
lity
ay be
asis of
pond-
tum.
and
aces of
e basic
al
were

of the

nizing
a

Interna-

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 44, NUMBER 4 APRIL 2003

Downloaded
Wigner functions for curved spaces. II. On spheres
Miguel Angel Alonso, George S. Pogosyan,a) and Kurt Bernardo Wolf
Centro de Ciencias Fı´sicas, Universidad Nacional Auto´noma de Me´xico,
Apartado Postal 48-3, Cuernavaca, Morelos 62251, Me´xico

~Received 12 November 2002; accepted 10 December 2002!

The form of the Wigner distribution function for Hamiltonian systems in spaces of
constant negative curvature~i.e., hyperboloids! proposed in M. A. Alonso, G. S.
Pogosyan, and K. B. Wolf, ‘‘Wigner functions for curved spaces. I. On hyperbo-
loids’’ @J. Math. Phys.43, 5857~2002!#, is extended here to spaces whose curvature
is constant and positive, i.e., spheres. An essential part of this construction is the
use of the functions of Sherman and Volobuyev, which are an overcomplete set of
plane-wave-like solutions of the Laplace–Beltrami equation for this space. Rota-
tions that displace the poles transform these functions with a multiplier factor, and
their momentum direction becomes formally complex; the covariance properties of
the proposed Wigner function are understood in these terms. As an example for the
one-dimensional case, we consider the energy eigenstates of the oscillator on the
circle in a Po¨schl–Teller potential. The standard theory of quantum oscillators is
regained in the contraction limit to the space of zero curvature. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1559644#

I. INTRODUCTION

In the first part of this series1 we proposed a generic form for the Wigner quasiprobabi
distribution function defined in terms of the generalized basis of plane waves; this form m
extended in a natural way to curved configuration spaces, provided that an analogous b
plane-wave-like solutions can be found on those manifolds; the new functions will corres
ingly endow their argument and index with the physical meaning of position and momen
Although one may think to generalize the Wigner function to any manifold, the hyperboloid
the sphere are the two simplest cases to start such a study. In Ref. 1 we considered sp
constant negative curvature, i.e., the upper sheet of a two-sheeted hyperboloid, where th
plane waves were the set of Shapiro functions.2 That Wigner function has the desired margin
projections, and its properties of covariance under rotations and hyperbolic translations
shown to stem from those of the Shapiro functions. The goal of this second part is the study
Wigner function on spaces of positive constant curvature, i.e., on spheres.

As was the case in Ref. 1, the generalization offered in our approach results from recog
that the Wigner function on flat phase space (p,x)PR2D,3 in addition to its usual expression as
single integral, can be written also in the following twofold integral form with a Diracd,

WRD~ f ,gux,p!ª
1

~2p!D E
RD

dDzf ~x2 1
2 z!* e2 ip•zg~x1 1

2 z!

5
1

~2p!D E
RD

dDx8E
RD

dDx9 f ~x8!* g~x9!fp~x8!dD~x2 1
2 ~x81x9!!fp~x9!* ,

~1!
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where the functionfp(x) and its complex conjugatefp(x)* , whose argument and index variable
bind the position and momentum variables, are the plane waves

fp~x!ªexp~ ip•x!, 2Df~x!5p2f~x!, ~2!

where pªupu, and which are solutions of the Helmholtz~Laplace–Beltrami! equation on flat
space. Momentump has units of inverse length when\51; in optics,p is the wave number of
light.

The form ~1! of the Wigner function again suggests its generalization to the sphereS D

through replacing the integration over flat space (*RDdDx) by an integration over the new
D-dimensional manifold (*S Ddx), replacing the plane wavesfp(x) of flat space byplane-wave-
like solutions of the Laplace–Beltrami equation on that manifold, and replacing the Dirac
dD(x2 1

2(x81x9)) in ~1! by an appropriate distribution on the sphere. The new reproducing ke
should guarantee that, ifx8 andx9 are on the manifold, thenx should lie halfway along a geodesic

In flat space, the transformation between the position and momentum representations
from the basis of plane wave functions~2! that defines the Fourier transform; on the hyperbolo
it is a Mellin transform. Here, this transform will relate wave functions on the sphere
functions over a momentum space, through a summation over the discrete values that th
number can have on the sphere, and an integral over the directions of the plane waves. B
hyperboloid and the sphere are characterized by the radiusR ~curvature61/R), which will serve
as the contraction parameter whose limitR→` represents flat space, and where the traditio
phase space and Wigner function are recovered.

Let us stress that, unlike previous studies where the sphere is the symplectic manif
which the Wigner function is drawn, as in the cases for spin4 and finite systems,5,6 or of the Wigner
function defined on the coadjoint orbits of a Lie algebra7 which may have a similar or more
complicated topology, this Wigner function describes wave fields whose configuration space
sphere. Also, we distinguish the present case from other previous definitions describing Hel
wave fields in flat free space, where momentum is constrained to the so-called Descartes sp
ray directions.8

In Sec. II we concentrate the necessary definitions and relevant properties of these
wave-like solutions, and our understanding of the momentum space conjugate to the sph
Sec. III we develop the new Wigner function on the direct product phase space, making exp
covariance properties and its contraction limit. As in Ref. 1, we illustrate some of these res
Sec. IV with an example: the harmonic oscillator analog on the circle (D51) that corresponds to
the bounded-interval Po¨schl–Teller potential. In Sec. V we recapitulate our results in the con
of other approaches in the literature.

II. SPHERICAL SPACES AND MOMENTUM

We follow the plan of Ref. 1 to present the Laplace–Beltrami operator on the curved sp
here a D-dimensional spherical manifold—and its corresponding basis of plane-w
functions.9,10 This is the basis we choose to define the momentum manifold that will appear i
definition of the Wigner function in the next section.

A. Laplace–Beltrami operator on the sphere

Consider theD-dimensional manifold of a sphereS D of radius R.0, embedded in the
ambient spacexPRD11,

uxu2ªx0
21x25R2, x2

ªx1
21x2

21¯1xD
2 . ~3!

The isometry group of the manifold ofx’s is the real orthogonal group inD11 dimensions; for
simplicity we disregard reflections and use the proper rotation group SO(D11). This will replace
the Euclidean isometry ISO(D)1 of flat configuration space. The standard realization of the
algebra so(D11) by generators of rotations of the ambient (D11)-dimensional space~3!, is
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M j ,kªxj]xk
2xk]xj

, j ,k50,1,2,...,D. ~4!

The Laplace–Beltrami operator onS 1
D is (R22 times! the second-order invariant Casim

operator, namely,

DLBª
1

R2 C5
1

R2 (
0< j ,k<D

M j ,k
2 . ~5!

The spectrum of the Casimir operator of so(D11) is well known to be the lower bound, discre
but infinite set of values

S~C!5$,~,1D21!u,PZ 0
1%, Z 0

1
ª$0,1,2,...%. ~6!

Corresponding to each value of, there is a unitary irreducible representation belonging to
most degenerate~also called most symmetric! series, which is of finite dimension@2,11 in so(3)
for D52]. The free wave functions on the sphere are the solutions to the Laplace–Be
equation characterized by those eigenvalues~6!, that we choose to write as

DLB f ~x!52
,~,1D21!

R2 f ~x!52Fp22S D21

2R D 2G f ~x!, ~7!

pª@,1 1
2 ~D21!#/R, ,52 1

2 ~D21!1pRPZ 0
1 . ~8!

B. Sherman–Volobuyev functions on the sphere

In Ref. 1 we used the Shapiro functions, introduced by Gel’fand, Graev, and Shapiro in
2 as Fourier-type plane waves on aD-dimensional space of negative curvature~the upper sheet o
the hyperboloidH 1

D ). Close analogs to these functions on the~compact! space of positive
curvature—the sphereS D,RD11, were given by Sherman in Ref. 9 and were independently u
by Volobuyev in Ref. 10, who wrote his work in the context of a phase space model w
momentum space is the hyperboloid of Kadyshevsky and Mir–Kasimov,11 and translated this to a
spherical case with the Laplace–Beltrami equation on this manifold. In contrast to the den
able basis of spherical harmonics, which are orthonormal and complete onS D, the generalized
basis of Sherman–Volobuyev functions~as is the case with coherent states on flat space! are
neither. Thus, this basis must be complemented by a distinctdual basis. In the following, we keep
the notation in direct correspondence with that used in Ref. 1.

By vertical projection, the upper and lower hemispheres of a sphereS D,RD11 map on the
same open equatorial diskD D,RD ~and the equator on its common closure—a low
dimensionalS D21 manifold!. For convenience, functionsf (x) on the spherexPS D, uxu25R2,
will be sometimes written as functions on@$21,1% ^ D D# % S D21 with colatitude anglex as

f ~x![ f ~x0 ,x![ f s~x!,

x05sAR22x25R cosx, sP$21,1%, 0<x,p, or s50, x5
1

2
p, ~9!

x5Rj sinxPD D,RD, jPS D21.

The s50 submanifold is the equator of the sphere, but its explicit inclusion is not crucial to
work. Integration over the sphere will be written as

E
S D

dx f~x!ªR (
s521,11

E
D D

dx

AR22x2
f s~x!, ~10!
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and thes50 submanifold will be normally ignored.
The Sherman–Volobuyev functions and their duals are complex functions on the sphe

are solutions to the Laplace–Beltrami equation~7!; they are classified according to~6! by the
index,PZ 0

1 of completely symmetric representations in SO(D), or equivalently, by the discrete
wave number pin ~7!, whose values are spaced by 1/R. The functions in the Sherman–Volobuye
generalized basis of plane waves are characterized by a realmomentumvector

pªpn, p5
1

R
@ 1

2 ~D21!1,#, ,PZ 0
1 , nPS D21. ~11!

which has the direction indicated by the unit vector on the sphere in the equatorial subspace
the relations~8! between the representation index, and the absolute value of the momentu
vector,p5upu.0 ~for D.1), these functions and their duals are

Fp
(D)~x!ªS x01 in"x

R D ,

5~cosx1 in"j sinx!,5Fp(2n)
(D) ~x!* , ~12!

F̄p
(D)~x!ª~signn"x!D21S x01 in"x

R D 12D2,

5~signn"x!D21~cosx1 in"x sinx!12D2,

5~signn"x!D21/F ((D21)/R1p)n
(D) ~x!5F̄p(2n)

(D) ~x!* . ~13!

In Fig. 1 we show Sherman–Volobuyev functions for the caseD52, which can be readily plotted
on the sphereS 2. The functions~12! can be equivalently characterized as the highest-weight s
S D-hyperspherical harmonicsY,,...,,(x);(x11 ix2), ~which are solutions of the Laplace equatio
in the ambient space!, rotated so as to bring thex1-x2 plane to the planex0-n, for each equatorial
direction nPS D21. Their dual functions~13! are the second solutions of the Laplace equati
which are obtained by replacing,→12D2,, and formally correspond to the same eigenvalu
~6! of the Casimir operator on the sphere; they are singular on theS D22 submanifold orthogona
to thex0-n plane. In theD52 case, these are the two points at right angles to the wavetrai

C. Properties and limits

The Sherman–Volobuyev functions satisfy the following completeness and orthogonali
lations:

1

~2p!D (
,50

`

N(D)~p!E
S D21

dn Fpn
(D)~x!F̄pn

(D)~x8!5dS D~x,x8!, ~14!

1

~2p!D ES D
dx F̄pn

(D)~x!Fp8n8
(D)

~x!5
1

N(D)~p!
dp,p8dp~n,n8!, ~15!

where the Plancherel weight of the irreducible representations is

N(D)~p!ªpRG~ 1
2 ~D21!1pR!/G~2 1

2 ~D23!1pR!5 1
2 ~D21!! D,

(D) ,

D,
(D)

ªdim irrep , of SO~D11!. ~16!

Writing uS D21u52p
1
2D/G( 1

2D) for the surface of the sphere, thedS D(x,x8) on the ambient
sphereS D, and thedp(n,n8) on the momentum direction spheresn,n8PS D21, are

dS D~x,x8!5ds,s8AR22x2dD~x2x8!, x,x8PD D, ~17!
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dp~n,n8!5
1

uS D21u ~C,
D/2~n"n8!1C,21

D/2 ~n"n8!!, n,n8PS D21, ~18!

wheredD(x2x8) is the D-dimensional Dirac delta on the diskD D, and there is the Kronecke
deltadp,p8ªd,,,8 between spheres of discrete radiip andp8. TheC,

1/2D(k) are the Gegenbaue
polynomials of degree, in k5n"n8, i.e., the cosine of the angle between the two momen
vectors,p andp8. In particular, note that for,50, N(D)5 1

2G(D).
As pointed out by Sherman and by Volobuyev,9,10 the lastdp(n,n8) in ~18! is not a true Dirac

d, but a reproducing kernel in theD,
(D)-dimensional vector space spanned by the functi

$Fpn
(D)(x)%nPS D21 of fixed wave numberp↔,,

E
S D21

dn8 dp~n,n8!Fpn8
(D)

~x!5Fpn
(D)~x!, ~19!

and the same property holds for the duals$F̄pn
(D)(x)%nPS D21. In the limit of large wave numbers

limpR→` dp(n,n8)5dS D21(n,n8).

FIG. 1. Sherman–Volobuyev functions for the caseD52, Fp
(2)(x) on the spherexPS 2. The real part is shown for,

55 and 20, for momentap5p n with p511/2R and 41/2R, in the same directionn(u)PS 1 along 1-axis (u50). White
and black correspond to values11 and21 of the function; the 2, extrema occur along the meridian at thex0-x1 plane;
at the two points on thex2 axis of the sphere the complex functions are zero. The imaginary part is identical to the rea

except for a rotation ofp/2, around thex2 axis, i.e., by a displacement of
1
4 wavelength.
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The Inönu–Wigner contraction limit of the rotation to the Euclidean group SO(D11)
→ISO(D) is the limit R→` in our expressions for vectors withx0'R, x2!R2, andp5p n as
before with discrete values ofp separated by a decreasingR21, i.e.,

lim
R→`

Fp
(D)~x!5 lim

R→`
S x01 in"x

R D 2 1/2(D21)1pR

' lim
R→`

S 11 i
n"x

R D pR

5exp~ ix•p!, ~20!

lim
R→`

F̄p
(D)~x!5exp~2 i x•p!. ~21!

Correspondingly, limR→` N(D)(p)51 anddD(x,x8)→dD(x2x8). Ordinary Fourier analysis and
synthesis are thus recovered in the contraction limit; this justifies the name of plane waves
Sherman–Volobuyev functions, as well as our expectation that they will provide the bridg
tween the position on the sphere and a physically appropriate momentum space.

D. Momentum space for the sphere

The basis of Sherman–Volobuyev functions is nonorthonormal and overcomplete, as c
seen from~15!, ~18!, and~19!, but allows the synthesis of functionsf (x) on the spherexPS D,
with coefficients in a space that we recognize as themomentummanifold,p5pnPZ 0

1
^ S D21 of

the D-dimensional system on configuration spacexPS D.
The Sherman–Volobuyev synthesis of a complex functionf (x) over the spherexPS D, in-

volves a sum of integrals over spheres; the sum ranges over the radiip5 1
2(D21)/R, 1

2(D

11)/R, 1
2(D13)/R,... ~corresponding to,50,1,2,...), and theintegrals overnPS D21, with

both the functions and their duals, as follows:9,10

f ~x!5
1

~2p!D/2 (
,50

`

N(D)~p!E
S D21

dn Fpn
(D)~x! f̃ ~pn!, ~22!

f ~x!* 5
1

~2p!D/2 (
,50

`

N(D)~p!E
S D21

dn F̄pn
(D)~x! f! ~pn!. ~23!

The coefficients are found by

f̃ ~pn!5
1

~2p!D/2 ES D
dx F̄pn

(D)~x! f ~x!, ~24!

f! ~pn!5
1

~2p!D/2 ES D
dx Fpn

(D)~x! f ~x!* . ~25!

This means that there aretwo ~rather than a single! mutually dual momentum representations f
any one wave function on the sphere. That both should be considered on equal footing is in
by the Parseval relation,

~ f ,g!S DªE
S D

dx f~x!* g~x! ~26!

5 (
,50

`

N(D)~p!E
S D21

dn f! ~pn! g̃~pn! ~27!

5 (
,50

`

N(D)~p!E
S D21

dn f̃ ~pn!* g! ~pn!* . ~28!
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It will help intuition to consider again the caseD52 for wave fields on the ordinary two
sphereS 2, wherex0

21x1
21x2

25R2. While in Fig. 1 we show the complex Sherman–Volobuy
functions, Figure 2 schematizes their representation in the momentum spacep5pn of concentric
circles with discrete radiip↔, and directionnPS 1. The length of the momentum vectorp
5upu is associated to the number, of wavelengths around the meridian indicated byn, which is
normal to all wave fronts. There is an evident covariance between the SO~2! rotations of the
circles of momentum and rotations of the configuration-space sphere around itsx0 axis.

E. Covariance properties

Because the basis of Sherman–Volobuyev functions~12! and their duals~13! depends on the
scalar productn"x, they will be covariant inx andn under rotationsRPSO(D) of the sphereS D

within its equatorial diskxPD D, viz.,

T~R!:Fpn
(D)~x0 ,x!ªFpn

(D)~x0 ,R21x!5FpRn
(D) ~x0 ,x!, ~29!

and similarly for the dualF̄pn
(D)(x0 ,x)’s.

We now analyze further the transformation properties of the Sherman–Volobuyev p
wave-like basis under SO(D11) rotationsout of the equatorial diskxPD D ~i.e., mixingx0 and
components ofx!, and the covariant transformations of the sphere of momentum direction
PS D21. Under these transformations, the direction vectorn of momentum may become comple
as we now show. Indeed, the functions~12! can be written as the power, of a scalar product
between one complex and one real (D11)-vectors~Refs. 9 and 10! also indicated by• :

x01 in"x5S 1
inD •S x0

x D5:n•x, n"n51, n•n50, ~30!

To find the transformation of the Sherman–Volobuyev function set under rotations o
ambient-space vectorsxPS D in the plane ofx0 and a unit vectormPS D21 in the equatorial
subspace of the sphere, we decompose the position vectors asx5xim1x'm , into their compo-
nents parallel and perpendicular to the direction ofm. The latter are invariant under all rotation

FIG. 2. Momentum space and the Sherman–Volobuyev functionsFp
(2)(x). The momentum spacep5p n is composed by

concentric circlesn(u)PS 1, of radii pP$
1
2,

3
2,...%/R ~for ,P$0,1,...%). The two functions of Fig. 1 are shown for,55

and 20, with directionn along the 1-axis.
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of thex0-m plane, that we indicate byRmPSO(D11). Then we can writex5(x0 ,xim ,x'm)T and
n5(nim ,n'm)T, so the action of a rotation byaPS 1 on ambient space will be

T~Rm~a!!:S x0

xim

x'm

D 5S cosa 2sina 0

sina cosa 0

0 0 1
D S x0

xim

x'm

D . ~31!

The corresponding transformation of the momentum vectorp5pn will leave the irreducible
representation indexp invariant, and the action on the unit direction vectorsn which characterize
the Sherman–Volobuyev functions can be found from~30!, through the (D11)-dimensional inner
product formn•x85n8•x. This yields the transformation of the complex vectorn5(1,in)T to

n8~a!5S 1
inim

in'm

D •S cosa 2sina 0

sina cosa 0

0 0 1
D 5m~m,a;n!S 1

inim8

in'm8
D , ~32!

with a multiplier function ~which is independent ofx),

m~m,a;n!ªcosa1 im"n sina ~33!

and a new direction vector

n85S nim8

n'm8 D 5
1

m~m,a;n!
S ~m"n cosa1 i sina!m

n'm
D , ~34!

of real normn8•n851.
The action ofRmPSO(D11) on the Sherman–Volobuyev functions of fixed wave num

p↔, @recall ~11!#, and their duals is therefore

T~Rm~a!!:Fpn
(D)~x!5m~m,a;n!,Fpn8

(D)
~x!, ~35!

T~Rm~a!!:F̄pn
(D)~x!5m~m,a;n!12D2,F̄pn8

(D)
~x!. ~36!

The transformations that rotate out of the equatorial subspace thus produce ‘‘complex mom
direction vectors.’’ We use quotes around this phrase because the Sherman–Volobuyev fu
are already an overcomplete set, and those whosen’s are complex are in any case expressible
terms of the real-n set, as we shall note below. But formally, the complexification of the direc
spheren can be a useful tool for intuition. When we separate the real and imaginary pa
n8(a)5r 8(a)1 is8(a), we see that

S r im8

r'm8 D 5
1

um~m,a;n!u2 S n"mm
n'm sina cosa D , ~37!

S sim8

s'm8 D 5
21

um~m,a;n!u2 S ~~m"n!221!m sina cosa
2n"mn'm sina D . ~38!

Here we note thatr 8•s850 for all a, and this impliesur 8u22us8u251; this is the surface of a
hyperboloid, of signature (1,2) in theD real andD imaginary components. This confiness to an
independentS D22-sphere.

In dimensionD, the complex sphereC D21 is a homogeneous space for the action of SO(D),
which is determined by its natural action onS D through~31!–~34!. When we shall discuss in Sec
III C the behavior of the Wigner function under translations~i.e., rotations! of space, the transfor
mations of position and of momentum that are correlated by the map~31!–~34! will define the
 03 Apr 2003 to 132.248.33.128. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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Sherman–Volobuyev covarianceof the proposed Wigner function. The two lowest-dimensio
cases will now be examined to show how the above formalism reduces to the analysis
well-known Fourier series.

F. The cases DÄ1 „circle … and DÄ2 „sphere …

TheD51 case of Sherman–Volobuyev functions~39! on the circlexPS 1 may appear trivial,
but it is important to note that we recover the Fourier series that we use in the example of S
Momentum space is now the set of pointsp5,n/R, ,PZ 0

1 , andnPS 05$21,11% is a sign.
Moreover, the duals are now the complex conjugate functions,

F6,/R
(1) ~x!5e6 i ,x5F̄6,/R

(1) ~x!* . ~39!

The discrete measure over momentum spaceN(1)(p) in ~16! is, in theD51 case,

N(1)~,>1!51, N(1)~,50!5 1
2 . ~40!

In particular the two,50 functionsF60
(1)(x)51 will sum with the factor1

2 from ~40! to provide
a singleei0x51 basis element. This is the full Fourier basiseimx, with m5n,PZ, reproduced
with the correct unit normalization coefficients. The multiplier function in~33! is m(•,a;n)
5eina @n5signmP$21,11%, cf. ~39!#. Under rotations of thex-circle therefore, the functions
eimx are multiplied by the correct phaseein,a, as follows from ~35!–~36!. The Sherman–
Volobuyev synthesis and analysis~22!–~25! in the D51 case on the circle are given by th
well-known Fourier series

f ~x!5
1

A2p
(

mPZ
eimx f̃ ~m!, f̃ ~m!5

1

A2p
E

0

2p

dx e2 imx f ~x!. ~41!

For D>2, the Sherman–Volobuyev basis functions are an overcomplete set. This ove
pleteness is transparent in the caseD52 of the sphereS 2, where the momentum directionn~u! is
parametrized around the circleuPS 1, andn(u)•n(u8)5cos(u2u8)—see Fig. 2. For fixedp↔,,
the dimension of the space of functionsf (p)(u) is D,

(2)52,11, where a better known, orthono
mal and complete basis is that of solid spherical harmonics$Y,,m(x)%m52,

, . In other words,
although the momentum circles in Fig. 2 appear continuous, only 2,11 points on each circle
correspond to independent functions. On these circles, the Gegenbauer polynomials in~18! reduce
to Chebyshev polynomials of the second kind,C,

1(k)5U,(k)5sin@(,11)u#/sinu, and reproduce
the well-known Dirichlet kernel,

dp~n,n8!5
1

2p (
m52,

,

eim(u2u8)5
sin@~,1 1

2!~u2u8!#

2p sin 1
2 ~u2u8!

——→
,→`

d~u!. ~42!

Since the functionsFp
(2)(x) are polynomials of integer degree,5pR2 1

2 in n"x;cosu51
2(e

iu

1e2iu), then any functionf (p)(u) in this space is fully reproduced by~42!, i.e.,

E
S 1

du dp~n~u!,n8~u8!! f (p)~u!5 f (p)~u8!. ~43!

Also visible in theD52 case of Fig. 1 is the covariance of the Sherman–Volobuyev funct
under rotations out of the equatorial plane, Eqs.~31!–~38!, leading to complex direction vector
n5r1 is. The real partrPR2 of n here determines the imaginary parts up to a sign~the two
points of S 0,R). Whenn5r is real, ur u251⇒s50. The vectorn is complex when and only
whenur u2.1, and then its imaginary parts has magnitudeusu25ur u221, and lies at right angles to
r .
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To examine the multiplier function~33!, we consider the Sherman–Volobuyev functio
Fp

(2)(x) on the spherexPS 2 @shown in Fig. 1 and Eq.~12!# whose real momentum directio
vector is along the 1-axis,n5(0

1). When we rotate bya the x-sphere in the 0-1 plane@Eq. ~35!
with min, som"n51], then forp and, related by~8!, the multiplier factor is

m~m,a,m!5eia, ~44!

and the transformed Sherman–Volobuyev function will be

Rm~a!:Fpm
(2)~x!5@~x081 ix18!/R#,5ei ,aFpm

(2)~x!, ~45!

i.e., they eigenfunctions of rotations in the direction of the momentumn5m @cf. the extreme
spherical harmonicsY,,,(x) under rotations aboutx0]. On the other hand, when the rotation
performed in the 0-2 plane, then instead of~45! we use~35!, now with (1

0)5m'n5(0
1), so m"n

50, and the multiplier is

m~m,a,'m!5cosa. ~46!

Thus rotated, the Sherman–Volobuyev functions remain plane-wave-like solutions o
Laplace–Beltrami equation,

Rm~a!:Fp('m)
(2) ~x!5~x0 cosa2x2 sina1 ix1!,5~cosa!,Fpn9(a)

(2)
~x!, n9~a!5S seca

i tana D ,

~47!

whose wave fronts are normal to a maximal circle, which is no longer a sphere meridian, as
in Fig. 1. The real part ofn9 points in the same direction asn, but the imaginary part is responsib
for displacing the wave train laterally, along the 2-axis. We underline again that whenn9 is not
real,Fpn9

(2) (x) does not belong to the Sherman–Volobuyev function basis@which by itself satisfies
~14!–~15!#, but to an analytic continuation of their continuous direction labeln to the complex unit
circle C 1.

G. Oscillators on the sphere

Free fields on the sphere, whose energy is purely kinetic, are ruled by the Laplace–Be
equation~5!–~7!. A second energy term is introduced by adding a functionV(x) of position,

S 21

2m
DLB1R2V~x! D f ~x!5R2E f~x!. ~48!

In Schrödinger quantum mechanics this describes a particle of massm5\2m in a potential
V(x).12–14 In wave optics, the interpretation of the extra term comes from the refractive i
anomaly of the mediumn(x)5m2V(x), with m@V andV2'0.

An SO(D21)-isotropic harmonic oscillator potential on the sphereS D, depending only on
the colatitude anglexP@0,p# of ~9!, can be generalized in many ways. An especially useful mo
is, as in the hyperbolic case,1 the Pöschl–Teller potential inD-dimensional configuration space13

given by

V~x!5
1

2
mv2R2

uxu2

x0
2 5

1

2
mv2R2 tan2 x5

1

2
mv2R2~sec2 x21!. ~49!

The wave functions of this model are also the Wigner~Clebsch–Gordan! coupling coefficients for
the three-dimensional Lorentz algebra so~2,1! between representations belonging to the discr
lower-bound BargmannDk

1 series.15
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III. WIGNER FUNCTION ON THE SPHERE

Here we construct the Wigner function for the sphere in the same way as for the hyper
in Ref. 1, namely generalizing the double-integral form in Eq.~1!, replacing the plane waves ove
RD with the Sherman–Volobuyev functions and their duals overS D.

A. Definition

With the measure~10! and the functions in~12!–~13!, we define the Wigner function on th
sphere as

WS~ f ,gux,p!ª
1

~2p!D ES D
dDx8E

S D
dDx9 f ~x8!* DD~x;x8,x9!g~x9!

3
1

2
@Fp

(D)~x8!F̄p
(D)~x9!1F̄p

(D)~x8!* Fp
(D)~x9!* #. ~50!

We now describe each of the elements of this definition.
We denote the position argumentx5(x0 ,x) of the Wigner function by the ambient vecto

with the understanding that it is the position on the sphere; contrary to the hyperbolic case,
the surface can be mapped 1:1 onx, the sign ofx0 distinguishes between the two hemispheres@and
we prefer not to write~s,x! as in~9!#. As in Ref. 1, theDD(x;x8,x9) which takes the place of the
flat Dirac deltadD(x2 1

2(x81x9)) in Eq. ~1!, should guarantee thatx be the midpoint of the
shortestgeodesicbetweenx8 andx9, and lie on the sphereS D of radiusR. To this end, we choose
any (D11)-vector y5(y0 ,y)PS D which is orthogonal tox5(x0 ,x)PS D, x•y50. Then, we
write

x8ªx cos1
2 a2y sin 1

2 a

x9ªx cos1
2 a1y sin 1

2 a
⇒x5

x81x9

2 cos1
2 a

, ~51!

so uxu5R5uyu⇔ux8u5R5ux9u for all aP@0,p# and anyy on theS D21 sphere orthogonal tox.

From ~51! it also follows thatx•x85R2 cos1
2a5x•x9 and x8•x95R2 cosa, so x indeed lies at

angles 1
2a betweenx8 and x9 on the sphere. When the signs of the 0-components match

binding D in ~50! that enforces~51! on the equatorial projection disksD 6
D , can be written as

DD~x;x8,x9!5
x0

R
dDS x2

x81x9

2 cos1
2 a D . ~52!

More generally, when we denote byv'x the component ofvPRD11 which is orthogonal tox, the
binding D is

DD~x;x8,x9!5dDS ~x81x9!'x

2 cos1
2 a D . ~53!

This distribution has the properties

DD~x;x8,x8!5
x0

R
dD~x2x8!, E

S D
dDxDD~x;x8,x9!51. ~54!

Through complex conjugation, we verify that the Wigner function~50! satisfies the necessar
property

WS~ f ,gux,p!* 5WS~g, f ux,p!. ~55!
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This is the reason for the factor1
2@Fp

(D)(x8) F̄p
(D)(x9)1F̄p

(D)(x8)* Fp
(D)(x9)* #; only this combi-

nation turns into itself withx8 andx9 exchanged, and has the correct contraction limit detaile
Sec. III D. Equation~55! guarantees that, forf 5g, the Wigner function is real.

By means of this bindingD and the change of variables in~51!, the 2D-fold integration in the
Wigner function~50! reduces to theD-fold integral form

WS~ f ,gux,p!5@1/~2p!D#E
0

p

~sina!D21 daE
S'x

D21
dD21y

3 f ~x cos1
2 a2y sin 1

2 a!* g~x cos1
2 a1y sin 1

2 a!

3 1
2 @Fp

(D)~x cos1
2 a2y sin 1

2 a!F̄p
(D)~x cos1

2 a1y sin 1
2 a!

1F̄p
(D)~x cos1

2 a2y sin 1
2 a!* Fp

(D)~x cos1
2 a1y sin 1

2 a!* #. ~56!

B. Marginal projections

The integral of the Wigner functionWS( f ,gux,p) in ~50! over momentum space yields th
cross-probability distribution over configuration space, and conversely, integration over the s
yields a function of momentum shown below. The two marginal distributions derive from
orthogonality and completeness relations of the Sherman–Volobuyev basis and its dua
~15!–~14! and ~54!. They are

MS~ f ,gux!5E
pPRD

dDp

N(D)~p!
WS~ f ,gux,p!

5E
S D

dDx8E
S D

dDx9 f ~x8!* g~x9!DD~x;x8,x9!dD~x8,x9!

5E
S D

dDx8 f ~x8!* g~x8!DD~x;x8,x8!5 f ~x!* g~x!, ~57!

MS~ f ,gup!5E
S D

dDx WS~ f ,gux,p!

5
1

2~2p!D F ES D
dDx8 f ~x8!* Fp

(D)~x8!E
S D

dDx9 g~x9! F̄p
(D)~x9!

1E
S D

dDx8 f ~x8!* F̄p
(D)~x8!* E

S D
dDx9g~x9!Fp

(D)~x9!* G
5

1

2
@ f! ~p!g̃~p!1 f̃ ~p!* g! ~p!* #. ~58!

We note that both the momentum representation and its dual appear on equal footing. The P
relation ~27!–~28! provides the overlap

E
S D

dDx MS~ f ,gux!5~ f , g!S D5E
pPS D

dDp

N(D)~p!
MS~ f ,gup!. ~59!

C. Covariance under SO „D¿1… rotations

Under rotationsRPSO(D11) of the ambient space around thex0 axis, the basis of
Sherman–Volobuyev functions~12!–~13! on theS D-sphere transform as given by~29!. Since the
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integrations and bindingD in ~53! that appear in the definition~50! are invariant@DD( x̄; x̄8,x̄9)
5DD(x;x8,x9) for x̄5R21x, etc.#, it follows that the proposed Wigner function is covariant und
SO(D) rotations, fulfilling

WS~T~R!: f ,T~R!:gux,p!5WS~ f ,gux0 ,R21x,R21p!. ~60!

But now consider the rotations of the sphereS D out of the equatorialxPRD subspace,
Rm(a)PSO(D11), as was done in~35!–~47! for the Sherman–Volobuyev functions and the
duals of directionn, and,↔p characterizing the invariant wave number@SO(D,1) irreducible
representation# as given by~8!, andn8 by ~34!. The Wigner function~50! is bilinear inFp n

(D)(x)
andF̄p n

(D)(x), and so it will transform with a multiplier factor that is extracted from the integral

WS~T@Rm~a!#: f ,T@Rm~a!#:gux,pn!

5Re@~m~m,a,n!!2D11#WS~ f ,guRm~a!21:x,pRm~a!21:n!. ~61!

We call ~61! the Sherman–Volobuyev covariance of Wigner functions on the sphere. This co
is the analog of that introduced for the hyperbolic case in Ref. 1. Since volume elements
momentum direction spherenPS D are not conserved under rotationsRmPSO(D11), the mul-
tiplier for the Wigner function,m~m,a,n! in ~33!, is necessary to offset this change of measure
ensure the total conservation of probability contained in~59!. A new feature that appears in th
sphere, however, is that an analytic continuation of the momentum direction is implied b
covariance.

D. Contraction limit

When the radius of the sphere grows and the functionsf (x) andg(x) in the Wigner function
remain significantly different from zero only within a given area aroundx5(R,0) that becomes
increasingly a flat patch, the Wigner function~56! reduces to the standard Wigner function for fl
space, Eq.~1!. In ~56!, the integrand will be significant only whenS D-norms of the vectors fulfill

ux cos1
2 a6y sin 1

2 au!R⇒H uxucos1
2 a!R ⇒sinx!1,

uyusin 1
2 a!R ⇒sina!1,

~62!

⇒x'R~1,xj!T, y'R~xj"h,h!T, ~63!

where hPS D21 is a unit vector in the direction ofy. The limit ~20! and the approximations

sina'a and cos1
2a'cosx'1, bring the Wigner function~56! to

WS~ f ,gux,p!5
RD

~2p!D E
0

`

aD21 daE
S D21

dD21h

3 f ~x0 ,x2 1
2 Rah!* exp~2 iRah•p!g~x0 ,x1 1

2 Rah!. ~64!

Changing variables toz5Ra h and integrations by*RDdDz5RD *0
`aD21 da3*S D21dD21h,

completes the proof that~64! reduces to~1! in the limit R→`.

IV. PÖSCHL–TELLER OSCILLATOR ON THE CIRCLE

We saw in Eqs.~39!–~41! that in the caseD51, the Sherman–Volobuyev basis coincides w
the Fourier series basis of complex exponential functions on the circle, and that momentum
is a set of equally spaced points on a line,

Fp
(1)~x1!5exp~ ixpR!, x15R sinx, xPS 1, p5m/R, mPZ. ~65!
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A. Wigner function on the circle

The Wigner function of wave functions on the circle, Eq.~56!, has the same structure as th
standard flat-space Wigner function~1! except for the integration ranges. The displaced argum
of the two functionsf andg in ~56!, in the form~65! wherex15R sinx andy15R sinh, are

x cos1
2 a6y sin 1

2 a5RS cos~x6 1
2 ha)

sin~x6 1
2 ha!

D , ~66!

with haP(2p,p). The Wigner function~56!, indicating f (R cosx,Rsinx)5f(x) and p5m/R,
thus becomes

WS~ f ,gux,p!5
R

2p E
2p

p

da f S x2
1

2
a D *

e2 imagS x1
1

2
a D ~67!

5
1

2p (
m8,m952`

`

f̃ ~m8!* sincF1

2
~m81m9!2mGei (m92m8)xg̃~m9!,

~68!

where sincnªsin(pn)/pn is dn,0 when n is integer, and (21)n21/2/pn when n is half-integer;
therefore the double sum in~68! cannot be reduced to a single one except when the coeffic
f̃ (m) vanish for a given parity ofm. Finally, we recall that forD51 the multiplier function~61!
for rotations of the circle is unity.

B. Oscillator on the circle

We now consider the oscillator on the circle which obeys theD51 case of the Schro¨dinger
equation~48! with the Pöschl–Teller potential given in Eq.~49!, and written

V~x!5Ar ~r 21!~sec2 x21!, rª 1
2 1 1

2A~2mvR2!211. ~69!

This potential exhibits two inpenetrable barriers atx56 1
2p on S1 . We thus expect two indepen

dent solutions in the two disconnected open intervalsxP(2 1
2p, 1

2p) andxP( 1
2p, 3

2p).
Changing variables and placing the potential~69! into the Schro¨dinger equation on the circle

~48!, one obtains the Po¨schl–Teller equation,16

d2c

du2 1@4«2r ~r 21!~sec2 u1csc2 u!#c50, uª 1
2x6 1

4pP~0,1
2 p!; «ª2mR2~E1 1

2 mv2R2!.

~70!

Writing x652u7 1
2pP(2 1

2p, 1
2p) andc6(x)5c(x6)5c(u), the solutions to this equation ar

cn
r ,6~x!522rA n! ~n1r !

pG~n12r !
G~r !S 1

2
sin 2u D r

Cn
r ~cos 2u!

5Q~6cosx!A n! ~n1r !

2pG~n12r !
G~r !u2 cosxurCn

r ~sinx!, ~71!

whereQ(x) is the Heaviside function that determines the well in which the particle is confine
thatcn

r ,2(x)5cn
r ,1(x1p). In what follows we assume the particle is in (2 1

2p, 1
2p) and disregard

the index6. The spectrum of values of« is quantized in the quadratic series (n1r )2, so the
energy values are
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En
r 5

~r 1n!2

2mR2 2
1

2
mv2R25

1

2mR2 S n212r S n1
1

2
D D . ~72!

C. Contractions to the square box and oscillator in flat space

It is interesting to consider two limiting cases of the Po¨schl–Teller potential on the two
half-circles in Eqs.~71! and~72!. The first is the limit of weak potentialsv→0 ~sor→1), and the
second is the analog of the previous contraction, now from the circle to the line.

In the limit of weak potential barrier, one couldprima facieexpect that the Po¨schl–Teller
eigenstates~71! may reduce to the free eigenstates~39! on the circle. This is not the case howeve
as can be seen by settingr 51 in Eqs. ~71! and using the property17 that cosx Cn

1(sinx) is
cos@(n11)x# for n even, and sin@(n11)x# for n odd,

cn
1~x!5Q~cosx!A2

p H cos@~n11!x#, n even,

sin@~n11!x#, n odd,
En

15
~n11!2

2mR2 . ~73!

The energies~72! for the limit states form a quadratic sequence characteristic of a square wel
impenetrable barriers atx56p/2. This, rather than the free circle, is the limitr→1 of the
Pöschl–Teller potential.

The second limit of interest is the contractionr→` of the Pöschl–Teller potential on the
circle to the harmonic oscillator on flat space,

r @1⇐r;mvR2,

~12z2!r /2;exp~2rz2/2! for z2,1.

Then, Eq.~71! becomes

cn
r ~x!5Q~cosx!A n! ~n1r !G2~r !

2nApG~r 1 1
2 n!G~r 1 1

2 @n11# !
ucosxurCn

r ~sinx!

;A n!

A2p
~2r !1/42n/2e2

1
2 r sin2 xCn

r ~sinx!

;
1

An!2nAp/r
e2

1
2 r sin2 xHn~Ar sinx!

5
AR

An! 2nAp/mv
e2mvx1

2/2 Hn~Amvx1!. ~74!

In the last expression we replacedz5sinx5x1 /R, and again, these are the energy eigenstate
the harmonic oscillator in flat space. The energies of these limit states, from~72!, now exhibit the
linear harmonic oscillator spectrumEn5v(n1 1

2). TheAR factor compensates the normalizatio
on x1 .

D. Wave functions in momentum representation

The momentum representation of the wave functionscn
r (x) can be found from the Fourie

series coefficientsc̃n
r ,6(m) in ~41! of the functionscn

r ,6(x) in ~71!. It is convenient to expand the
Gegenbauer polynomials as
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Cn
r ~sinx!5

einp/2

@G~r !#2 (
j 50

n

~21! j
G~ j 1r !G~n2 j 1r !

j ! ~n2 j !!
ei (2 j 2n)x. ~75!

The integral can be then performed17 and yields the momentum representation of the wave fu
tions of p5m/R in terms of the hypergeometric3F2 function of unit argument, as

c̃n
r ~m!ª

1

A2p
E

0

2p

dx cn
r ~x!eimx

5
einp/2

A8p
A n1r

n!G~n12r !

G~n1r !G~r 11!

G~ 1
2 ~r 1m1n!11!G~ 1

2 ~r 2m2n!11!

33F2S 2n, 2 1
2 ~r 1m1n!, r

2r 2n11, 1
2 ~r 2m2n!11

U1D . ~76!

Because the wave functionscn
r (x) vanish on one half-circle, it turns out that it is sufficient

determine the coefficients form even; in fact, any periodic functionf (x) vanishing in the interval

( 1
2p, 3

2p) will have its odd-m coefficients determined by the even-m ones through the relation

f̃ ~2m11!5~21!m (
kPZ

~21!k

p~m2k1 1
2!

f̃ ~2k!. ~77!

E. Wigner function for the Po ¨ schl–Teller states

The Wigner function~50! in the caseD51 for two functionsf ,g on the circlexPS1 was
written in Eqs.~67!–~68!. For the energy eigenstatescn

r (x) of the Pöschl–Teller potential given in
~71!, the Wigner functions can be computed numerically; we have not been able to find a c
expression for them. They are plotted in Fig. 3 along with their marginal projections, fn
50,1,5,10.

V. CONCLUDING REMARKS

We have defined the analog of the Wigner function of Ref. 1 for the case of a sph
configuration space. We have observed remarkably different properties between the hyperbo
spherical cases. First, unlike the Shapiro functions of the former, the Sherman–Volobuyev
tions of real momentum are an overcomplete set; a dual basis is thus required and this imp
existence of two dual momentum representations. Further, a coordinate translation which dis
the poles causes the momentum of a Sherman–Volobuyev function to become complex
consequence, the covariance of the momentum representation~s! as well as the that of Wigne
function under this type of translation are meaningful only as an analytic continuation o
momentum direction vector. The appearance of a multiplier is analogous to the hyperbolic c
Ref. 1.

These features derive from the definition of momentum afforded by the Shapiro an
Sherman–Volobuyev plane-wave-like solutions of the Laplace–Beltrami equation on the h
bolic and spherical manifolds, and are reflected by the Wigner function introduced here. In
to fit the definition~50! and the corresponding one for the hyperbolic case in Ref. 1, into
existing plethora of Wigner functions defined in Refs. 3–7, 18 and others found in the liter
it seems increasingly clear that the concept of a Wigner function is not unique. Perhaps a w
definition of such a class of functionsW( f ,gux,p) should include only~cf. Ref. 19! sesquilinearity
in the wave fields (; f (x8)* g(x9)), a symmetric correlation between their argumentsx8,x9 to a
point x in the manifold@determined by a Dirac-typeD(x;x8,x9)], and a complete~or overcom-
plete! basis~or generalized basis! $Fp(x)% which will provide p as conjugate coordinate for
momentum manifold to complete phase space. The minimal properties to be expected o
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Wigner functions should include the correct marginals, a useful form of covariance betwee
wave fields and the phase space coordinates, and a natural contraction limit to flat space re
the traditional Wigner function.

To test Wigner function models, it is also important to have a number of basic systems
as the harmonic or Po¨schl–Teller potentials, or Coulomb systems, that should substantiate
ition and the usefulness of the representation. A practical example could be the descrip
surface waves on sperical bubbles. Let us not forget that the Wigner function does not p

FIG. 3. Wigner functions of the Po¨schl–Teller eigenstatescn
r (x), on rows of moden50,1,2,3, for values of the paramete

r of the sphere@Eq. ~69!#, r 52 ~left! and r 530 ~right!; we show a quadrant of positionx15R sinx, xP@0,
1
2p# and

momentum/angular momentump5m/R @Eqs.~65!#. The quadrants have reflection symmetry across the axes. White i
maximum, black is the minimum; the shade at the upper right corner corresponds to zero. The marginal projectionucn

r (x)u2

is plotted at top, anduc̃n
r (m)u2 is plotted to the right.
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more information than the wave fields do~in fact, overall phases are lost!, but displays this
information in a manner that should be more amenable to our understanding.
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