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Wigner functions for curved spaces. Il. On spheres
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The form of the Wigner distribution function for Hamiltonian systems in spaces of
constant negative curvatufee., hyperboloids proposed in M. A. Alonso, G. S.
Pogosyan, and K. B. Wolf, “Wigner functions for curved spaces. I. On hyperbo-
loids” [J. Math. Phys43, 5857(2002], is extended here to spaces whose curvature

is constant and positive, i.e., spheres. An essential part of this construction is the
use of the functions of Sherman and Volobuyev, which are an overcomplete set of
plane-wave-like solutions of the Laplace—Beltrami equation for this space. Rota-
tions that displace the poles transform these functions with a multiplier factor, and
their momentum direction becomes formally complex; the covariance properties of
the proposed Wigner function are understood in these terms. As an example for the
one-dimensional case, we consider the energy eigenstates of the oscillator on the
circle in a Pechl-Teller potential. The standard theory of quantum oscillators is
regained in the contraction limit to the space of zero curvature2003 American
Institute of Physics.[DOI: 10.1063/1.1559644

[. INTRODUCTION

In the first part of this seriéswe proposed a generic form for the Wigner quasiprobability
distribution function defined in terms of the generalized basis of plane waves; this form may be
extended in a natural way to curved configuration spaces, provided that an analogous basis of
plane-wave-like solutions can be found on those manifolds; the new functions will correspond-
ingly endow their argument and index with the physical meaning of position and momentum.
Although one may think to generalize the Wigner function to any manifold, the hyperboloid and
the sphere are the two simplest cases to start such a study. In Ref. 1 we considered spaces of
constant negative curvature, i.e., the upper sheet of a two-sheeted hyperboloid, where the basic
plane waves were the set of Shapiro functibihat Wigner function has the desired marginal
projections, and its properties of covariance under rotations and hyperbolic translations were
shown to stem from those of the Shapiro functions. The goal of this second part is the study of the
Wigner function on spaces of positive constant curvature, i.e., on spheres.

As was the case in Ref. 1, the generalization offered in our approach results from recognizing
that the Wigner function on flat phase spapexj € 93%°,3 in addition to its usual expression as a
single integral, can be written also in the following twofold integral form with a Difac
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where the functionp,(x) and its complex conjugaté,(x)*, whose argument and index variables
bind the position and momentum variables, are the plane waves

bp(X):=expip-x),  —Ap(X)=p’h(x), )

where p:=|p|, and which are solutions of the Helmholtzaplace—Beltrami equation on flat
space. Momenturp has units of inverse length whein=1; in optics,p is the wave number of
light.

The form (1) of the Wigner function again suggests its generalization to the spfiBre
through replacing the integration over flat spage,{d®x) by an integration over the new
D-dimensional manifold {sodx), replacing the plane waves,(x) of flat space byplane-wave-
like solutions of the Laplace—Beltrami equation on that manifold, and replacing the Dirac delta
8P (x—(x'+x")) in (1) by an appropriate distribution on the sphere. The new reproducing kernel
should guarantee thatxf andx” are on the manifold, thexishould lie halfway along a geodesic.

In flat space, the transformation between the position and momentum representations arises
from the basis of plane wave functiof® that defines the Fourier transform; on the hyperboloid,
it is a Mellin transform. Here, this transform will relate wave functions on the sphere with
functions over a momentum space, through a summation over the discrete values that the wave
number can have on the sphere, and an integral over the directions of the plane waves. Both the
hyperboloid and the sphere are characterized by the r&ligsrvature=x 1/R), which will serve
as the contraction parameter whose lilRit> represents flat space, and where the traditional
phase space and Wigner function are recovered.

Let us stress that, unlike previous studies where the sphere is the symplectic manifold on
which the Wigner function is drawn, as in the cases forsaim finite systems® or of the Wigner
function defined on the coadjoint orbits of a Lie algebwhich may have a similar or more
complicated topology, this Wigner function describes wave fields whose configuration space is the
sphere. Also, we distinguish the present case from other previous definitions describing Helmholtz
wave fields in flat free space, where momentum is constrained to the so-called Descartes sphere of
ray directions

In Sec. Il we concentrate the necessary definitions and relevant properties of these plane-
wave-like solutions, and our understanding of the momentum space conjugate to the sphere. In
Sec. lll we develop the new Wigner function on the direct product phase space, making explicit its
covariance properties and its contraction limit. As in Ref. 1, we illustrate some of these results in
Sec. IV with an example: the harmonic oscillator analog on the ciRle {) that corresponds to
the bounded-interval RBohl-Teller potential. In Sec. V we recapitulate our results in the context
of other approaches in the literature.

Il. SPHERICAL SPACES AND MOMENTUM

We follow the plan of Ref. 1 to present the Laplace—Beltrami operator on the curved space—
here a D-dimensional spherical manifold—and its corresponding basis of plane-wave
functions®° This is the basis we choose to define the momentum manifold that will appear in the
definition of the Wigner function in the next section.

A. Laplace—Beltrami operator on the sphere

Consider theD-dimensional manifold of a spher&® of radius R>0, embedded in the
ambient spacee RP 1,

IX|2:=x3+Xx2=R?, XP:=x3+X5+--+Xx3. 3

The isometry group of the manifold ofs is the real orthogonal group i@+ 1 dimensions; for
simplicity we disregard reflections and use the proper rotation groupSQ(). This will replace
the Euclidean isometry 1IS@) , of flat configuration space. The standard realization of the Lie
algebra sdD + 1) by generators of rotations of the ambieBt- 1)-dimensional spac€), is
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Mj,k::Xjan_Xk&Xj’ j,k=0,1,2,..,D. (4)

The Laplace—Beltrami operator oﬁE’r is (R™2 times the second-order invariant Casimir
operator, namely,

1 1
== —H 2
Ag ch R OSjstD M7 . 5

The spectrum of the Casimir operator of Bof 1) is well known to be the lower bound, discrete
but infinite set of values

3(O)={€t+D—-1)|teZs}, Z45:={0,1,2,.}. (6)

Corresponding to each value éfthere is a unitary irreducible representation belonging to the
most degenerat@lso called most symmetjiseries, which is of finite dimensidr2¢ + 1 in so(3)

for D=2]. The free wave functions on the sphere are the solutions to the Laplace—Beltrami
equation characterized by those eigenval{@sthat we choose to write as

€(€+D-1) , [D—1)?
Apf(X)=——z X ==|p"~| 5| |T(X), (7)
p=[{+ 3(D-1)]/R, {=-3(D-1)+pReZ]. (8)

B. Sherman—Volobuyev functions on the sphere

In Ref. 1 we used the Shapiro functions, introduced by Gel'fand, Graev, and Shapiro in Ref.
2 as Fourier-type plane waves omadimensional space of negative curvatiifee upper sheet of
the hyperboloid< ). Close analogs to these functions on tltempact space of positive
curvature—the sphe@®C %P1, were given by Sherman in Ref. 9 and were independently used
by Wolobuyev in Ref. 10, who wrote his work in the context of a phase space model where
momentum space is the hyperboloid of Kadyshevsky and Mir—Kastmane translated this to a
spherical case with the Laplace—Beltrami equation on this manifold. In contrast to the denumer-
able basis of spherical harmonics, which are orthonormal and complef® pthe generalized
basis of Sherman—Volobuyev functiofas is the case with coherent states on flat gpace
neither. Thus, this basis must be complemented by a distirgtbasis. In the following, we keep
the notation in direct correspondence with that used in Ref. 1.

By vertical projection, the upper and lower hemispheres of a spfBeRP*! map on the
same open equatorial dis©PC?RP (and the equator on its common closure—a lower-
dimensionalS® ! manifold. For convenience, functionigx) on the spherexe SP, |x|?=R?,
will be sometimes written as functions ¢fi— 1, @ DP]e@SP~! with colatitude angley as

fF)=F(X0,x)=F,(x),

1

Xo=0yR?°—x?=Rcosy, oe{—-11, O<y<m, or =0, X=5, (9)

x=Ré&sinye DPCMP, &esP L,

The =0 submanifold is the equator of the sphere, but its explicit inclusion is not crucial to our
work. Integration over the sphere will be written as

fdf =R > f d f 10
<D x f(x):= o DDW #(X), (10

Downloaded 03 Apr 2003 to 132.248.33.128. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



J. Math. Phys., Vol. 44, No. 4, April 2003 Wigner functions for curved spaces. Il. On spheres 1475

and theo=0 submanifold will be normally ignored.

The Sherman—Volobuyev functions and their duals are complex functions on the sphere that
are solutions to the Laplace—Beltrami equati@y they are classified according t6) by the
index ¢ € Z; of completely symmetric representations in 8Q( or equivalently, by the discrete
wave number pn (7), whose values are spaced bjR1/The functions in the Sherman—\Volobuyev
generalized basis of plane waves are characterized by an@akntunvector

1
ps=pn, p=z[3(D-1)+¢], €eZ5, nes @

which has the direction indicated by the unit vector on the sphere in the equatorial subspace. Using
the relations(8) between the representation indéxand the absolute value of the momentum
vector,p=|p|>0 (for D>1), these functions and their duals are

Xg+in-X

(D) .
V(0= =5

4
) =(cosy+in-£siny)‘=d@ (x)*, (12

_ Xo+in-x|17b-¢
®P)(x):=(signn-x)°~* O—)

R
=(signn-x)®~(cosy+in-x siny)t P~ ¢
= (signn-x)° Y DR 1) jrs pn() =P (0)*. (13)

In Fig. 1 we show Sherman—\Volobuyev functions for the dase2, which can be readily plotted
on the spher&?2. The functiong12) can be equivalently characterized as the highest-weight solid
SP-hyperspherical harmonicg, . ,(x)~ (x,+ix,)" (which are solutions of the Laplace equation
in the ambient spagerotated so as to bring thg-x, plane to the plan&,-n, for each equatorial
directionne SP~1. Their dual functiong13) are the second solutions of the Laplace equation,
which are obtained by replacing—1—D — ¢, and formally correspond to the same eigenvalues
(6) of the Casimir operator on the sphere; they are singular o theé® submanifold orthogonal

to thexy-n plane. In theD =2 case, these are the two points at right angles to the wavetrain.

C. Properties and limits

The Sherman—Volobuyev functions satisfy the following completeness and orthogonality re-

lations:
o Emi N®)(p) dn L) (x)dL)(x") = 550(x,x") 14
(2m)° <o P ] g0 pn pn SPARA s
1 dx @ (x)d® (x)= —(—ﬁl 8y prdn(n,n’) (15
(2m)° Jso " PN P’ N()(p) “PPTR

where the Plancherel weight of the irreducible representations is
N®)(p):=pRI'(3(D~1)+pR)/T(~ 3(D~3)+pR)=3(D—-1)! A{>,
A{P):=dim irrep ¢ of SOD+1). (16)

Writing |SD*1|=277%D/F(%D) for the surface of the sphere, th#&o(x,x’) on the ambient
sphereSP, and thed,(n,n") on the momentum direction spheres’ e S°~*, are

8sp(X,X') =38, o VRP—x28°(x—x"), x,x' eDP, (17
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FIG. 1. Sherman—\Volobuyev functions for the cdse 2, (Dgz)(x) on the spherexe S2. The real part is shown fof
=5 and 20, for momentp=p n with p=11/2R and 41/R, in the same direction(6) € S* along 1-axis ¢=0). White
and black correspond to valuesl and—1 of the function; the 2 extrema occur along the meridian at thgx, plane;
at the two points on thr, axis of the sphere the complex functions are zero. The imaginary part is identical to the real part

except for a rotation ofr/2¢ around thex, axis, i.e., by a displacement éfwavelength.

1
dp<n,n'>=W(C?’Z(n‘nw+CE”_21<n-n’>>, nn’'eSPL, (18)

where 6°(x—x") is the D-dimensional Dirac delta on the disRP, and there is the Kronecker
delta sy, := ¢ ¢+ between spheres of discrete rapiandp’. The C%IZD(K) are the Gegenbauer
polynomials of degred in x=n-n’, i.e., the cosine of the angle between the two momentum
vectors,p andp’. In particular, note that fof =0, N(®)=iT'(D).

As pointed out by Sherman and by Volobuye¥ the lastd,(n,n") in (18) is not a true Dirac
6, but a reproducing kernel in thA(gD)—dimensional vector space spanned by the functions

{D(X)}nesp-1 Of fixed wave numbep« ¢,

L[Hdn’ dp(n,n) @ (x) = D(x), (19

and the same property holds for the dl.@a)(X)}nesD—l. In the limit of large wave numbers,
limpgr_. dp(n,n")=ds0-1(N,n").
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The Incu—-Wigner contraction limit of the rotation to the Euclidean group B®(Q)
—ISO(D) is the limit R—oe in our expressions for vectors wity~R, x><R?, andp=pn as
before with discrete values @f separated by a decreasiRg?, i.e.,

Xo+in-x\|~ 1/2(D—1)+pR n-x\ PR
lim @) (x) = lim ~ lim (1+i ?) =exp(ix-p), (20)
R— R—x R—®
lim &) (x)=exp(—i x-p). (22)
R—x

Correspondingly, lira_... N®(p)=1 and 6°(x,x")— 8°(x—x'). Ordinary Fourier analysis and
synthesis are thus recovered in the contraction limit; this justifies the name of plane waves for the
Sherman—Volobuyev functions, as well as our expectation that they will provide the bridge be-
tween the position on the sphere and a physically appropriate momentum space.

D. Momentum space for the sphere

The basis of Sherman—Volobuyev functions is honorthonormal and overcomplete, as can be
seen from(15), (18), and(19), but allows the synthesis of functiorigx) on the spherexe SP,
with coefficients in a space that we recognize asmizenenturmanifold, p=pne 25 ®SP 1 of
the D-dimensional system on configuration spaceSP.
The Sherman—Volobuyev synthesis of a complex funcfipx) over the spherae SP, in-
volves a sum of integrals over spheres; the sum ranges over the pradi{D —1)/R,3(D

+1)/R, ¥D+3)/R,... (corresponding to¢=0,1,2,..), and theintegrals oveme S°~1, with
both the functions and their duals, as follot<:

1 < -
f00= Zmom 2, N(p) fSD_ldnd#,'ﬁ)(x)f(pn), (22
* ! S (D) O () f
f0* = oz 2 N (p)fSD,ldncbpn ) f(pn). (23

The coefficients are found by

~ 1 —D)

f(pn):ﬁzw)DZLDdX@p“ (x) f(x), (24
- 1 (D) .

f(pn)= 2m)? LDdXCI)pn (x) f(x)*. (25)

This means that there ateo (rather than a singjemutually dual momentum representations for
any one wave function on the sphere. That both should be considered on equal footing is indicated
by the Parseval relation,

(f,g)so==f ,dx fF()*g(x) (26)
N
=3 N®p) [ anfpmgpn @7
=0 S
=2 N®(p) J o_,dnT(pn)*G(pn)*. (28)
=0 S
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FIG. 2. Momentum space and the Sherman—\Volobuyev funcﬂtfﬁl{x). The momentum spage=p n is composed by

concentric circlesi(d) e S*, of radii pe{%, %,...}/R (for € {0,1,..}). The two functions of Fig. 1 are shown fér=>5

and 20, with directiom along the 1-axis.

7.

It will help intuition to consider again the cage=2 for wave fields on the ordinary two-
sphereS?, wherex2+ x5+ x5=R2. While in Fig. 1 we show the complex Sherman—Volobuyev
functions, Figure 2 schematizes their representation in the momentum spgueof concentric
circles with discrete radip«— ¢ and directionne S*. The length of the momentum vector
=|p| is associated to the numbérnf wavelengths around the meridian indicatedripywhich is
normal to all wave fronts. There is an evident covariance between thg) $Qations of the
circles of momentum and rotations of the configuration-space sphere arougdaitss.

E. Covariance properties

Because the basis of Sherman—\Volobuyev functid2s and their dual§13) depends on the
scalar produch-x, they will be covariant irx andn under rotationd®k e SO(D) of the spheres®
within its equatorial diskce DP, viz,,

T(R): D) (x0,%) =B (x0,R™ 1) = DR (%0,%), (29
and similarly for the duafb(>)(x,,%)’s.

We now analyze further the transformation properties of the Sherman—Volobuyev plane-
wave-like basis under SO(+ 1) rotationsout ofthe equatorial diske DP (i.e., mixingx, and
components ok), and the covariant transformations of the sphere of momentum direations
e SP~1. Under these transformations, the direction veatof momentum may become complex,
as we now show. Indeed, the functiofl) can be written as the power of a scalar product
between one complex and one reBl{ 1)-vectors(Refs. 9 and 1Ppalso indicated by :

Xo
X

Xo+inx= =:v-X, non=1, v-v=0, (30)

in
To find the transformation of the Sherman—Volobuyev function set under rotations of the
ambient-space vectopse SP in the plane ofx, and a unit vectome S®~1 in the equatorial
subspace of the sphere, we decompose the position vectorsag+X, ,,, into their compo-
nents parallel and perpendicular to the directiomofThe latter are invariant under all rotations
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of thexy-m plane, that we indicate bR, SO(D + 1). Then we can writ&= (Xq,X;m, X, m) " and
n=(Nm.N.m)", SO the action of a rotation by e S* on ambient space will be

Xo cosa —sina O Xo
T(Ry(@)):| Xim | =| Sina cosa O Xim | . (31
Xim 0 0 1/ \Xim

The corresponding transformation of the momentum veptempn will leave the irreducible
representation indeg invariant, and the action on the unit direction vectorahich characterize
the Sherman—Volobuyev functions can be found fi@@), through the D + 1)-dimensional inner
product formy-x’ =’ -x. This yields the transformation of the complex vectet (1,in)" to

1 cosa —sina 0 1
v'(a)=| iNm || sina  cosa O |=u(m,a;n)| iNm |, (32
ian 0 0 1 inim
with a multiplier function (which is independent af),
p(m,a;n):=cosa+im-nsina (33
and a new direction vector
n, 1 m-n cosa+i sina)m
n’=< ,m):—.(( a @) , 34
Nim/ wm(M,a;n) Nim

of real normn’-n’=1.
The action ofR,e SO[D +1) on the Sherman—\Volobuyev functions of fixed wave number
p« ¢ [recall (11)], and their duals is therefore

T(Rm(@)): @5 (x)= p(m, ;) ® (), (35

T(Rey(@)): @) (x) = (m,a;n) > P~ @D (x). (36)
The transformations that rotate out of the equatorial subspace thus produce “complex momentum
direction vectors.” We use quotes around this phrase because the Sherman—\Volobuyev functions
are already an overcomplete set, and those whissare complex are in any case expressible in
terms of the reah set, as we shall note below. But formally, the complexification of the direction
spheren can be a useful tool for intuition. When we separate the real and imaginary parts of
n'(a)=r'(a)+is'(«), we see that

Mim| 1 n-mm ;
rml  |w(m,a;n)?\n msinacosa)’ (37)
Sim | _ -1 (((m-n)z—l)msinacow a8
Sim/  |u(m,a;n)|? —n'mn, , sina (38)

Here we note that’-s'=0 for all @, and this impliegr’|?—|s'|2=1; this is the surface of a

hyperboloid, of signature{,—) in theD real andD imaginary components. This confine® an
independents®~2-sphere.

In dimensionD, the complex spheré®~! is a homogeneous space for the action of BR(
which is determined by its natural action 617 through(31)—(34). When we shall discuss in Sec.
Il C the behavior of the Wigner function under translatigns., rotation$ of space, the transfor-
mations of position and of momentum that are correlated by the (3Bp-(34) will define the
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Shermar\Volobuyev covariancef the proposed Wigner function. The two lowest-dimensional
cases will now be examined to show how the above formalism reduces to the analysis of the
well-known Fourier series.

F. The cases D=1 (circle ) and D=2 (sphere)

TheD =1 case of Sherman—\Volobuyev functioi®®) on the circley e S* may appear trivial,
but it is important to note that we recover the Fourier series that we use in the example of Sec. IV.
Momentum space is now the set of poipts ¢n/R, €< Z; , andne S°={—1,+1} is a sign.
Moreover, the duals are now the complex conjugate functions,

) p(x) =" =) (x)*. (39)
The discrete measure over momentum spdaceé(p) in (16) is, in theD=1 case,
ND¢=1)=1, ND¢=0)= 1. (40)

In particular the twof =0 functions(I)(ilg(x) =1 will sum with the factor; from (40) to provide

a singlee'®=1 basis element. This is the full Fourier basi&X, with m=n¢ e Z, reproduced
with the correct unit normalization coefficients. The multiplier function(88) is u(-,a;n)
=e"* [n=signme{—1,+1}, cf. (39)]. Under rotations of the-circle therefore, the functions
€™ are multiplied by the correct phase"‘®, as follows from (35)—(36). The Sherman-—
Volobuyev synthesis and analysi&2)—(25) in the D=1 case on the circle are given by the
well-known Fourier series

f(x)=i2 ™ (m), ?<m>:i zwdxe-imeu). (41)
\/Emez \/Z 0

For D=2, the Sherman—Volobuyev basis functions are an overcomplete set. This overcom-
pleteness is transparent in the c@se 2 of the spheres?, where the momentum directior(6) is
parametrized around the cirche= S*, andn(6)-n(8')=cos@— ¢')—see Fig. 2. For fixeg— ¢,
the dimension of the space of functiofig)(6) is A§2)=2€+ 1, where a better known, orthonor-
mal and complete basis is that of solid spherical harmo{mgs,m(x)}e __¢- In other words,
although the momentum circles in Fig. 2 appear continuous, ofilf 2 points on each circle
correspond to independent functions. On these circles, the Gegenbauer polynoitii@iséduce
to Chebyshev polynomials of the second kiﬁli( k) =U,(x)=sin(¢+1)0]/sin b, and reproduce
the well-known Dirichlet kernel,

1 G s+ 5)(0-6)]
d.(nn')=— im(6—6") — 5(0). 42
p(nn") 27Tm:2—€ © 27wsing(0—0') (-« () “

Since the functionsl)ff)(x) are polynomials of integer degree=pR— % in n-x~cosf#=3(€"’
+e7'%, then any functiorf ,)( ) in this space is fully reproduced k¢2), i.e.,

jsldﬁdp(n(ﬁ),n’(ﬁ'))f(p)(ﬁ)=f(p)(ﬁ’). (43)

Also visible in theD =2 case of Fig. 1 is the covariance of the Sherman—Volobuyev functions
under rotations out of the equatorial plane, E@i)—(38), leading to complex direction vectors
n=r-+is. The real part € R of n here determines the imaginary partip to a sign(the two
points of S°C9). Whenn=r is real,|r|?=1=s=0. The vectorn is complex when and only
when|r|?>1, and then its imaginary pasthas magnitudés|?=|r|>— 1, and lies at right angles to
r.

Downloaded 03 Apr 2003 to 132.248.33.128. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



J. Math. Phys., Vol. 44, No. 4, April 2003 Wigner functions for curved spaces. Il. On spheres 1481

To examine the multiplier functiori33), we consider the Sherman—Volobuyev functions
®P(x) on the spherece S2 [shown in Fig. 1 and Eq(12)] whose real momentum direction
vector is along the 1-axig)= (0) When we rotate byz the x- sphere in the 0-1 planéeq. (35)

w(m,a,m)y=¢e'®, (44)
and the transformed Sherman—Volobuyev function will be
Rmn(a):®@(x)=[ (x5 +ix})/R] =€ “d@(x), (45)

, they eigenfunctions of rotations in the direction of the momentsam [cf. the extreme
spherlcal harmonic3’, ,(x) under rotations abouty]. On the other hand, when the rotation is
performed in the 0-2 plane, then instead(4) we use(35), now with §)=mLn=(}), som-n
=0, and the multiplier is

p(m,a, L m)=_cosa. (46)

Thus rotated, the Sherman—Volobuyev functions remain plane-wave-like solutions of the
Laplace—Beltrami equation,

seca
i tana/’

(47)

whose wave fronts are normal to a maximal circle, which is no longer a sphere meridian, as those
in Fig. 1. The real part ofi” points in the same direction asbut the imaginary part is responsible

for displacing the wave train laterally, along the 2-axis. We underline again that mheannot

real, CDE)?”(X) does not belong to the Sherman—\Volobuyev function Hagéch by itself satisfies

(14)—(15)], but to an analytic continuation of their continuous direction labil the complex unit
circle .

. . 2
Rin(@): @) 1 (X)=(Xo COSa— X, Sina+ix,) = (COSa)ftbén),,(a)(x), n"(a)=

G. Oscillators on the sphere

Free fields on the sphere, whose energy is purely kinetic, are ruled by the Laplace—Beltrami
equation(5)—(7). A second energy term is introduced by adding a functi¢r) of position,

_—1A +R2V(x) | f(x)=R?Ef(x) (48)
2,“’ LB .

In Schrainger quantum mechanics this describes a particle of mas%2u in a potential
V(x).12"%In wave optics, the interpretation of the extra term comes from the refractive index
anomaly of the medium(x)=u—V(x), with u>V andV?~

An SO(D — 1)-isotropic harmonic oscillator potential on the sph&t®, depending only on
the colatitude anglg €[ 0,7] of (9), can be generalized in many ways. An especially useful model
is, as in the hyperbolic casehe Pschl-Teller potential irD-dimensional configuration space

given by
i I T 1,
V()= 5 po’R ~Z = zhoR tarf y= 5 no°R (seé x—1). (49
0

The wave functions of this model are also the Wig@iebsch—Gordancoupling coefficients for
the three-dimensional Lorentz algebraza) between representations belonging to the discrete,
lower-bound Bargmand, series:®
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[ll. WIGNER FUNCTION ON THE SPHERE

Here we construct the Wigner function for the sphere in the same way as for the hyperboloid
in Ref. 1, namely generalizing the double-integral form in &g, replacing the plane waves over
RP with the Sherman—Volobuyev functions and their duals av€r

A. Definition

With the measuré10) and the functions irf{12)—(13), we define the Wigner function on the
sphere as

1 Dy Dy» "\x AD oy "
WS(f:g|X:p):=(zT)D st X st X" F(X")*AP(X;x",X")g(X")
1 _ _
D ’ D ” D ’ D "
x§[¢g JxHDP(x") + D P (x)* &P (x")*]. (50)

We now describe each of the elements of this definition.
We denote the position argumext (xg,X) of the Wigner function by the ambient vector,
with the understanding that it is the position on the sphere; contrary to the hyperbolic case, where
the surface can be mapped 1:1xqrthe sign ofx, distinguishes between the two hemisphéeswl
we prefer not to writdo,x) as in(9)]. As in Ref. 1, theAP(x;x’,x") which takes the place of the
flat Dirac deltas®(x— 3(x’+x")) in Eq. (1), should guarantee that be the midpoint of the
shortesgeodesidetweerx’ andx”, and lie on the spher&P of radiusR. To this end, we choose
any (D+1)-vectory=(y,,y) € S® which is orthogonal tax=(xq,x) € SP, x-y=0. Then, we
write

X' :=XCcoSza—Yysinsa X' +x"
” 1 a1l =X= 1 ! (51)
X":=X COS3 a+Y Sins a 2 coss

so|x|=R=|y|e|x'|=R=|x"] for all «[0,7] and anyy on theSP~! sphere orthogonal te.

From (51) it also follows thatx-x’=R? cosia=x-X" and x’-x"=R? cosa, so x indeed lies at
anglesia betweenx’ andx” on the sphere. When the signs of the 0-components match, the
binding A in (50) that enforceg51) on the equatorial projection disk8% , can be written as

X" +Xx"

Xo

AD(x;x’,x”)=E5D(x— . (52

2 COS; a

More generally, when we denote by, the component of € )P+ which is orthogonal tx, the

binding A is
X' +x"
AP(x;x' ,x")= 8" X x . (53
2 COS: a
This distribution has the properties
X
AP(x;x" x")= EO P (x—x"), J DdeAD(x;x’,x”) =1. (54)
S

Through complex conjugation, we verify that the Wigner functi6@) satisfies the necessary
property

Wis(f,glx,p)* =Ws(g,f[x,p). (55)
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This is the reason for the factgf @™ (x") @ (x")+ @ P (x")* &P (x")*1; only this combi-
nation turns into itself withx’ andx” exchanged, and has the correct contraction limit detailed in
Sec. llI D. Equation(55) guarantees that, fdr=g, the Wigner function is real.

By means of this binding and the change of variables (61), the 2D-fold integration in the
Wigner function(50) reduces to th®-fold integral form

ws(f,g|x,p)=[1/(277)D]fow(sina)DfldaLD_ldely

Lx
X f(xcosia—ysinia)*g(xcossa+ysinia)
x3[dP(xcossa—y sin%a)géf’)(x costa+ysinia)
+5E,D)(x cos;a—ysina)*®P(xcossa+ysinza)*]. (56)

B. Marginal projections

The integral of the Wigner functioWV(f,g|x,p) in (50) over momentum space yields the
cross-probability distribution over configuration space, and conversely, integration over the sphere
yields a function of momentum shown below. The two marginal distributions derive from the
orthogonality and completeness relations of the Sherman—Volobuyev basis and its dual, Egs.
(15—(14) and(54). They are

Msta= [ e witglxp
1 X = 1 Xl
s\1.9 5coNO(p) 'S gix,p

:f DdDX/f DdDX”f(X,)*g(X”)AD(X;X,,X”)@D(X,,X”)
S S

= LDde’ f(x")*g(x" )AP(x;x" ,x")=f(x)*g(x), (57)

M(f.alp)= [ aox Wil glxp)

1

— 2(27T)D fSDdDX/ f(X,)*®éD)(X,)fSDdDX,, g(x//) EéD)(X//)

+f dDX,f(X,)*EéD)(X,)*J' dDXHg(X”)q)'(JD)(XH)*
SD SD

[f(PT(p)+T(P)*d(p)*1. (58

N =

We note that both the momentum representation and its dual appear on equal footing. The Parseval
relation (27)—(28) provides the overlap

D

P
LDde Ms(f.glx)=(f, g)so= fp mMs(f.glm- (59

esP

C. Covariance under SO (D++1) rotations

Under rotationsRe SO(D +1) of the ambient space around thxg axis, the basis of
Sherman-Volobuyev functiorid2)—(13) on theSP-sphere transform as given 29). Since the
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integrations and binding in (53) that appear in the definitio(60) are invarianf AP (X;x”,X")
=AP(x;x’,x") for x=R™1x, etc], it follows that the proposed Wigner function is covariant under
SO(D) rotations, fulfilling

W(T(R):f, T(R):g[x,p) =W(f,g|xo,R™*x,R™*p). (60)

But now consider the rotations of the sphe$€ out of the equatoriake P subspace,
Rm(a) e SOMD +1), as was done i35)—(47) for the Sherman—Volobuyev functions and their
duals of directionn, and{«— p characterizing the invariant wave numig&0O(D,1) irreducible
representationas given by(8), andn’ by (34). The Wigner function50) is bilinear inCDE)Dn)(x)
andCDg,Drf(x), and so it will transform with a multiplier factor that is extracted from the integral, as

Ws(TIRm(a@) ]:f, T[Rm(@)]:g[x,pn)
=Re (u(m,a,n)) P Ws(f,g[Rm(@) "X, pPRy(@) " in). (61)

We call (61) the Sherman—Volobuyev covariance of Wigner functions on the sphere. This concept
is the analog of that introduced for the hyperbolic case in Ref. 1. Since volume elements of the
momentum direction spheres SP are not conserved under rotatioRs, e SOD +1), the mul-

tiplier for the Wigner functionu(m,a,n) in (33), is necessary to offset this change of measure and
ensure the total conservation of probability contained58). A new feature that appears in the
sphere, however, is that an analytic continuation of the momentum direction is implied by this
covariance.

D. Contraction limit

When the radius of the sphere grows and the functidgr} andg(x) in the Wigner function
remain significantly different from zero only within a given area arowrd R,0) that becomes
increasingly a flat patch, the Wigner functi@6) reduces to the standard Wigner function for flat
space, Eq(1). In (56), the integrand will be significant only whe$°-norms of the vectors fulfill

|x|cossa<R =siny<l1,
|xcosta*ysinia|<R= _ (62)
lylsin@<R =sina<l1,

=x~R(1x®", y~R(x&nn', (63)

where e SP~1 is a unit vector in the direction of. The limit (20) and the approximations
sina~a and cosa~cosy~1, bring the Wigner functiori56) to

RP (=
Wis(f,g[x,p)= @mP fo aD’ldaJ'SD_ldD’ln
X f(Xg,X— 3Ran)* exp(—iRan-p)g(Xy,Xx+ sRay). (64)

Changing variables ta=Ra % and integrations byfx0d°z=RP [5aP 1daX [so-1d° 1y,
completes the proof thd64) reduces tq1) in the limit R—oo.

IV. POSCHL-TELLER OSCILLATOR ON THE CIRCLE

We saw in Eqs(39)—(41) that in the cas® =1, the Sherman—\Volobuyev basis coincides with
the Fourier series basis of complex exponential functions on the circle, and that momentum space
is a set of equally spaced points on a line,

dM(x)=expixpR), x;=Rsiny, xeS' p=m/R, meZz. (65)
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A. Wigner function on the circle

The Wigner function of wave functions on the circle, E§6), has the same structure as the
standard flat-space Wigner functi@h except for the integration ranges. The displaced arguments
of the two functionsf andg in (56), in the form(65) wherex;=Rsiny andy;=Rsin7, are

cog x+ 3 na)

) 66
sin(x* 3 na) (60

XCossa*ysina= R(

with na e (—m, 7). The Wigner function(56), indicating f(R cosy,Rsinx)=f(x) andp=m/R,
thus becomes

R (7 1\ 1
WS(f,g|X,p)=Ef7 daf X~ 5@ e Mg X+§a (67)

o

_1 2 T IN* i 1 "m”
=5 (m")* sin E(m m’)—m

m',m’=—o

ei(m"fm'))('g(mu),

(68)

where sinw:=sin(mv)/mv is §,, when v is integer, and €1)"" Y3 71y when v is half-integer;
therefore the double sum ii%8) cannot be reduced to a single one except when the coefficients

f(m) vanish for a given parity ofn. Finally, we recall that foD =1 the multiplier function(61)
for rotations of the circle is unity.

B. Oscillator on the circle

We now consider the oscillator on the circle which obeysBhel case of the Schadinger
equation(48) with the Pschl-Teller potential given in Eq49), and written

V(x)=yr(r—1)(seé x—1), r=i+3J2uwR??+1. (69

This potential exhibits two inpenetrable barriersyat + 37 on S;. We thus expect two indepen-

dent solutions in the two disconnected open interyads(— 37, 37) and y e (3, 37).
Changing variables and placing the potent&f) into the Schrdinger equation on the circle
(48), one obtains the Rehl-Teller equatior?

d2
—iﬁ+[4s—r(r—1)(se€0+csc’-0)]¢/=0, O:=3xy+imre(0im); &:=2uR)E+ :unw?R?).

de?
(70)
Writing x= =267 37 e (— 3m,57) and ™ (x) = ¢ (x ") = ¢(6), the solutions to this equation are

n'(n+r)
r,= __n2r
" (=27 N TrmTan

PO n'(n+r) s
=0 (*cosy) \/mr(rﬂz cosy|"Cj(siny), (71

where®(x) is the Heaviside function that determines the well in which the particle is confined, so
thaty~ (x) =5, " (x+ ). In what follows we assume the particle is irt §7,37) and disregard

the index*. The spectrum of values of is quantized in the quadratic series+r)?, so the
energy values are

F(r)(;sin 26) Cp(cos 20)
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1
n+—
2

(r+nm? 1

1
— —uw°R=
K 2uR?

5 n2+2r
2uR? 2

En=

(72

C. Contractions to the square box and oscillator in flat space

It is interesting to consider two limiting cases of thésBlol—Teller potential on the two
half-circles in Eqs(71) and(72). The first is the limit of weak potentials— 0 (sor—1), and the
second is the analog of the previous contraction, now from the circle to the line.

In the limit of weak potential barrier, one coufttima facie expect that the Pszhl-Teller
eigenstate$71) may reduce to the free eigensta(@9) on the circle. This is not the case however,
as can be seen by setting=1 in Egs.(71) and using the property that cosy CX(siny) is
cog(n+1)x] for n even, and sir{n+1)x] for n odd,

Lo \/5 cog(n+1)x]l, n even, _  (n+1)?
OI=0COSO N T Gii(n+1)x], n odd, =" 2uRZ 73

The energie$72) for the limit states form a quadratic sequence characteristic of a square well with
impenetrable barriers g¢= = 7/2. This, rather than the free circle, is the limit~1 of the
Paschl-Teller potential.

The second limit of interest is the contraction-o of the Pschl-Teller potential on the
circle to the harmonic oscillator on flat space,

r>1=r~,uwR2,
(1—2%)"2~exp(—rz%/2) for z°<1.
Then, Eq.(71) becomes

n!(n+r)I'(r) _
in(x) =0 (cosy) |cosx|"Cr(siny)
2 aT(r+ in)T(r+ 3[n+1])

’ i .
\/2_(2r 1/4—n/2 —-3r sin? XC:](SlnX)

e 25 xH,(\r siny)

3

=Y

\/n'2” alr

= e #2H, (Vuoxy), (74

Vn! 2"Warl pow

In the last expression we replacee siny=x; /R, and again, these are the energy eigenstates of
the harmonic oscillator in flat space. The energies of these limit states(fi2mow exhibit the
linear harmonic oscillator spectruf,= w(n+ ). The VR factor compensates the normalization
on xj.

%

D. Wave functions in momentum representation

The momentum representation of the wave functigfiy) can be found from the Fourier

series coefficientg; *(m) in (41) of the functionsyl; ™ (x) in (7). It is convenient to expand the
Gegenbauer polynomials as
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nmiz 2 I(j+nCn=j+r) .
Ch(siny)= [l?(r ]22( 1)l ( :zn(—n).] D) gitzi-nx (75)

The integral can be then performtéand yields the momentum representation of the wave func-
tions of p=m/R in terms of the hypergeometrig-, function of unit argument, as

~r 1 2m r imy
Thimy = fo dy ¥ (x)e

e [ gy I'(n+r)l(r+1)
B VnIT(+2r) P(L(r+m+n)+1)T(E(r—m—n)+1)

—-n, —3(r+m+n), r

(76)

X 3F
* 2(—r—nJrl, s(r—=m-n)+1

Because the wave functions(x) vanish on one half-circle, it turns out that it is sufficient to
determine the coefficients fon even; in fact, any periodic functiof( ) vanishing in the interval

(37,3m) will have its oddm coefficients determined by the evemenes through the relation

- -1k
fem+)=(-1n)m > #f(Zk). (77)
Kez m(m—k+ 3)
E. Wigner function for the Po “schl-Teller states

The Wigner function(50) in the caseD=1 for two functionsf,g on the circley € S; was
written in Eqs.(67)—(68). For the energy eigenstate§(x) of the Pschl-Teller potential given in
(71), the Wigner functions can be computed numerically; we have not been able to find a closed
expression for them. They are plotted in Fig. 3 along with their marginal projectionsy for
=0,1,5,10.

V. CONCLUDING REMARKS

We have defined the analog of the Wigner function of Ref. 1 for the case of a spherical
configuration space. We have observed remarkably different properties between the hyperbolic and
spherical cases. First, unlike the Shapiro functions of the former, the Sherman—Volobuyev func-
tions of real momentum are an overcomplete set; a dual basis is thus required and this implies the
existence of two dual momentum representations. Further, a coordinate translation which displaces
the poles causes the momentum of a Sherman—\Volobuyev function to become complex. As a
consequence, the covariance of the momentum represefsataanwell as the that of Wigner
function under this type of translation are meaningful only as an analytic continuation of the
momentum direction vector. The appearance of a multiplier is analogous to the hyperbolic case in
Ref. 1.

These features derive from the definition of momentum afforded by the Shapiro and the
Sherman-\Volobuyev plane-wave-like solutions of the Laplace—Beltrami equation on the hyper-
bolic and spherical manifolds, and are reflected by the Wigner function introduced here. In trying
to fit the definition(50) and the corresponding one for the hyperbolic case in Ref. 1, into the
existing plethora of Wigner functions defined in Refs. 3—7, 18 and others found in the literature,
it seems increasingly clear that the concept of a Wigner function is not unique. Perhaps a working

in the wave fields - f(x')* g(x")), a symmetric correlation between their argumeditx” to a

point x in the manifold[determined by a Dirac-typA(x;x’,x")], and a completéor overcom-

plete) basis(or generalized basig®(x)} which will provide p as conjugate coordinate for a
momentum manifold to complete phase space. The minimal properties to be expected of such
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FIG. 3. Wigner functions of the Bahl—Teller eigenstateg, (), on rows of moden=0,1,2,3, for values of the parameter

r of the spherdEq. (69)], r=2 (left) andr =30 (right); we show a quadrant of positiox, =R siny, XE[O,%’?T] and
momentum/angular momentup=m/R [Egs.(65)]. The quadrants have reflection symmetry across the axes. White is the
maximum, black is the minimum; the shade at the upper right corner corresponds to zero. The marginal pro{gatoh

is plotted at top, andiy’,(m)|? is plotted to the right.

Wigner functions should include the correct marginals, a useful form of covariance between the
wave fields and the phase space coordinates, and a natural contraction limit to flat space returning
the traditional Wigner function.

To test Wigner function models, it is also important to have a number of basic systems, such
as the harmonic or Rohl-Teller potentials, or Coulomb systems, that should substantiate intu-
ition and the usefulness of the representation. A practical example could be the description of
surface waves on sperical bubbles. Let us not forget that the Wigner function does not provide
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more information than the wave fields dmm fact, overall phases are Ipstut displays this
information in a manner that should be more amenable to our understanding.
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