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Wigner functions for curved spaces. |I. On hyperboloids
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We propose a Wigner quasiprobability distribution function for Hamiltonian sys-
tems in spaces of constant curvature, in this article on hyperboloids, which returns
the correct marginals and has the covariance of the Shapiro functions under
SO(D,1) transformations. To the free systems obeying the Laplace—Beltrami equa-
tion on the hyperboloid, we add a conic-oscillator potential in the hyperbolic coor-
dinate. As an example, we analyze the one-dimensional case on a hyperbola branch,
where this conic-oscillator is the Bchl-Teller potential. We present the analytical
solutions and plot the computed results. The standard theory of quantum oscillators
is regained in the contraction limit to the space of zero curvatur2002 Ameri-

can Institute of Physics][DOI: 10.1063/1.1518139

[. INTRODUCTION

In Hamiltonian systems which a have f° configuration space, among the phase space
quasiprobability distribution functions the Wigner functtde the only one covariant under Eu-
clidean translations of phase spacelhe present article, and others that will follow it, aim to the
construction of Wigner functions on configuration spaces that are conic surfaces, hyperboloids and
spheres, which transform under the Lorentz and rotation groups respectively, and which reproduce
the traditional Wigner function when the conic contracts to the plane. Quantum motion on spaces
of constant curvature is of current interest in various fields of theoretical physics, such as quantum
gravity and string theor§,noncommutative geometfyand quantum chadsHamiltonian systems
on conic manifolds have a natural kinetic energy given by the Laplace—Beltrami operator, and,
moreover, on these conics also a natural oscillator “potential” can be proposed. In one dimension,
this oscillator turns out to be one of thé $ebl—Teller potentialé.

In this article, subtitled |, we propose a Wigner function on Ehalimensional hyperboloid
HE’r , which generalizes the ordinary Wigner function on flat phase space. It displays the correct
marginals, and returns the traditional form of the Wigner function undamtin@/igner contrac-
tion to the zero-curvature limit. The elements and background for this assertion are contained in
Sec. Il, including the Shapiro solutiorisgD)(x) to the Laplace—Beltrami equatidrin Sec. Il we
present our proposed definition of Wigner function on the hyperboloid, and verify the properties of
marginality and the contraction limit to flat phase space. Covariance remains an issue because the
Wigner function that we propose here follows from the covariance of the basis of wavefunctions,
between the argumemtand the indexp, as if they were canonically conjugate variables. In this
context, we reexamine the interpretation of momentum coordinates.

In Sec. IV we exemplify théd-dimensional theory with a one-dimensiorsali generisoscil-
lator on one branch of a hyperbola. This example may appear to be trivial, because the hyperbola
is in most respects equivalent to a straight line. Nevertheless, the resuloglPoeller potential
is of particular interest because the wavefunctions are also the Clebsch—®afidaer coupling
coefficients for the three-dimensional Lorentz algebra, so€2sp(25R)=su(1,1)° We display

@Electronic mail: alonso@ce.fis.unam.mx
YPermanent address: Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Russia and Interna-
tional Center for Advanced Studies, Yerevan State University, Yerevan, Armenia.

0022-2488/2002/43(12)/5857/15/$19.00 5857 © 2002 American Institute of Physics

Downloaded 12 Dec 2002 to 132.248.33.135. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



5858 J. Math. Phys., Vol. 43, No. 12, December 2002 Alonso, Pogosyan, and Wolf

the Wigner functions of some Bohl-Teller wavefunctions; these have not been examined before.
Finally, in Sec. V we recapitulate the aim and offer the present outlook of our program.

II. ELEMENTS OF PHASE SPACE AND HYPERBOLOIDS

In his fundamental articlé,Wigner proposed a distribution function to represent on phase
space the wavefunctions of pure and of mixed states in quantum systems. In this section we recall
the definition and properties that we shall generalize from flat to conic spaces, using the Laplace—
Beltrami operator and the Shapiro functions.

A. Wigner function on flat phase space

In D-dimensional flat configuration spaze 9i°, the generalized Dirac basis of plane waves
solves the free-space ScHinger equation, which is identical to the Helmholtz equation

—A ¢p(x)=p*B(x), ¢p(x)=expip-x), peR°. )

When we writep= + (p-p) 2, n=p/p, and callp=pn the momentum or wavenumber vector, the
functions ¢,(x) represent plane waves in the direction of the unit vectarS® 1 in the (D
—1)-dimensional sphere manifold. In the quantum model with natural @érit&, p has units of
inverse length; in the wave optical model,s the wavenumber of light.

The basis of plane wave functiori$) plays many roles: it provides the Fourier transform
kernel which bridges the configuration and momentum realizations, it constitutes a basis for
representations of the Euclidean group, and it serves for the construction 8t’th&Vigner
function of wavefields(x), g(x) through the equivalent expressions

! f dPzf x—Ez*e“p'Zg
(2mP° Jao 2

1 o 1\*
=—(277)D med zf X_EZ

X e+ip~(><— (1/2) 2) e—ip-(x+ (1/2) 2) g

Wio(f,9[x,p) = )

1
X+ EZ

1
X+ EZ

— 1 dDX/f dDX”f(X,)* g(xn)
(2m)° Joo 3D

X ho(X") 5D(x— }(x’ +X")
p 2

bp(X")*. (€©))

This has the well-known properties of being sesquilinear in the functions, refifgr with the
marginal projectionsf yodpW=f(X)*g(x), [xodxW=T(p)*G(p) (the tilde indicates ordinary
Fourier transformationE:f=7), and covariant under translations in coordinate and momentum

spaces
Ta:f(X)=f(x—a)=Wypo(T,:f, Ta:0|X,p) =Wgxo(f,g|x—a,p), (4)
Tp: F(x) =€ (X)=Weo(Tp : f, Ty :9]x,p) = Wyo(f,g|x,p—b), (5)
F:f(x)=T(X)=Wgp(F:f,F:g|x,p)=Wgo(f,g|p,—X). (6)

The last intertwining by the Fourier transform was known when Gar€aldera and Moshinsky
noticed that the Wigner function is covariant also under the larger group ofC5fXR linear
canonical transformations of phase sp#tehis is exceptional in the sense that the Heisenberg—
Weyl algebrawhose generators are the phase space transladorand (5)—and the unit that
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generates a commuting phase fagtwas the outer automorphism group SpP(28). This accident
does not occur for Lorentz algebras, so we should not expect similar covariances of the Wigner
function under groups larger than SO().

B. Laplace—Beltrami operator on the hyperboloid

The purpose of this article is to generalize the expression of the Wigner furi@jiamd (3)
with functions on @D-dimensional spacee P of constant curvature. This manifold can be seen
in an “ambient” space oD + 1 dimensions as a hyperboloid, with vectars (xo,x) € RP L.

Consider the upper sheet of the two-sheeted hyperbdidid= P ** of hyperbolic radius
R>0,

IX|?=x3—x?=R?, X?=x2+X5++Xx3. 7)

In this ambient Minkowski space, the isometry group is the Poingssap ISOD,1)., , in place
of the Euclidean group 1IS@) , of flat space. The Lie algebra do(1) has then the standard
realization

Mj’k:Xjan_Xkaxj, Mo’k:XOaxk‘f'Xkaxo, j,k=1,2,..,D. (8)

The second-order Casimir operat6t, which is an invariant under the group SDQ) , is
(—R? timeg the Laplace—Beltrami operator d° , namely

1 1
- _ = 2 _ 2
?C_ Ate Rz(lsj;ksD M]’k 1<%D MO,k . ©
This operator replaces the Laplacian in the Rthger equation for hyperbolic curved space.
Thus, the Schidinger equation on this space with a potentigk) is

_—1A +R2V(x) | f(x)=R?Ef(X) (10
2, D (x) [f(x)= (X).

In quantum mechanica =m/%2, wherem is the particle mass. For application in paraxial wave
optics, we recall the interpretation where the extra term characterizes the refractive index anomaly
of the medium,

n°<—>/.L,

n(x)=n,—r(x), n,=n(0), (11
v(X) = V(X).

First we consider the case when the potential is identically 2é¢g)=0; a nonzero oscillator
potential will be introduced in Sec. Il E.

For the free case, in the unitary irreducible representation spaces bBf-thimensional Lor-
entz group belonging to the most degenerate continuous series indicapedf iye operator9)
has a real lower-bound spectrum, as d¢®s The wavefunctions of the free system on the
hyperboloid are the solutions to the equation

2

, N(A+D—1)
+p —

Apgf(x)=— R2

f(x)=— f(x),

( 2R
(12)

+ 1 ;
pe MRy =[0,), )\:—E(D—l)—lpR.

Any wavefield of a given wavenumberis a solution of this equation.
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C. Shapiro functions

A privileged basis for the solutions of the Laplace—Beltrami equa(i®) was given by
Gel'fand, Graev and Shapfton the form of D-dimensional plane waves of momentuyr pn,
with positive wavenumbep and in the direction of a unit vector on the sphereSP 1,

— (1/2(D-1)—ipR

Xp— NX .
d = (coshy—n-£&sinhy) ~ (M2(0~1=ipR (13)

cpgD)(x):(

where functiond (x) on the hyperboloid(eHE (x2=R?) will be denoted, according to conve-
nience, by

Xo=+ VR?+x?=Rcoshy=R,
x=Ré&sinhy e RP, yeRy, &eSP L

The Shapiro functions (13) are a Dirac basis for functions on the hyperboloid, which are
orthogonal and complete over and p-spaces:

R
(2m)°

dPx

f o xg TP 0" @ () =N®(p) s (p—p"), (15
Xe

1 de

@10 ) oo NOT(p) b 00" @(x') = (xx), (16

with the measure and Dira@undeerEde: RS 50dPx/Xg,

I'(ipR) 2

N®)(p)= (pR)P 1, 17)

F(E(D—l)JripR

P(xx') = =2 2(x—x' —\/1+X—25'3 —x' 18
(XXx) =g 6" (x=x")= Rz (x=X'). (18)

In particular,N®V(p)=1, N®(p)=cothR), andN®)(p)=1.

The Incnu—Wigner contraction limit of the Lorentz to the Euclidean group QQL
—ISO(D), is the limit R—o in our expressions for vectors with~R, x><R?, andp=pn as
before, i.e.,

(xo—x~n

— (1/2(D-1)—ipR XN
R

—ipR
~lim|1— —) =expix-p). (19
R—o R

lim &P (x)= lim

R—o R—o

Correspondingly, lim ...N®)(p)=1 and 6°(x,x’)— é°(x—x").

D. Momentum space for the hyperboloid

The Shapiro function$<DE)D)(x)}pEmD in (13) serve as the integral transform kernel between
functions ofx on the hyperboloidf(x), and conjugate functions gf, that has the interpretation

of momentum or wavenumber space, and is indicd(gd. Using (14) for x,pe P, one writes

R

~ d®
()= zmom f o Xoxd>§,°><x>* f(x), (20
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D

1 d“p
f(X): (277)D/2 fpemDN(D)(p)

This Shapiro transfornhas been used as a relativistic analog of the Fourier trangtbephysical
context here, though, isot that of space—time relativity, as we shall clarify bejoand is a vector

form of one of the two branches of the bilateral Mellin transfdfnilere the Shapiro transform
replaces the traditional Fourier transform in the definition of a momentum gpagt’, canoni-

cally conjugate with respect to this basis, to a configuration space of constant curvature. The
corresponding Parseval relation is

() F(p). (21

dDX . B 3 de - e
RJXEme_Of(X) g(x)—(f’g)HE—JpemDmﬁ)(—mf(p) 9(p). (22

The manifold of momentunp=pneRP (peR* andne SP~?) can be placed also in a
(D+1)-dimensional “ambient” space, where it occupies the cane (p,p) € O*. The momen-
tum thus defined by the Shapiro functions has certain features, however, which do not correspond
to those of a standard relativistic momentum vectof(¥) is a monochromatic wavefield with a
definite value ofp, this wavenumber will not change under $D1) translations of the hyperbo-
loid (“boosts”), because it is the invariant value of the Casimir operd®+(12). Only the
direction of momentumpn, can shift over the sphere; it will do so following the well-known
Bargmann deformation of the circlé where the colatitude angle “boosts” as e ‘tani®
for rapidity { e ;8. Quotation marks are used for “boost” because here we mean a translation in
the hyperboloid, and not the well-known relativistic acceleration.

E. Oscillators on conics

The Laplace—Beltrami equatiof®)—(12) provides the free fieldéwhose energy is purely
kinetic) on the hyperboloid. In Eq10) we allowed a potential energy term as in the Sdimger
equation of quantum mechanics, by adding a function of posiifx).”14°A straightforward
and useful generalization of the S)-isotropic harmonic oscillator potential from flat to conic
D-dimensional configuration spacéis

1 x? 1 1
V(x)= E’“"ZR2|X_|2 = E,uwZthanhZX= E,uwZRZ (1—secky), (23
0

where y e iy is the hyperbolic angle coordinate defined in E@s}). This is the Pechl-Teller
“secant-hyperbolic-squared” trough.

[ll. WIGNER FUNCTION ON THE HYPERBOLOID

With the Shapiro basis of wavefunctions of the free system, we construct now our proposed
Wigner function following the double-integral form in E¢) for two wavefunctionsf(x) and
g(x), by means of integrals on two hyperboloids,|=R and|x"|=R.

A. Definition

With the measures in Eq$15) and the Shapiro functions ifil3), we define the Wigner
function on the hyperboloid by

Wi(f,9/x,p) —R2 f —dDX,f DX"f( ")* g(x")
glx,p)= - —f(x X
UL (27T)D x" e RP Xo X" e RP Xo g
X d)éD)(x’) AP(x;x",x") (I)éD)(x”)*, (24)

whereAP(x;x’,x") takes the place of the Dirac delé®(x— 3(x’ +x")) on flat space, Eq3), and
which will be detailed below.
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The crucial property that we must require of this “bindidd4in (24) is that it should guar-
antee thak be the midpoint of thgeodesidetweenx’ andx”, so that all three points lie on the
hyperboloidH . We achieve this in the following way: givenx e R°** in the upper sheet of a

two-sheeted hyperboloid, we build agy= P! on a one-sheeted hyperbolcifdD of the same
radiusR, such that it be Minkowski-orthogonal tq

y=Wo.), |yI*=y5—y*=—R% Xoyo—xy=0. (25)
Then, we can express andx” as vectors obtained from andy as follows:
x'=xcosh; r—ysinh3 7, X’=xcosh;r+ysinh:r, (26)
wherex’,x"e H? for all 7e %R. Also, it is easy to show that

r

Xpxg—X"-x"=R?coshr, XXx,—X-X' =XoXg—X-X"=R?coshj 7, (27)

i.e., the geodesic distance betwe€nandx” is Rr, while x is at 3R+ from bothx’ andx”. The
argumentsx’ and x” in the expressior(24) thus emulate the argumernts-3z in (2) with the
parametesr.

Using (18) and the parameterin (27), we propose the binding-in (24) to be

Xo X" +x"
AP(x;x" x")=—= 8°| x— ———|. (28
R 2 coshir
This will yield the correct marginal&o be seen beloywdue to its properties
X dPx
AP(x:x! x')= = 6P (x—x"), Rf —AP(x;x" ,x")=1. (29
R xemP Xo

B. Integral forms

The 2D-fold integral form of the Wigner function if24) contains Diracs’s; it can therefore
be brought to alp +1)-fold integral noting that the definition ofe ° leaves the freedom of
rotatingy aroundx on a sphereS®~1. When we change variables frori andx” to x andy
according to(26), we reduce the integration fpand = while keeping Minkowski-orthogonality.
The proposed Wigner functiof24) then becomes

R? (=
WH(f,glx,p)=Wfo (sinhf)Dlolrfy o0y 3(Xo¥Yo=x)

X f

h1 i hl ’ hl i hl

xcoshy 7—ysinh; 7| g| xcosh; r+ysinhz 7

X PP xcoshET—ysinhlr o) xcoshlr+ysinh£r ) (30)
p 2 2 P 2 2 ’

The Dirac é remaining in(30) can be used to find a third alternative form of the Wigner
function. This is obtained with the parametrization of the ambient-space vectors given by

xX=(Xg,X)=R(coshy,&sinhy), y=(yo,Y)=R(sinhw,# coshw), (31

where& and » are unit vectors on the sphe$® ! andy,w e R . The Diracdin Eq. (30) is then
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1 cosh()

ﬁzmé(w—ﬂ), with  tanhQ) = & » tanhy. (32

S(XpYo—Xy) =

The differentiald®y of the integral iny e 2 becomesRP(coshw)® *dw d® 1%, so the Wigner
function (24) becomes @-fold integral with the structure of2), viz.,

ly|° o1

W, (f,g|x,p)= T )Dj (sinh7)P~ 1drf - 108y

X f

h:L i hl " h:L i h:L
xcoshy r—ysinhz 7| g| xcosh r+ysinhz

*
r)CD(D)(xcosh1 r+ysinhlr) (33
2 P 2 2 ’

D) 1 1
X ® | xcoshy 7=y sinh
2
with

(&mtanhy, n)

Vi-(&ntanhy)?

y=R(sinhQ, »coshQ})=R

(34)

C. Marginal projections

The marginal projections obtained by integrating the proposed Wigner fun@#®nover
momentum and configuration space should yield, respectitety* g(x) andf(p)*g(p) as de-
fined in (20) and (21). The two marginals follow from the orthogonality and completeness rela-
tions of the Shapiro functions, Eg&l5) and (16).

The integration of the Wigner function ov® momentum space with the measurbl®?(p)
in (17) is

D

d”p
MH(f.glx)—pr%meﬁ(f,glx,m

RZJ dD f DX” f( /)* ( //) AD( ’ //) 5D( ’ /I)
= 7 — (X X XX, X X, X
x' e RP Xo X" e RP Xo g

dD ’
R[S0 00¢) AP00x )= 100" 000, @5
x'enrP Xp

where we used16), (18), and the first property of the binding-n (29).
Similarly, the integration ovefi® configuration space with the measireéx, in (18) is

M t.0l =R dx
H ,gp B XEERD\/R2+X2

R2 dD D X"
:<2w>DJx w xg TX )*‘D(D)(X)J —90) O =T(P)* TP,

(36)
where we used the second property of the bindinig- (29) and the Shapiro transforii20).

Finally, integrating over the whole of phase space with the appropriate measures in the Parse-
val relation(22), we have the total probability
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Rj dDXM f =(f —f d’p M (f 3
oD Xg Ml gl =(f, g)yo= 50Ny V(1.0 p). (37)

D. Covariance under rotations and conic translations

Under rotationR e SO(D), wavefunctionsf(xq,x) transform through
T(R):f(x)=f(xo,R™x). (39
In particular, the basis of Shapiro functio(i3) transforms as
T(R):® (X0, %) =P (X0, R™1x) = D[R (X0, %). (39)

Applying rotationsT(R) to the wavefieldd andg in the Wigner function24), we next change
variables tox’ =Rx’ andx”=RX" (the ambientx,-components behave as scalatken usg39)
for R™%, noting that the bindingx in (28) is invariant, AP(X;x" ,X")=AP(x;x’,x") for X
=R x, and so are the measurd8x’=d°x’. It thus follows that the Wigner functiof®4) is
covariant under rotations, fulfilling

W, (T(R):f, T(R):g|x,p) =W;(f,g|R™x,R™*p). (40)

Now consider translations hy(“boosts” of rapidity ) B,({) € SO@,l)L in the direction of
unit me SP~1, which transform the ambient space vectors preserving the constant-curvature
subspaces e H 7 for each radiusR>0. We denote by, andx, , the projections ok parallel
and perpendicular to the direction of, so thatx=x;,+ X, . Then, wavefunctions on the hyper-
boloid transform as

Xo Xg coshf —me-x sinh{
T(B(0):f| Xim | =f| Ximcoshi—xomsinh¢ | . (41)
Xim Xim

When this transformation is applied to the plane-wave basis of Shapiro functions, their directions
n on the sphere change, and they acquire a multiplier factor:

T(Byn(£)): @ (X0,X) = (coshi +m-nsinhg) - W2C-D=PR ) (x; x), 42
where the components of e SP~? that are orthogonal and parallel to are

. N m , _n-mcosh§+sinh§
Nim= cosh¢+n-msinhz’ "™~ cosh+n-msinhg

(43

within the same SQ¥,1)., irreducible representation characterized by the invariant wavenumber,
p. If the angle fromm to n is ¢, it will transform through the well-known Bargmann §01) map
of the circle.

The expression in the multiplier factor of E@L2),

u(m,Z;n)=cosh{+m-nsinh¢, (44)

is, not coincidentallyp’/p—if the (D + 1)-vectorw = (p,p) € 0" were allowed to transform as a
“lightlike” vector in relativity, i.e., without being constrained to itgs-sphere. Under the inner
product (16), the SOD,1) boost with the multiplien42) is unitary nonetheless, because the
measure inp-space isd®p=pPdpd¥~In, and whilep is invariant, from(43) it follows that
d® In=pu(m,z;n)° 1d°In’. This cancels the absolute square of the multip{4) in the
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Shapiro functiong41). This type of covariance modulo a multiplier function is determined by the
Shapiro function basis; we may call Eq&ll) and (42) the Shapiro covariancebetween the
conjugate transformations kandp.

When the wavefields in the Wigner functid@4) are translated within the hyperboloid by
(41), the ambient vectorg are multiplied by a D+1)Xx(D+1) (‘boost’) matrix B,,({), to
X=X =Bp() " 1x’ and x"—X"=B,({) 1x". Under this transformation, the measures are
again invariant,d®x’/xy=d°x’/xj, etc., and so isAP(x;x’,x")=AP(x;X’,X"); hence,x
=B,(£) "1 x will appear in the first argument of the transformed Wigner function. But the corre-
sponding transformation qf in each of the two Shapiro functions, Edd2) and (44), yields a
multiplier factor. The imaginary exponents g{m,{;n) cancel, and there remains a positive net
multiplier factor:

Wi(T[Bm(O)1:f, TIBm(H1:glx,pm) = (u(m,;n) "2 Wa(f,g[B() 1%, p Bm(i)flin()LiS)

wheren’=B,,(¢) ':n is given by(43). Note that in theD = 1-dimensional case, the multiplier
factor is 1.

Covariance of the Wigner function is usually understood in the simple form it has under
rotations, as given by40). Under these transformations, the hyperboloid in the ambiesgace
rotates on its axis, and in the momentum plane the cincle$ all radii p rotate in synchrony.
Translations within the hyperboloit#5), on the other hand, deform the ambient and projected
space vectorss andx, through(41); momentum space is concurrently squeezed in the direction of
the translation so that its points move on consfargircles and with a common Bargmann
deformation of the angle. Since areas are not conserved in momentum space, a multiplier function
of p is necessary for the Wigner function to ensure the total conservation of prob&Bwjty

E. Contraction limit

We now show that, wheil(x) andg(x) are significantly different from zero only within a
small, essentially flat patch of the hyperboloid, the definition of the Wigner function if33y.
reduces to the standard Wigner function for flat space inf&qln (33), the integrand fonp [recall
Egs.(31) and(34)] will be significant only wherfR® norms of the vectors fulffill

|x|coshir<R = sinhy<1
<R= _ (46)
|y|sinh%T<R = sinhr<1

Lreysont
xcoshy rxy sinh 7

=x~R(1x§, y=~R(x&nmn). (47)

Also, using the limit in(19), and approximating sink~7 and coshr~coshy~coshw~1, the
Wigner function in Eq(33) reduces to

RP (=
Wy (f,glx,p)= 2m)P fo TD_ldTJAsDildD_lﬂ

X f

1 * 1
xo,x—Ean) exp(—ian'p)g(xo,er ERT")' (48

Finally, changing variables to= R 5 and noticing that

D,..._pD | .D-1 D-1,...
J%Ddz =R fOT deSD—ld 7, (49

we see thaf48) reduces td?2).
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F. Special case of one dimension

In the caseD =1, the Wigner functior{33) actually coincides in form with the corresponding
one-dimensional standard flat space fq@n as we now proceed to show.

First, notice that the unit vectorsand £ in Eq. (13) are now the unit scalans,é=*+1, and
that the Shapiro functions become simple exponentials:

d{V(RE coshy,Ré sinhy) =[exp(—néx) ] PR=expinépRy). (50)

We can now lenp—p and &y— x with p, y e (—%,%), and recognize thd60) is a 1:1 function
of only one variablex; e R,

dM(x;)=explix pR), x;=Rsinhy. (51)

The arguments = (Xq,X;) of the functionsf andg in (33) then simplify, in components, to

(52

1 (COSKXi%m))

Xo 1 .
—X coshz 7 ysinhz7=R
X1 2 2 sinh( x* 3 777)

For short, we indicaté(R coshy,Rsinhy)=f(x). The unit vectoryp in (33) and(34) also becomes
a unit scalary= * 1, and the integral extends over »R(sinhy,coshy), andQ = nx [see Eq.
(32)]. Finally, the integral ovem reduces to a sum ovej= =1, and form— npre (—»,»), the

Wigner function(33) becomes

R o l * iR 1
WH(fyg|le):zf_ drf X_ET e p Tg X+§T (53)
——1 fx dvf 14" +iRwx% 1 54

“ox ) Y p_§U € gp+§v. (54)

The last expression is the usual flat-space Wigner function in terms of the conjugate wavefunctions
on momentum space. Finally, note that =1, the net multiplier which appears under “boost”
transformations in45) is unity, so standard and Shapiro covariances coincide.

IV. EXAMPLE: OSCILLATOR ON THE HYPERBOLA

We consider the open one-dimensional space which is the upper branch of a hyperbola of
fixed radiusR>0,

HE={(X0,%1) € RIx§—xE=R?}, (55)

parametrized as usual by the hyperbolic angtei.

A. Laplace—Beltrami operator and the oscillator

When the potentia¥/(x) is a constantcorresponding to a homogeneous optical medjuhe
D =1 Schralinger equatiorf10) is the free wave equation, and its Shapiro solutions are simply the
oscillating exponential51), with energyE = p?/2u=0.

Since the Laplace—Beltrami operator on the hyperl$ is A, g=R?d?/dy?, the Schre
dinger equation for the conic oscillat@®3) is

-1 d?

— ——R%Eyseck x| f(x)=R?(E—Ep) f(x), E L »’R? (56)
21 dxz 0 0 ) 0 21“« )
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2
V(X)=%,uw2R2§—2;=\/s(s+ 1) (1—sechRy), (57)
s=— 1+ (nwR??+ L. (58

The bound solutions até

27 (s=m \/(s n)F(Zs n+1) —n,23—n+1‘1—tanh)(

sech™ "y 2F1(

'ﬁn()()_r(s n+1) et 1 5
—\/—ﬂr( 1 s—n ~s—n+1/2 h
=N aT(2s—ns1) | |STNT 3] (2sechy)™ B C, T H(tanhy), (59

wheren is a non-negative integer bounded &y 1, andC[ (&) are the Gegenbauéor ultras-
pherica) polynomials® for «>—1. The corresponding quantized values of the energy are qua-
dratic inn, and counted from the lowest level up by

Hw’R? 1 )
" 2Ere(N9% n=012..<s+1. (60)

S

I

As a check on our concepts, we verify that the contraction IRaitco of this system, when
the radius of the hyperbola grows without bound, is the harmonic oscillator on flat space. Since the
coefficients correspondingly grows as~ uwR?, the linear-quadratic spectrum of energies in Eq.
(60) becomes the linear spectrum of the quantum harmonic oscifiaterw(n+ 3). To implement
this limit on the wavefunction$59), it is convenient to use the following forms for the Gegen-
bauer polynomials irg=tanhy:

I'(a+3n) —in, in+a
—yn__~ ° - 2], neven,
Y @ 1( s |* ’
Cr(é)=
I'(a+ 3(n+1)) —i(n—-1),3(n+)+a
—1)(12(n-1) 2], dd.
Y ((n-1)1T(a) 1( g) "
(61)

Then, for a=s—n+3—%, the hypergeometric polynomials simplify: for even, ,F,(— 3n,
a8~ Fi(—in 3 aé®)=H,(Jag), and similarly forn odd. Replacing this into Eq59),
with £=tanhy~sinhy=x;/R and cosh " "y~exp(—stanlt %y), we obtain the harmonic oscilla-
tor wavefunctions on flat space,

1 1 ,
0 ) L e ——y L L VN VISR (62)
\/E 2" Vol pw '

The factoryR restores the proper normalization on theaxis.

In addition to the bound states, the sech-trougkdAb-Teller potential also has free states
with energy above the asymptotic value of the potential lim..V(x) = 1u®?R?. These scatter-
ing solutions contain associated Legendre polynomials of imaginary upper index:
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p=Ry2uE— u?w?R?*>0,

r(1-ip)| .
w00 Lo pincaniy), 63

o= 1+\w?u’R4*+ 1.

These wavefunctions are Dirac-orthonormal.

B. Momentum representation of the wavefunctions

The bound wavefunctions of the &hl-Teller sech-trough potential in the momentum rep-

resentation;//,s,(p), are found through the ordinary Fourier transfdrgs. (20) and (21) for D
=1 and(51)] of the wavefunctions/(x) found in Eq.(59). The result is

~ [R (= _ .
¥n(p) = Eﬁmdxexp(—lpr) ¥n(X)

_R [T(2s—n+1)|T(3(s—n—ipR))|? . —n,23—n+1,%(s—n—ipR)1
~ 2V m(s—n)n! ['(s—n)? 32 s—n+1s—n

(64)
~(=D)"R(s—n)n! T(2s—n+1) (1 _ ) 2
N I(s)T(s+1) Il z(s=n=ipR)
1. 1 1 1 1
XR, —§|pR,E(s—n),i(s—n),E(s—n),z(s—n)Jrl , (65)

whereR,(z;a,,v,6) are the continuous Hahn polynomiafsOn the other hand, the unbound
solutions(63) are not square-integrable, so their Fourier transform must be performed allowing for
the phase difference between asymptotic incoming and outgoing waves, as determined by the
scattering properties of this Bchl-Teller potential. We shall not further detail the free states here;
they can be found in Ref. 9 among the coupling coefficients betweeB theD  —=D* + [C
irreducible representations series of (3Q).

C. Wigner function for the oscillator eigenstates on the hyperbola

On the one-dimensional hyperbcﬂ*éll+ , the Wigner function(24) collapses tq53) and(54),
its usual form in Eqs(2) and(3) for D=1.

We are interested in the single-function fok(f|x,p)=W(f,f|x,p)=W(f f]p,—x) for the
Paschl-Teller wavefunctions, whose explicit form is in E§9) for #;(x), and in Eq.(64) for

Tpﬁ(p); we find the latter more amenable to analytic solution. We change the integration to a
contour along the imaginary axis, and find

N = N e )
Wl xP) = g2 AT (25— n+ 1) wido T(s—n+m)T(s—n+1)

F(ZS—n+m+l)F(23—n+|+l) 1 o
F(s—n+m+D)T(s—nti+1) itmi nXP)

(66)

where
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s _4iJiwdF1 1_R Fl 1'R
nXP=—5 .9z 5(s=n)=3ipR=2| | 5(s—n)+ 5ipR+z+m

xXe Mr 1(s—n)JrEi R—Z)F(E(s—n)—li R+z+|) (67
2 2'P 2 2'P '

The last integral can be computed in the complex plane straightforwardly, and leads to a pair of
complex conjugateF,-functions ofe”#X. We thus finally have

n

_ _ 2R(s—n)nle (N I'(2s—n+m+1)T(2s—n+1+1)
(ilx.p)= aT(2s—n+1) nwZol(s—n+l+1)T(s—n+m+1)L(s—n+I)
(_1)I+m
><I!m!(n—m)!(n—l

)i Re[F(ipR) I'(s—n+I|—ipR) e?PRx

XoF1

—n+ms—n+l—ipR,
sthrmsm TP ‘e“‘)()]. (68)

1-ipR

We note that this expression is suitable for numerical computation only fe0® because it
converges fast, but it holds everywhere analytically, with the reflection symm&Wu(es| x,p)
=W(rl = x,p) =W(47| x,—p).

The Wigner functions, together with their marginal projection§(x)|? and |45(p)|?, are
shown in Fig. 1, forn=0,1,2,3, and for the potential depth parameter4 and 30. It can be
appreciated that the Wigner function of the most tightly bound states resemble the familiar
Gaussian-bell form of the harmonic oscillator ground state. Accordin§ap for s=4 there are
only five bound statesn=0,...,4), and as the energy of the state approaches the binding energy,
the wavefunction stretches in space with ever-smaller momentum in a neighborhood of the clas-
sical turning point. The contraction limit can be appreciated irsth@0 column, corresponding to
a large binding energy; the Wigner functions for the eigenstates ifi8@yapproach the familiar
Laguerre—Gaussian form that corresponds to the Wigner function of the harmonic oscillator wave-
functions on flat space.

V. CONCLUDING REMARKS

We have generalized the Wigner quasiprobability distribution function by replacing the oscil-
lating exponential functions of the standard version, which are Dirac solutions of the free Schro
dinger equation on flat space, by the Shapiro functions, because they are solutions to the Laplace—
Beltrami equation on a simply connected hyperbolic space, while respecting the midpoint
condition through an appropriate Dirac-lik (x;x’,x"). The role of the Fourier transform in the
standard version is transfered by the Shapiro functions to a Mellin-like transform between the
position and momentum coordinates of phase space. Indeed, the relation between what were called
position and momentum variables is actually defined by the argument and index of the basis of
Shapiro functions. Thus built, the proposed Wigner function is covariant under the groly 5O(
of motions of the hyperbola, with the hyperbolic translations extracting a multiplier factor. The
correct marginals are found and the contraction limit to flat space returns the standard Wigner
function.

The transformations of the momentum direction under translations of the hyperbola are the
(unique action of SOP,1) on the spher&P.13 There are several models of Hamiltonian systems
where momentum is restricted to a sphere, such as geometric and Helrftholinchromatig
optics?>?L In the first model, a “Descartes sphere” of momentum vecmrsvhich is of radius
|p|=n(x) (the refractive indek is associated to each poin space. This sphere of momentum
vectors has been subject to Bargmann’s “boost” transformation in Refwlich is unique for
Lorentz groups acting on sphejemd here given by43), with a canonically conjugate transfor-
mation of the ray positions at a plane screen. The resulting phenomenon has been called relativ-
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FIG. 1. Wigner functions of the ohl—Teller eigenfunctiongS(x) on a quadrant of phase spaeeaes are positioy /s

and momenturrpR/\/E; the quadrants have reflection symmetry across the) aResvs are numbered by the mode
=0,1,2,3. Left:s=4 (so only five states=0,...,4, arebound; right: s=30 (so states are bound up e=30). White is

the maximum, black is the minimum; the shade at the upper right corner corresponds to zero. From each Wigner function

we project up the marginal distribution of positit#Z(x)|2, and right the marginal of momentufiS(p)|2.

istic coma, because the aberration in the images projected on moving screens in vacuum is
comatic. The Doppler effect is of course absent, so this transformation cannot be called physically
relativistic in the Helmholtz case, which involves a configuration space with a nonlocal metric.
Indeed, the difference between the various models consists in their space of positions; here, it is
the hyperboloid. A Wigner function on spheres will be examined in part Il of this title; it is
expected to clarify further the use of function bases to define conjugate variables as a simile or

substitute for phase space.
The context of this work has a wider significance as a model for phase space with noncom-
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mutative geometry, although here the noncommutativity is restricted to momentum space only. In
one dimension this argument does not apply, but the example of the one-dimensional Wigner
function of Pschl-Teller wavefunctions is of interest on its own for the traditional quantum
mechanical model, and also for the paraxial propagation of light along shallow nonharmonic
waveguides whose index of refraction has a $emiofile, as given by Eq(11). One of the
manifestations of higher symmetry is the appearance of “closed-form” wavefunctions expressed
in terms of well-known(and some not-so-well-knowrspecial functions. Generally, the Fourier
transforms and Wigner functions of such wavefunctions are again known special functions be-
cause symmetry, when it occurs, is displayed in phase space.
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