
D .

(11)

The subindex e,p,h of the three previous kernels distin-
guishes between the elliptic, parabolic, and hyperbolic
one-parameter subgroups of all paraxial optical systems.
Any other system can be obtained from them through
similarity; for example, multiplication by a quadratic
phase factor (A 5 B 5 0 and C 5 1) is obtained through
Fourier transformation of the parabolic kernel [Eq. (10)]
and scaling (A 5 C 5 0 and B 5 1) by the square root of
the Fourier transform of the hyperbolic kernel [Eq. (11)].
Yet these two canonical transforms are not integral trans-
forms; their kernels reduce to Dirac d’s, and the signal is
multiplied by the factor and rescaled.

In Eq. (8) we differentiated ca(x) with respect to a at
the origin (a 5 0) and obtained up to second derivatives
of c (x). We now differentiate its absolute square,

]u ca~x !u2

]a
5

]ca* ca

]a
5

]ca*

]a
ca 1 ca*

]ca

]a

5 ~iHca!* ca 1 ca* ~iHca!

5 2i@2
1
2 Aca9* 1 iB~xca8* 1

1
2 ca* !

1
1
2 Cx2ca* #ca 1 ica* @2

1
2 Aca9

2 iB~xca8 1
1
2 ca! 1

1
2 Cx2ca#

5
1
2 iA~ ca9* ca 2 ca* ca9 ! 1 Bx~ ca* ca 1 ca* ca8 !

1 Bca* ca ,

and arrive at

]u ca~x !u2

]a
5

1

2
iA

d

dx
@ ca8* ~x !ca~x ! 2 ca* ~x !ca8 ~x !#

1 B
d

dx
@xca* ~x !ca~x !#. (12)

4. RECONSTRUCTION OF THE PHASE
We recognize in Eqs. (2) and (12) the common subexpres-
sion ca8* (x)ca(x) 2 ca* (x)ca8 (x), so we combine them to
obtain

d@Ap̄~x ! 1 Bx#u c~x !u2

dx
5

]u ca~x !u2

]a
U

a50

, (13)
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This equation relates the transversal derivative of the
signal intensity with respect to the space variable x and
the derivative of this intensity with respect to the canoni-
cal transform parameter a.

Assuming that @Ap̄(x) 1 Bx#u c(x)u2 → 0 for x → 6`,
and noting that owing to the unitarity unitary of the ca-
nonical transformation C(a) the Parseval relation holds
[Ref. 17, Eq. (9.11)],

E
2`

` ]u ca~x8!u2

]a
U

a50

dx8 5
]

]a
E

2`

`

u ca~x8!u2dx8U
a50

5
]

]a
E

2`

`

u c~x8!u2dx8U
a50

5 0,

(14)

we integrate Eq. (13) over x. This yields

@Ap̄~x ! 1 Bx#u c~x !u2

5 E
2`

x ]u ca~x8!u2

]a
U

a50

dx8

5 E
2`

` ]u ca~x8!u2

]a
U

a50

u~x 2 x8!dx8

5
1

2
E

2`

` ]u ca~x8!u2

]a
U

a50

sgn~x 2 x8!dx8, (15)

where u(j) is the unit step function @u(j) 5 1 for j . 0
and u(j) 5 0 for j , 0] related to the sign function
through sgn(j) 5 2u(j) 2 1; the difference between the
two (21) does not change the value of the integral due to
Eq. (14).

We consider Eq. (15) to be our main result, because it
relates the phase derivative of the signal, p̄(x) in Eq. (1),
to a convolution integral of the derivative of the signal in-
tensity u ca(x)u2 with respect to the evolution parameter a
in a medium characterized by the generic Hamiltonian
[Eq. (4)]. As in Ref. 13, two signal intensities u c6e(x)u2

measured at two screens separated by 2e will provide the
numerical value of the right-hand side of Eq. (15) and of
their average

u c~x !u2 ' 1
2 ~ u c1e~x !u2 1 u c2e~x !u2!, e ! 1. (16)

This allows the numerical determination of the local fre-
quency by

p̄~x ! ' 2
B

A
x 1

1

2u c~x !u2

3 E
2`

` u c1e~x8!u2 2 u c2e~x8!u2

2e
sgn~x 2 x8!dx8.

(17)

The integration of Eq. (1) recovers the signal phase (up to
an overall constant) through f(x) 5 *xp̄(x8)dx8. In Ref.
13 the validity of approximation (17) in the neighborhood
of the zeros of u c(x)u2 is examined in several numerical
examples. Since only square moduli appear in all ex-
pressions, the metaplectic sign of the canonical trans-
forms is irrelevant.
We note the absence of C, the Hamiltonian parameter
associated with the refractive index, in the left-hand side
of Eq. (15); comparison with the classical form [Eq. (3)]
shows that the determination of the signal phase is the
same whether the medium be harmonic, repulsive, or free
(Fourier, hyperbolic, or Fresnel transform intervening).
The parameter B of the scaling term of the Hamiltonian
does appear in that left-hand side; when it is present, re-
lation (17) shows that it will only chirp the local frequency
p̄(x) by 2Bx/A. Thus we see that to determine the local
frequency of a signal from two intensities it is necessary
only that the canonical transform be generated by a
Hamiltonian with a nonzero Ak2 free-flight term.

5. CONCLUSION
In this paper we have established the relation [Eq. (15)]
between the local frequency of a signal and the derivative
of the squared modulus of any one-parameter subgroup
line of canonical transforms of an optical signal, including
the previously known Fourier and Fresnel cases. This
allows us to reconstruct the phase of a signal by measur-
ing two intensity profiles at two close values of the free-
flight parameter in two-dimensional optical fibers of any
refractive index—harmonic, repulsive, or free. Scaling
terms in the ruling Hamiltonian lead to chirping in the
frequency; multiplication of the signal by quadratic
phases has of course no effect.
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