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Hamiltonian orbit structure
of the set of paraxial optical systems
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In the paraxial regime of three-dimensional optics, two evolution Hamiltonians are equivalent when one can be
transformed to the other modulo scale by similarity through an optical system. To determine the equivalence
sets of paraxial optical Hamiltonians one requires the orbit analysis of the algebra sp(4, R) of 4 3 4 real
Hamiltonian matrices. Our strategy uses instead the isomorphic algebra so(3, 2) of 5 3 5 matrices with met-
ric (11, 11, 11, 21, 21) to find four orbit regions (strata), six isolated orbits at their boundaries, and six de-
generate orbits at their common point. We thus resolve the degeneracies of the eigenvalue classification.
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1. INTRODUCTION: TWO-DIMENSIONAL
SYSTEMS
The solution to the problem that we pose, i.e., the identi-
fication of the distinct equivalence classes of paraxial op-
tical Hamiltonians, is well known in the case of 2-dim sys-
tems. There, ( p, q) P R2 are the momentum and
position coordinates of optical phase space,1–5 and any
quadratic Hamiltonian can be associated (↔) with a 2
3 2 traceless matrix,

H~m; p, q ! 5
1
2 cp2 2 aqp 2

1
2 bq2 ↔ m 5 Fa b

c 2aG .
(1)

The generic Hamiltonian [Eq. (1)] is then equivalent to
one of three orbit representative Hamiltonians ms ,
modulo similarity by an optical system M (represented by
a 2 3 2 matrix of unit determinant) and a scale a Þ 0,
namely,

m 5 aMms M21,

ms 5 H F0 21

1 0 G , F0 1

1 0G , or F0 0

1 0G J . (2)

Each of the three orbit representatives in Eq. (2) is char-
acterized by its eigenvalues $l%, or the sign of the invari-
ant determinant D 5 det m 5 2(a2 1 bc) 5 2l2, as fol-
lows:

H: Harmonic, HF0 21
1 0 G 5

1
2 p2 1

1
2 q2,

Oscillating trajectories, D . 0, l 5 6i. (3)

R: Repulsive, HF0 1
1 0 G 5

1
2 p2 2

1
2 q2,

Hyperbolic trajectories, D , 0, l 5 61. (4)

F: Free homogeneous, HF0 0
1 0 G 5

1
2 p2,

Straight trajectories, D 5 0, l 5 0 ~double!. (5)
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In this paper we obtain the equivalence classes of
paraxial optical Hamiltonians in three dimensions (gen-
erally astigmatic), and list their representatives. These
Hamiltonians are quadratic in the—now four—
coordinates of phase space, ( px , py , qx , qy), and are rep-
resented by 4 3 4 (infinitesimal symplectic or) Hamil-
tonian matrices, whose properties will be collected in
Section 2, where we also recall the concept of orbit within
an algebra. The immediacy (and completeness) of the
classification of two-dimensional orbits in Eqs. (3)–(5) is
due to the accidental equality (isomorphism) sp(2, R)
5 sl(2, R) 5 so(2, 1) between two-dimensional symplec-
tic, two-dimensional unimodular (unit determinant), and
(2 1 1)-pseudo-orthogonal Lie algebras of matrices:

F 2
1
2 r1,3

1
2 ~r2,3 2 r1,2!

1
2 ~r2,3 1 r1,2! 1

2 r1,3
G ↔ F 0 r1,2 r1,3

2r1,2 0 r2,3

r1,3 r2,3 0
G .

(6)

As we recall in Section 3, for 3-dimensional systems
there is a second (and last) fortunate accidental equality:
sp(4, R) 5 so(3, 2), between the Lie algebras of 4 3 4
Hamiltonian matrices and 5 3 5 infinitesimal pseudo-
orthogonal matrices with metric (11, 11, 11, 21, 21).6

It turns out that the classification of three-dimensional
Hamiltonian orbits is much facilitated by the use of these
5 3 5 matrices. In this way we separate rotations of
phase space [U(2)-Fourier transforms4,5] Lorentzian
boosts (repulsive waveguides or astigmatic imagers), and
Euclidean Hamiltonians (free but astigmatic propagation,
or lenses), as in Eqs. (3)–(5). In three dimensions, more-
over, there are also rotations about the optical axis, gen-
erated by an angular momentum Hamiltonian; in me-
chanics, this is imparted to charged particles in an
accelerator by a coaxial magnetic field.7

Under the name of anti-de Sitter algebra, so(3, 2) has
also served as a model for field theories with a fundamen-
tal length.8–10 The subject of equivalence classes in the
2002 Optical Society of America
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symplectic algebra includes early investigations in celes-
tial mechanics,11 and three papers that address the more
general problem of finding the maximal abelian subalge-
bras of the symplectic and pseudo-orthogonal Lie
algebras.12–14 In particular, based on Ref. 11, the paper
by Moshinsky and Winternitz13 enumerates essential
equivalence classes of quantum-mechanical quadratic
Hamiltonians in two dimensions [Ref. 13, Eqs. (38) and
(44), number 11; cf. Ref. 12, Table IV, entries for a1,1 to
ā1,12 imply 12, and Ref. 14, Subsection 5.2 with 10.] The
analysis of so(3, 2) orbits has also been performed by Si-
mon et al. in Ref. 15, Appendix C, who divide the orbits
according to the dimension of their invariant subspaces in
R5, with the purpose of classifying anisotropic Gaussian
Schell-model beams through their second-order
moments.16

The strategy that we follow here is to reduce the ten-
dimensional so(3, 2) orbit analysis to that of its subalge-
bras: so(2, 2) for x –y separable Hamiltonians, so(3, 1)
for Hamiltonians that we call Lorentzian, and the pseudo-
Euclidean Hamiltonians in an iso(2, 1) subalgebra. In
Section 4, by similarity with a U(2)-Fourier transformer
(of four parameters), we bring the generic Hamiltonian to
a form where an isotropic imager will reduce it to lie en-
tirely within each of the three six-dimensional subspaces.
Then in Section 5 we indicate the tree of transformations
to the inequivalent representative Hamiltonians. We
deem this derivation to be more transparent than those in
previous studies.

While in two-dimensional optics the eigenvalues pro-
vide the full orbit classification of Eqs. (3)–(5), in three-
dimensions, since the conjugating matrix M in Eq. (2) is
not general but only symplectic, some classes of Hamilto-
nians that are equivalent under the former will degener-
ate into separate subclasses. In Section 6 we recall the
eigenvalue structure of Hamiltonian matrices, which was
pivotal for previous studies,11 and we resolve its degen-
eracies by knowing the orbit structure; fortunately, these
turn out to be minor. We recapitulate results and offer
some ensuing comments in Section 7.

2. THREE-DIMENSIONAL SYSTEMS AND
HAMILTONIANS
Optical systems transform phase space, conserving its
Hamiltonian structure. The paraxial model consists of
linear transformations, so it follows that the action of a
system on phase space (p, q) (ray momentum and posi-
tion referred to a standard screen1–3) is realized by a ma-
trix on the vector (q

p). Three-dimensional systems are
represented by 4 3 4 real sympletic matrices:

M V MT 5 V, V 5 F0 21

1 0 G , (7)

and form the group denoted Sp(4, R), which has ten
parameters.6,17

Symplectic matrices near the unit, M 5 1 1 em, e2

' 0, define m as infinitesimal symplectic, or Hamil-
tonian, matrices,

m V 5 2V mT, m 5 Fa b

c 2aG , b 5 bT,
c 5 cT, (8)
form a linear vector space, and realize the Lie algebra
sp(4, R). For any symplectic M, when m is Hamiltonian
so is m8 5 M m M21 (the inverse M21 5 V MT V is
guaranteed to exist). Thus, given an element ms

P sp(4, R), we define its

orbit~ms! 5 $aM ms M21uM P Sp~4, R!, 0 Þ a P R%.

(9)

Orbits are equivalence classes, so they are disjoint, and
their union is the original sp(4, R).

The correspondence (↔) between quadratic sp(4, R)
Hamiltonian functions on phase space and Hamiltonian
matrices [cf. Eq. (1) for sp(2, R)] is

H(m; p, q)

(10)

The set of Hamiltonian matrices m is closed under sum-
mation, multiplication by constants, and commutation
(but not under product), they form the symplectic Lie al-
gebra denoted sp(4, R) and are vectors in a 10-dim space.
Under Poisson brackets, the Hamiltonian functions close
following the commutator of their matrices,2,3

H~@m1 , m2#; p, q! 5 $H~m1 ; p, q!, H~m2 ; p, q!%.

The symbol ↔ is therefore an isomorphism between two
different realizations of the same Lie algebra. The ma-
trices M(z) 5 exp(zm) P Sp(4, R) generated by Hamil-
tonian matrices m P sp(4, R), form one-parameter sub-
groups; these may be seen as waveguides extending along
the optical z axis. The equivalence relation between the
orbits in the algebra extends naturally to an equivalence
between the generated subgroups.
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3. HAMILTONIANS AND so (3, 2)
MATRICES
The orbit analysis of three-dimensional astigmatic Hamil-
tonians will be based on the homomorphism between
the symplectic and pseudo-orthogonal groups

Sp(4, R) 5
2:1

SO(3, 2), and the corresponding isomorphism
of algebras sp(4, R) 5 so(3, 2).6 Both have ten param-
eters, but the structure of the (pseudo-) orthogonal sub-
groups and algebras is simpler than that of the symplectic
ones (the very root ‘‘-plectic’’ means ‘‘pleated, interwo-
ven.’’) Pseudo-orthogonal matrices R P SO(3, 2) are
those that satisfy R D RT 5 D, with the diagonal metric
matrix D 5 diag(11, 11, 11, 21, 21) [cf. Eq. (7)].
Again, a pseudo-orthogonal matrix near the unit, R 5 1
1 er, e2 ' 0, defines r as an infinitesimal pseudo-
orthogonal matrix (it is pseudo-skew-symmetric) which
satisfies r D 5 2D rT [cf. Eq. (8)]. These close under
commutation into the Lie algebra denoted so(3,2).

As in Eq. (6), it is sufficient to present the following cor-
respondence (also indicated ↔) between the 4 3 4 and
5 3 5 matrices,

(11)

(12)

where we stress by bars the coordinates with negative
metric. The above correspondence can be verified to be
an isomorphism under commutation.

Collecting terms in the Hamiltonian according to the
resulting so(3, 2) coefficients in relation (12), the generic
quadratic Hamiltonian (10) can be written

H~r! 5 (
1<m,n<3

rm,n jm,n

1 (
m51,2,3

(
n̄54̄,5̄

rm,n̄ jm,n̄ 1 r 4̄,5̄ j 4̄,5̄ . (13)

This introduces the basis of ten quadratic Hamiltonian
functions, ja,b , a, b P $1, 2, 3, 4̄, 5̄%. From the symmetry
of the coefficients ra,b and rb,a in relation (12), the func-
tions with transposed indices are jn,m 5 2jm,n , j n̄,m̄
5 2jm̄,n̄ , and j n̄,m 5 1jm,n̄ . Among these we distin-
guish harmonic and repulsive waveguide Hamiltonians
as well as imager generators:

Harmonic generators:

j1,2 5
1
2 ~qxpy 2 qypx!, 1

2 -angular momentum; (14)

j1,3 5
1
4 ~2px

2 1 py
2 2 qx

2 1 qy
2!,

counter-harmonic 1
2 ~2Hx 1 Hy!, (15)

j2,3 5
1
2 ~ pxpy 1 qxqy!, cross-harmonic, (16)

j 4̄,5̄ 5
1
4 ~ px

2 1 py
2 1 qx

2 1 qy
2!,

isotropic harmonic 1
2 ~Hx 1 Hy!. (17)

Repulsive generators:

j1,4̄ 5
1
4 ~ px

2 2 py
2 2 qx

2 1 qy
2!,

counter-repulsive 1
2 ~Rx 2 Ry!, (18)

j2,4̄ 5
1
2 ~2pxpy 1 qxqy!, 2cross-repulsive, (19)

j3,5̄ 5
1
4 ~ upu2 2 uqu2!, isotropic repulsive 1

2 ~Rx 1 Ry!.

(20)

Imager generators:

j2,5̄ 5
1
2 ~ pxqx 2 pyqy!, counter-imager 1

2 ~Ix 2 Iy!,

(21)

j2,5̄ 5
1
2 ~ pxqy 1 pyqx!, cross-imager, (22)

j3,4̄ 5
1
2 p • q, isotropic imager 1

2 ~Ix 1 Iy!. (23)

Harmonic Hamiltonians are the four generators of rota-
tions in the subalgebra so(3) % so(2) , so(3, 2), and re-
pulsive and imager generators are the six boosts. Sums
and differences of harmonic and repulsive Hamiltonians
yield the Hamiltonians of the free systems (or of lens gen-
erators); these are the three mutually commuting trans-
lation generators within the (pseudo-) Euclidean subalge-
bra iso(2, 1) , so(3, 2), to be seen below.

We organize the previous list of Hamiltonians, display-
ing them as pseudo-orthogonal generators.18 For sys-
tems G that can be harmonic (H), repulsive (R), free (F),
or imagers (I), we place ja,b (a , b) in the a–b position of
the pattern [cf. the upper-right triangle of the matrix
(12)]:
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(24)
We shall handle the generic Hamiltonian generators, dis-
playing their 10 parameters [Eq. (13)] instead of the 25
elements of a 5 3 5 matrix, by associating

(25)

The left and lower boxes house the 4 (compact) terms of
harmonic motion, while the upper-right 3 3 2 rectangle
displays the 6 (noncompact) counter and cross, repulsive
and imager terms. The generic Hamiltonian [Eq. (13)] is
a linear combination of the generators (17)–(23) with the
coefficients in the pattern of relation (25); with SO(3, 2)
transformations we shall bring this to a pattern with as
many zeros as possible. The cross terms (with index 2)
will be the first to be eliminated, because they do not cor-
respond to any recognizable waveguide or magnetic sys-
tem. Angular momentum is also a cross term, but it will
serve to hinge the division of orbits into separable and
nonseparable ones.
T~a, b!~t! 5 5 F cos t 2sin t

sin t cos t
G t P S1

when a, b P $1, 2, 3%

or a,b P $4̄, 5̄%;

F cosh t 2sinh t

2sinh t cosh t
G t P R

when a ¹ $1, 2, 3% { b

or b ¹ $4̄, 5̄% { a

. (29)
4. U(2)-FOURIER REDUCTION AND
BRANCHING OF so (3, 2) PATTERNS BY AN
IMAGER
The simplest realization of the pseudo-orthogonal algebra
so(3, 2) is by generators of rotations and boosts in a space
of vectors v 5 (v1 , v2 , v3 , v 4̄ , v 5̄) P R5 with the diago-
nal metric D 5 ida,bi 5 diag(11, 11, 11, 21, 21) seen
above. It is given by the linear differential operators

ĵm,n 5 vm]n 2 vn]m , ĵm,n̄ 5 vm] n̄ 1 vn̄]m ,

ĵ m̄,n̄ 5 2vm̄] n̄ 1 vn̄]m̄ . (26)

The Lie brackets of so(3, 2) are then found straightfor-
wardly by commutation (the algebraic structure is inde-
pendent of the realization):
@ ja,b , jg,d# 5 1ga,d jb,g 1 gb,g ja,d

1 gg,a jd,b 1 gd,b jg,a , (27)

where ga,b 5 da,b when a and b are spacelike (unbarred)
indices, or ga,b 5 2da,b when they are timelike (barred).

Seen in the pattern (24), a generator ja,b commutes
with all those outside its row a and column b (and the re-
flection of these across the diagonal as column a and row
b). The commutator of two j’s on the same row (column)
yields the j in the intersection of their columns (rows), af-
ter one column (row) has been reflected into a row (col-
umn) by the diagonal. The action of the optical SO(3, 2)
transformations on the so(3, 2) Hamiltonians can also be
read off the pattern of coefficients (25). The one-
parameter subgroups T (a,b)(t) 5 exp(t ĵa,b) produce cova-
riant linear combinations of the Hamiltonians ĵg,d and
contravariant ones for its coefficients rg,d in relation (12).
On a column k P $1, 2, 3, 4̄, 5̄%, the coefficients ra,k and
rb,k are linearly combined; on a row r, rr,a and rr,b are so
correspondingly. For two commuting SO(3, 2) one-
parameter subgroups (for a, b, g, d all distinct), this ac-
tion can be subsumed by

T ~a, b!~t!T ~g, d!~t8!: F ra,g ra,d

rb,g rb,d
G

5 T~a, b!~t!F ra,g ra,d

rb,g rb,d
GT~g, d!~t8!T, (28)

with matrices T(a, b)(t) and T(g, d)(t8), whose elements
are trigonometric functions of t P S1 (the circle), or hy-
perbolic functions of t P R,
The importance of the matrix form of Eq. (28) is that we
can determine the values of t and/or t8 to bring coeffi-
cients in the pattern to zero.

U(2)-Fourier transforms are finite rotations
T (1,2,3)(t, w, x) 5 T (1,2)(t) 3 T (2,3)(w)T (1,2)(x) P SO(3) by
three Euler angles and on the circle T (4̄,5̄)(v) P SO(2) of
isotropic (central) fractional Fourier transforms.4,5 The
ten coefficients of so(3, 2) Hamiltonians (25) can be ar-
ranged into three 3-vectors under SO(3) rotations, r
5 (r2,3 , 2r1,3 , r1,2)

T, r.4̄ 5 (r1,4̄ , r2,4̄ , r3,4̄)T, and r.5̄
5 (r1,5̄ , r2,5̄ , r3,5̄)T. The last two vectors can be linearly
combined by the isotropic fractional Fourier transform
T (4̄,5̄)(v) with trigonometric coefficients, to make one of
them (the new r.4̄) orthogonal to r. Then, with SO(3) ro-
tations we can align r.4̄ with the 1-axis (so r2,4̄ 5 r3,4̄
5 0), bring r.5̄ to the 1–3 plane (so r2,5̄ 5 0), and since r
remains orthogonal to r.4̄ , then r2,3 5 0. Thus we use
the four parameters of U(2) Fourier transforms to reduce
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the Hamiltonian (25) to a Hamiltonian pattern with at
most six nonzero coefficients,

(30)

We henceforth individualize the letters m for angular mo-
mentum, (r, s, u) for counter-(harmonic, repulsive, im-
ager) terms, and (v, w) for isotropic (repulsive, harmonic)
Hamiltonians.

To reduce further we must now choose a boost: the iso-
tropic imager T (3,4̄)(t) [see Eq. (23)]. This will rescale
q ° exp(2 1

2t)q versus p ° exp(1
2 t)p and thus mix

the isotropic repulsive and harmonic Hamiltonian coeffi-
cients v 5 r3,5̄ and w 5 r 4̄,5̄ (and separately the counter-
terms r 5 r1,3 and s 5 r1,4̄) with hyperbolic functions of t;
the free Euclidean terms 1

2 pTc p and 1
2 qTb q (rr,3

6 rr,4̄) are rescaled with exp(6t) . 0. The magnifica-
tion parameter of T (3, 4̄)(t) can be chosen to reduce the
two terms (v, w) of HU in Eq. (30) to a first branching into
the three prototypical cases, whose reduction will be per-
formed next:

(31)

(32)

(33)

(The other four parameters (m, r, s, u) will have been
transformed also, but we do not distinguish their values
by primes.)

5. SEPARABLE, LORENTZIAN, AND
EUCLIDEAN HAMILTONIANS
Here we examine the further reduction of each of the
three cases (31)–(33) to appropriate Hamiltonian orbit
representatives. This will justify their names and the as-
sociation with the pseudo-orthogonal and (pseudo-) Eu-
clidean subalgebras so(2, 2), so(3, 1), and iso(2, 1).

A. Separable Hamiltonians
We rotate the 2–3 plane of the pattern HH in Eq. (31) to
annul the angular momentum coefficient m 5 0 and thus
eliminate entirely the index 2 of cross systems. The re-
maining six generators ja,b , a, b P $1, 3, 4̄, 5̄% close into a
subalgebra so(2, 2) , so(3, 2) and can be arranged in a
similar subpattern,

(34)

And the accident occurs6 that so(2, 2) is a direct sum of
two so(2, 1) algebras [this is similar to the better-known
accident so(4) 5 so(3) % so(3)], which can be written in
terms of the patterns of so(2, 1) harmonic (h 5 j1,2), re-
pulsive (r 5 j1,3̄) and imaging (i 5 j2,3̄) generators, as

(35)

Since each so(2, 1) has three orbits (3)–(5) of Hamilto-
nians G 5 H,R,F (harmonic, repulsive, free) their direct
sum will contain all and only x –y separable Hamilto-
nians:

GU~p, q! 5 Gx~ px , qx!cos U 1 Gy8~ py , qy!sin U,

0 < U , p, (36)

(The range of U is the half-circle S1 /Z2 because G0 and
Gp 5 2G0 belong to the same orbit). In principle there
are thus 3 3 3 5 9 circles of Hamiltonian orbits indi-
cated G–GU8 and parameterized by U. Each such mani-
fold of parameter-related orbits is called a stratum. But
notice that further equivalences occur between the nine
strata within the larger mother group of SO(3, 2) matri-
ces: With rotations of the screen T (1,2)(p) we can change
the signs of all pattern entries with indices 1 and 2 (and
those of index 2 are zero) and thus exchange the two di-
rect summand algebras so(2, 1)x % so(2, 1)y in Eq. (35).
Hence the Hamiltonians Gx –Gy8 and Gx8–Gy are SO(3, 2)
equivalent. The original nine strata therefore coalesce to
six cases of separable Hamiltonians, indicated H–HU ,
H–RU , R–RU , H–FU , R–FU , and F–FU . In each stra-
tum there will be still further equivalences.

In the H–HU Hamiltonian stratum, since we can ex-
change the two coefficients, U and 1

2 p 2 U are also
equivalent, so the range of U can be restricted to 2

1
4 p

, U < 1
4 p. In the stratum of H–RU Hamiltonians, the

Fourier transform T (4̄,5̄)( 1
2 p) inverts the sign of the re-

pulsive part, so the orbits U and 2U are the same; thus
we restrict 0 , U , 1

2p, setting apart the U 5 0 orbit be-
cause Hx properly belongs to the H–HU stratum. In the
R–RU stratum the two previous equivalences hold, so the
range of the stratum parameter reduces to 0 < U

< 1
4 p. The three separable Hamiltonians containing a

free summand, H–F, R–F, and F–F, are actually point or-
bits (and not one-parameter strata), because with an im-
ager in y we can multiply this term by any positive factor
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and thus the ratio of the x and y coefficients can be
brought to 1:s, with s P $11, 0,21%; in the H and R
cases, the value s 5 0 yields the previous orbits H–H0
and R–R0 .

We thus collect the following six inequivalent stratum
and orbit representatives of separable Hamiltonians and
compare them with those defined in Ref. 13 (where the
authors chose the scale Hi

l 5 Gx 1 lGy):
B. Lorentzian Hamiltonians
We now follow the second, repulsive branch of patterns
HR in Eq. (32) and try to eliminate the Hamiltonian coef-
ficients with the (timelike) index 4̄, thus reducing it to the
Lorentz subalgebra so(3, 1) , so(3, 2) with generators
ja,b , a, b P $1, 2, 3, 5̄%.

First we bring v in HR to the 2 – 5̄ position with
T (2,3)( 1

2 p) and then use an imager boost T (3,4̄)(t) to pro-
duce hyperbolic linear combinations between the counter-
harmonic and counter-repulsive coefficients, r and s, leav-
ing the zeros in their places. As with all boosts, there are
three outcomes according to the ratio uru : usu, only one of
which is of interest in this subsection:

relative signs can be flipped by means of a Fourier trans-
form T (4̄,5̄)( 1

2p) [which is outside so(3, 1)], so the orbit
range of U reduces to 0 < U , 1

2p.
In the special case when C2 5 0 (r' r.5̄), we can ar-

range that only r1,2 Þ 0 and r2,5̄ Þ 0. Then by means of
a Lorentz transformation we can bring the Hamiltonian
(38) to one of three forms according to the sign of C1 :
pure angular momentum (C1 . 0, only r1,2 Þ 0); a pure
boost generator (C1 , 0, so that only r2,5̄ Þ 0), or a Eu-
clidean translation (C1 5 0, where 6r1,2 5 r2,5̄ 5 1 are
the only nonzero coefficients). The pure angular momen-
tum Hamiltonian lies in an orbit that we should consider
apart from the generic stratum above, because it alone

(38)

Separable Hamiltonians Range Notation13

H–HQ stratum: Hx cos Q 1 Hy sin Q,
2

1
4 p , Q < 1

4 p, H3
21 , l < 1,

H–RQ stratum: Hx cos Q 1 Ry sin Q, 0 , Q , 1
2 p, H2

0,l,` ,

R–RQ stratum: Rx cos Q 1 Ry sin Q, 0 < Q < 1
4 p, H1

0<l<1,

H–Fs orbits: Hx 1 sFy , s P $21, 1 1%, H5
s56 ,

R–F orbit: Rx 1 Fy , H4 ,
F–Fs orbits: Fx 1 sFy , s P $21, 0, 1 1%, H6

s50,6 . (37)
Lorentzian Hamiltonians are general linear combina-
tions of so(3, 1) rotation and boost generators, whose co-
efficients belong to the two 3-vectors r and r.5̄ discussed
for the U(2) reduction above Eq. (30). Under Lorentz
transformations there are two (Casimir) invariants: C1
5 uru2 2 ur.5̄u2 and C2 5 r • r.5̄ . By means of boosts—
provided that C2 Þ 0 (r and r.5̄ not orthogonal)—we can
always bring both vectors to be parallel (boosting boost
generators linearly combines them with generators of ro-
tation), and with rotations we can align them with the
3-axis, so that only m 5 r1,2 and v 5 r3,5̄ are nonzero in
the pattern of expression (38). The representatives of the
generic stratum of Lorentzian Hamiltonians are thus lin-
ear combinations (by cos U and sin U, U P S1 /Z2 as be-
fore) of an isotropic repulsive term R 5 j3,5̄ and angular
momentum M 5 j1,2 [see expression (39) below]; their
generates bounded trajectories. The pure boost can be
rotated to R 5 j3,5̄ , which belongs to the R–RU stratum of
separable Hamiltonians in expressions (37) for U 5

1
4p

(as well as to the previous generic Lorentzian stratum).
The most degenerate C1 5 C2 5 0 translation Hamilto-
nians are also separate from the Lorentzian stratum, and
the two signs are again equivalent under a Fourier trans-
form. We conclude that there are three new distinct
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Lorentzian Hamiltonians Range Notation13

R–MQ stratum: R cos Q 1 M sin Q, 0 , Q , 1
2 p, H9

l.0,
M orbit: M, H7 ,
X orbit: qxpy , —. (39)
We denote the last orbit by X because it is a double cross
in x and y and in p and q.

C. Euclidean Hamiltonians
Lastly, the pseudo-Euclidean branch in Eq. (33) and the
Hamiltonians remaining in expression (38) require care-
ful treatment even though they give rise to only one more
physically relevant Hamiltonian and two others of mar-
ginal interest.

Within the algebra so(3, 2) there are the following two
sets of elements,

ta
6 5 ja,3 6 ja,4̄ , a P $1, 2, 5̄%,

t6 5 ~t1
6 , t2

6 , t 5̄
6

!T, (40)

t2 5 ~2
1
2 ~ px

2 2 py
2!, pxpy , 1

2 ~ px
2 1 py

2!!T,

t1 5 t2~ p ° q !. (41)

These are generators of astigmatic-free propagation (t2)
and of lenses (t1). They behave as (pseudo-) Euclidean
translations in the (2 1 1)-Minkowski vector subspace
$1, 2, 5̄%. The elements of each set commute among
themselves, but the two sets do not commute between
each other. We rewrite the generic Hamiltonian (13) in
the light-cone coordinates $1, 2, 5̄, 1 , 2 %, where the ba-
sis generators (41) have the coefficients er

6 5 1/2(rr,3

6 rr,4̄), at rows r P $1, 2, 5̄%. In particular, the Fourier-
reduced pattern HF

2 in Eq. (33) has e 5̄
2

5 v, e 5̄
1

5 0 (for
HF

1 we change signs), and e2
2 5 0 5 e2

1 .
Translations TE

(2,2)(t) 5 exp(tt̂2
2) of rotations in the 1–2

plane spawn translations along the 1-axis:

TE
~2,2!~t ! : j1,2 5 j1,2 2 tt1

2 ,

TE
~2,2!~t ! : t1

1 5 t1
1 1 tj1,2 2

1
2 t 2t1

2 ,

m ° m 1 te1
1 ,

e1
2 ° e1

2 2 tm 2
1
2 t 2e1

1 . (42)

We use these results on the Hamiltonian (33) to bring the
angular momentum coefficient m to zero (with t
5 2m/e1

1—whenever e1
1 Þ 0), leaving the previous zeros

on the 2 row in their places. Having eliminated the in-
dex 2 however, we recognize that we are back among the
so(2, 2) separable Hamiltonian strata described above.
Euclidean Hamiltonians are therefore also characterized
by e1

1 5 0, which means that no q2 terms can be present.
For these Hamiltonians, we can cross out the row 1 and
remain with the six generators in the indices $1, 2, 5̄,
2%, which form the (pseudo-) Euclidean algebra
iso(2,1) , so(3,2).

To examine the Euclidean orbits, it is convenient to
build again two (2 1 1)-vector arrays, c 5 (r2,5̄ ,
2r1, 5̄ , r1,2)

T and e 5 (e1
2 , e2

2 , e 5̄
2)T, containing the coef-
ficients of the generators indexed similarly so that the
Euclidean Hamiltonians are H 5 c • j 1 e • t2. With
the metric E 5 diag(11, 11, 21), one has the invariant
2CE 5 e • Ee 5 e1

2 1 e2
2 2 e 5̄

2. Then it is straightfor-
ward to show that under TE

2(t) 5 exp(t • t2), the Hamil-
tonians transform as

TE~t! : ~c • j 1 e • t! 5 c • j 1 @e 1 E~t 3 c!# • t.
(43)

And so according to the sign of CE , there is again the tri-
chotomy into harmonic, repulsive, and free cases (c time-,
space-, and light-like—and the trivial fourth: c 5 0).
For CE Þ 0, from Eq. (43) one can find a t such that e
1 E(t 3 c) is parallel to c, and also in the free case CE
5 0, c 5 (0, 1, 6 1)T, we can bring e to (0, 1, 6 1)T.
Within iso(2, 1), therefore, we can choose the representa-
tives of the strata parameterized by ja cos U 1 ta

2 sin U,
0 < U , p as before, with ( ja , ta

2) given in the three
cases [see expressions (44) below] by ( j1,2 , t 5̄

2) for CE

. 0 (harmonic), ( j2,5̄ , t1
2) [or (2j1,5̄ , t2

2)] for CE . 0 (re-
pulsive), and ( j1,2 6 j1,5̄ , t 5̄

2
6 t1

2) [or 1 ↔ 2] for CE

5 0 (free). The trivial null case (c 5 0), still allows e to
be time-, space-, or light-like; but these points have al-
ready been counted before as the separable F–Fs orbits.

Under similarity by the full SO(3, 2) group, orbits of
Euclidean Hamiltonians will coalesce. From Eq. (41) we
see that the Fourier transform relates t2 with t1, so no
separate treatment is necessary for the 1 case. The iso-
tropic imager T (3,4̄)(t) will scale the generators ta

6 by
exp(72t) . 0 and leave the so(2, 1) generators ja invari-
ant; the U stratum (U Þ 0, 1

2p) will then collapse to ja

6 ta
2 ; in the repulsive and free cases a rotation

T (1,2)(p) will bridge the two signs. We can thus choose
the following representatives of

Euclidean Hamiltonians
Nota-
tion13

F–M6 orbits: F 6 M 5
1
2 upu2 6

1
2 (qxpy 2 qypx), H 8

e56 ,
F–I orbit: 1

2 ( px
2 2 py

2 1 pxqy 1 pyqx)

[or pxpy 1
1
2 ( pxqx 2 pyqy)], [H10 ,

F–X orbit: 1
2 px

2 1 pyqx ,
[H11 .

(44)

6. EIGENVALUE STRUCTURE AND THE
RESOLUTION OF DEGENERACIES
We commented before that orbits of matrices defined by
general similarity are characterized by their eigenvalues,
but when the similarity is restricted to be symplectic,
some values may be degenerate. Still, the eigenvalue
structure is very informative and provides a good crite-
rion for inequivalence. Moreover, the eigenvalues can be
found directly from the 4 3 4 matrix representation of
Hamiltonian matrices (10).
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The eigenvalue equation for Hamiltonian matrices (10)
is biquadratic; i.e.,

det~m 2 l1! 5 l4 1 Gl2 1 D 5 0, (45)

G 5 Uax bx

cx 2ax
U 1 Uay by

cy 2ay
U 1 2Uaxy b

q

c
q

2ayx
U, (46)

D 5 det m 5 D non
cross

1 Dcross , (47)

D non
cross

5 Uax bx

cx 2ax
UUay by

cy 2ay
U 2 2axayaxyayx

1 axy
2 ayx

2 1 axy
2 bycx 1 ayx

2 bxcy , (48)

(49)

We have grouped the summands into noncross and cross
summands, according to the absence or presence of the
cross-term coefficients b

q
and c

q
. The four solutions to

Eq. (45) are the eigenvalues

l 5 6S2 1
2 G 6 A~

1
2 G!2 2 D D 1/2

. (50)

When l is an eigenvalue, then so are 2l, l* , and 2l* if
distinct.15

The two radicands in Eq. (50) can be positive, negative,
or zero; there are thus nine eigenvalue patterns in the
G–D plane. These are shown in expression (51) below
and in Fig. 1. There are four regions, four boundaries
(two branches of the line D 5 0 and two branches of the
parabola D 5

1
4G2), and one osculation point (G 5 D

5 0—very degenerate). Under scaling H ° aH (a
Þ 0), the eigenvalues multiply by a and the points of the
plane will shift on the parabolas (a2G, a4D). The eigen-
value patterns thus correspond to points of the circle and
the origin, where the Hamiltonian orbits are as follows:

Fig. 1. Eigenvalue plane G–D of three-dimensional paraxial
Hamiltonians. The Hamiltonian orbits are parabolas D

5
1
4a2G2, 0 Þ a P R, that we project on a circle, and degener-

ate points at the origin. There are four strata (H–HQ , H–RQ ,
R–RQ , and R–MQ). On their boundaries we find six isolated or-
bits (H–F6 , R–F, F–M6 , and M), and six orbits coexist at the
origin (F–F0,6 , X, F–I and F–X).
(51)

The degeneracies are thus as follows (clockwise from
the H–HU stratum): The separable harmonic
waveguides (37), Hx cos U 1 Hy sin U (2 1

4p , U < 1
4p),

have G 5 1, D 5
1
4 sin2 2U; hence two distinct orbits 6U

correspond to each point on that arc of circle in Fig. 1.
The upper boundary in this region D 5

1
4G2 is the isotro-

pic harmonic orbit U 5
1
4p of H 5 Hx 1 Hy ; the lower

boundary D 5 0 is the orbit U 5 0 of Hx (or equivalently
of Hy) which joins smoothly with the neighboring H–RU

stratum. Superposed on the boundary are the two H–F6

orbits.
No degeneracy occurs in the H–RU stratum (G

5 cos 2U, D 5 2
1
4 sin2 2U , 0 for 0 , U , 1

2p), which
also joins smoothly with the R–RU stratum at Ry ; on the
same boundary is the R–F orbit. The R–RU and R–MU

strata are nondegenerate, and their common boundary
(isotropic repulsive R) is uneventful. However, the
boundary of the R–MU region of Lorentzian Hamiltonians
(39), R cos U 1 M sin U (G 5 22 cos 2U, D 5 1) is open for
U → 1

2p1. The limit excludes the boundary where lies
the separate compact Lorentzian orbit M of angular mo-
mentum, which is degenerate with the two Euclidean
F–M6 orbits, and with the isotropic harmonic waveguide
Hamiltonian H in the H–HU stratum seen above.

Besides the previous four Hamiltonian strata and the
six isolated degenerate orbits on the circle of Fig. 1, there
remains the origin where all remaining degeneracy lies.
There are the three separable free Hamiltonians (37) in
the F–Fs orbits, the Lorentzian orbit X of qxpy in expres-
sion (39), and the two pseudo-Euclidean orbits F–I and
F–X in expressions (44), adding to a total of six distinct
Hamiltonian orbits at the origin.

7. CONCLUDING REMARKS
Whereas two-dimensional paraxial optical Hamiltonians
belong to one of three orbits, harmonic (H), repulsive (R),
or free (F), we have seen here that in three-dimensional
systems there are four strata and six isolated orbits that
we can arrange in a circle and six isolated orbits at zero,
divided into separable, Lorentzian, and (pseudo-) Euclid-
ean. The generators of U(2)-Fourier transforms encom-
pass the H–HU separable stratum and the M Lorentzian
orbit and form the maximal compact subalgebra of such
systems. By means of fractional Fourier transformers
and pure imagers (i.e., phase-space rotations and isotro-
pic scalings) we obtained the chosen representative
Hamiltonians for each orbit. Their parameters are found
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at each step by solving pairs of linear equations that are
determined by the coefficients of the original Hamiltonian
and that for reasons of space we have not detailed here.
The eigenvalue degeneracy is solved.

The classification of the Hamiltonian generators for
higher-order astigmatic aberrations has been based on
their transformation properties under the paraxial
subgroup;19 it appears that each of the three Hamiltonian
subalgebras can carry its own disjoint retinue of subaber-
rations, whose classification should be investigated else-
where. Hamiltonians in sp(4, R) generate one-parameter
subgroups within the exponential part of the group
Sp(4, R) of paraxial optical systems.4 The resolution of
sp(4, R) into orbits of equivalent Hamiltonians implies
the foliation of Sp(4, R) systems into one-parameter
subgroups—waveguides of z-independent media. Re-
sults will apply not only in the context of geometric optics
or classical mechanics but also in the isomorphic theories
of 3-dim linear wave optics and 2-dim quantum oscillators
and Kepler–Coulomb systems.18

ACKNOWLEDGMENTS
The authors acknowledge the support of the Universidad
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