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Wigner functions for curved spaces. I. On hyperboloids
Miguel Angel Alonso,a) George S. Pogosyan,b) and Kurt Bernardo Wolf
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Apartado Postal 48–3, Cuernavaca, Morelos 62251, Me´xico

~Received 25 June 2002; accepted 27 August 2002!

We propose a Wigner quasiprobability distribution function for Hamiltonian sys-
tems in spaces of constant curvature, in this article on hyperboloids, which returns
the correct marginals and has the covariance of the Shapiro functions under
SO(D,1) transformations. To the free systems obeying the Laplace–Beltrami equa-
tion on the hyperboloid, we add a conic-oscillator potential in the hyperbolic coor-
dinate. As an example, we analyze the one-dimensional case on a hyperbola branch,
where this conic-oscillator is the Po¨schl–Teller potential. We present the analytical
solutions and plot the computed results. The standard theory of quantum oscillators
is regained in the contraction limit to the space of zero curvature. ©2002 Ameri-
can Institute of Physics.@DOI: 10.1063/1.1518139#

I. INTRODUCTION

In Hamiltonian systems which a have flatRD configuration space, among the phase sp
quasiprobability distribution functions the Wigner function1 is the only one covariant under Eu
clidean translations of phase space.2,3 The present article, and others that will follow it, aim to th
construction of Wigner functions on configuration spaces that are conic surfaces, hyperboloi
spheres, which transform under the Lorentz and rotation groups respectively, and which rep
the traditional Wigner function when the conic contracts to the plane. Quantum motion on s
of constant curvature is of current interest in various fields of theoretical physics, such as qu
gravity and string theory,4 noncommutative geometry,5 and quantum chaos.6 Hamiltonian systems
on conic manifolds have a natural kinetic energy given by the Laplace–Beltrami operator
moreover, on these conics also a natural oscillator ‘‘potential’’ can be proposed. In one dime
this oscillator turns out to be one of the Po¨schl–Teller potentials.7

In this article, subtitled I, we propose a Wigner function on theD-dimensional hyperboloid
H 1

D , which generalizes the ordinary Wigner function on flat phase space. It displays the c
marginals, and returns the traditional form of the Wigner function under Ino¨nü–Wigner contrac-
tion to the zero-curvature limit. The elements and background for this assertion are contai
Sec. II, including the Shapiro solutionsFp

(D)(x) to the Laplace–Beltrami equation.8 In Sec. III we
present our proposed definition of Wigner function on the hyperboloid, and verify the propert
marginality and the contraction limit to flat phase space. Covariance remains an issue beca
Wigner function that we propose here follows from the covariance of the basis of wavefunc
between the argumentx and the indexp, as if they were canonically conjugate variables. In t
context, we reexamine the interpretation of momentum coordinates.

In Sec. IV we exemplify theD-dimensional theory with a one-dimensionalsui generisoscil-
lator on one branch of a hyperbola. This example may appear to be trivial, because the hyp
is in most respects equivalent to a straight line. Nevertheless, the resulting Po¨schl–Teller potential
is of particular interest because the wavefunctions are also the Clebsch–Gordan~Wigner coupling!
coefficients for the three-dimensional Lorentz algebra, so(2,1)5sp(2,R)5su(1,1).9 We display
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the Wigner functions of some Po¨schl–Teller wavefunctions; these have not been examined be
Finally, in Sec. V we recapitulate the aim and offer the present outlook of our program.

II. ELEMENTS OF PHASE SPACE AND HYPERBOLOIDS

In his fundamental article,1 Wigner proposed a distribution function to represent on ph
space the wavefunctions of pure and of mixed states in quantum systems. In this section w
the definition and properties that we shall generalize from flat to conic spaces, using the La
Beltrami operator and the Shapiro functions.

A. Wigner function on flat phase space

In D-dimensional flat configuration spacexPRD, the generalized Dirac basis of plane wav
solves the free-space Schro¨dinger equation, which is identical to the Helmholtz equation

2D f~x!5p2 f~x!, fp~x!5exp~ ip"x!, pPRD. ~1!

When we writep51(p"p)1/2, n5p/p, and callp5pn the momentum or wavenumber vector, th
functions fp(x) represent plane waves in the direction of the unit vectornPSD21 in the (D
21)-dimensional sphere manifold. In the quantum model with natural units\51, p has units of
inverse length; in the wave optical model,p is the wavenumber of light.

The basis of plane wave functions~1! plays many roles: it provides the Fourier transfor
kernel which bridges the configuration and momentum realizations, it constitutes a bas
representations of the Euclidean group, and it serves for the construction of theR2D-Wigner
function of wavefieldsf (x), g(x) through the equivalent expressions

WRD~ f ,gux,p!5
1

~2p!D E
RD

dDz f S x2
1

2
zD *

e2 ip"z gS x1
1

2
zD ~2!

5
1

~2p!D E
RD

dDz f S x2
1

2
zD *

3e1 ip•(x2 ~1/2! z) e2 ip•(x1 ~1/2! z) gS x1
1

2
zD

5
1

~2p!D E
RD

dDx8E
RD

dDx9 f ~x8!* g~x9!

3fp~x8! dDS x2
1

2
~x81x9! D fp~x9!* . ~3!

This has the well-known properties of being sesquilinear in the functions, real forf 5g, with the
marginal projections*RDdpW5 f (x)* g(x), *RDdxW5 f̃ (p)* g̃(p) ~the tilde indicates ordinary
Fourier transformation,F: f 5 f̃ ), and covariant under translations in coordinate and momen
spaces

Ta : f ~x!5 f ~x2a!⇒WRD~Ta : f ,Ta :gux,p!5WRD~ f ,gux2a,p!, ~4!

T̃b : f ~x!5eib"xf ~x!⇒WRD~ T̃b : f ,T̃b :gux,p!5WRD~ f ,gux,p2b!, ~5!

F: f ~x!5 f̃ ~x!⇒WRD~F: f ,F:g ux,p!5WRD~ f ,g up,2x!. ~6!

The last intertwining by the Fourier transform was known when Garcı´a–Caldero´n and Moshinsky
noticed that the Wigner function is covariant also under the larger group of Sp(2D,R) linear
canonical transformations of phase space.10 This is exceptional in the sense that the Heisenbe
Weyl algebra@whose generators are the phase space translations~4! and ~5!—and the unit that
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generates a commuting phase factor# has the outer automorphism group Sp(2D,R). This accident
does not occur for Lorentz algebras, so we should not expect similar covariances of the W
function under groups larger than SO(D,1).

B. Laplace–Beltrami operator on the hyperboloid

The purpose of this article is to generalize the expression of the Wigner function~2! and ~3!
with functions on aD-dimensional spacexPRD of constant curvature. This manifold can be se
in an ‘‘ambient’’ space ofD11 dimensions as a hyperboloid, with vectorsx5(x0 ,x)PRD11.

Consider the upper sheet of the two-sheeted hyperboloidH 1
D ,RD11 of hyperbolic radius

R.0,

uxu25x0
22x25R2, x25x1

21x2
21¯1xD

2 . ~7!

In this ambient Minkowski space, the isometry group is the Poincare´ group ISO(D,1)1
↑ , in place

of the Euclidean group ISO(D)1 of flat space. The Lie algebra so(D,1) has then the standar
realization

M j ,k5xj]xk
2xk]xj

, M0,k5x0]xk
1xk]x0

, j ,k51,2,...,D. ~8!

The second-order Casimir operator,C, which is an invariant under the group SO(D,1)1
↑ , is

(2R2 times! the Laplace–Beltrami operator onH 1
D , namely

1

R2C52DLB5
1

R2 S (
1< j ,k<D

M j ,k
2 2 (

1<k<D
M0,k

2 D . ~9!

This operator replaces the Laplacian in the Scho¨dinger equation for hyperbolic curved spac
Thus, the Schro¨dinger equation on this space with a potentialV(x) is

S 21

2m
DLB1R2V~x! D f ~x!5R2E f~x!. ~10!

In quantum mechanicsm5m/\2, wherem is the particle mass. For application in paraxial wa
optics, we recall the interpretation where the extra term characterizes the refractive index an
of the medium,

n+↔m,

n~x!5n+2n~x!, n+5n~0!, ~11!

n~x!↔V~x!.

First we consider the case when the potential is identically zero,V(x)50; a nonzero oscillator
potential will be introduced in Sec. II E.

For the free case, in the unitary irreducible representation spaces of theD-dimensional Lor-
entz group belonging to the most degenerate continuous series indicated byp,11 the operator~9!
has a real lower-bound spectrum, as does~1!. The wavefunctions of the free system on t
hyperboloid are the solutions to the equation

DLB f ~x!52F S D21

2R D 2

1p2G f ~x!52
l~l1D21!

R2 f ~x!,

~12!

pPR0
15[0,`), l52

1

2
~D21!2 ipR.

Any wavefield of a given wavenumberp is a solution of this equation.
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C. Shapiro functions

A privileged basis for the solutions of the Laplace–Beltrami equation~12! was given by
Gel’fand, Graev and Shapiro8 in the form ofD-dimensional plane waves of momentump5pn,
with positive wavenumberp and in the direction of a unit vector on the spherenPS D21,

Fp
(D)~x!5S x02n"x

R D 2 ~1/2!(D21)2 ipR

5~coshx2n"j sinhx!2 ~1/2!(D21)2 ipR, ~13!

where functionsf (x) on the hyperboloidxPH 1
D (x25R2) will be denoted, according to conve

nience, by

x051AR21x25R coshx>R,

f ~x!5 f ~x0 ,x!5 f ~x!, ~14!

x5Rj sinhxPRD, xPR0
1 , jPS D21.

The Shapiro functions ~13! are a Dirac basis for functions on the hyperboloid, which
orthogonal and complete overx- andp-spaces:

R

~2p!D E
xPRD

dDx

x0
Fp

(D)~x!* Fp8
(D)

~x!5N(D)~p!dD~p2p8!, ~15!

1

~2p!DE
pPRD

dDp

N(D)~p!
Fp

(D)~x!* Fp
(D)~x8!5dD~x,x8!, ~16!

with the measure and Diracd under*H
1
D dDx5R*RDdDx/x0 ,

N(D)~p!5U G~ ipR!

GS 1

2
~D21!1 ipRDU

2

~pR!D21, ~17!

dD~x,x8!5
x0

R
dD~x2x8!5A11

x2

R2 dD~x2x8!. ~18!

In particular,N(1)(p)51, N(2)(p)5coth(pR), andN(3)(p)51.
The Inönu–Wigner contraction limit of the Lorentz to the Euclidean group SO(D,1)1

↑

→ISO(D)1 is the limit R→` in our expressions for vectors withx0'R, x2!R2, andp5pn as
before, i.e.,

lim
R→`

Fp
(D)~x!5 lim

R→`
S x02x"n

R D 2 ~1/2!(D21)2 ipR

' lim
R→`

S 12
x"n

R D 2 ipR

5exp~ ix"p!. ~19!

Correspondingly, limR→`N(D)(p)51 anddD(x,x8)→dD(x2x8).

D. Momentum space for the hyperboloid

The Shapiro functions$Fp
(D)(x)%pPRD in ~13! serve as the integral transform kernel betwe

functions ofx on the hyperboloid,f (x), and conjugate functions ofp, that has the interpretation
of momentum or wavenumber space, and is indicatedf̃ (p). Using ~14! for x,pPRD, one writes

f̃ ~p!5
R

~2p!D/2 E
xPRD

dDx

x0
Fp

(D)~x!* f ~x!, ~20!
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f ~x!5
1

~2p!D/2 E
pPRD

dDp

N(D)~p!
Fp

(D)~x! f̃ ~p!. ~21!

This Shapiro transformhas been used as a relativistic analog of the Fourier transform~the physical
context here, though, isnot that of space–time relativity, as we shall clarify below!, and is a vector
form of one of the two branches of the bilateral Mellin transform.12 Here the Shapiro transform
replaces the traditional Fourier transform in the definition of a momentum spacepPRD, canoni-
cally conjugate with respect to this basis, to a configuration space of constant curvatur
corresponding Parseval relation is

RE
xPRD

dDx

x0
f ~x!* g~x!5~ f , g!H

1
D 5E

pPRD

dDp

N(D)~p!
f̃ ~p!* g̃~p!. ~22!

The manifold of momentump5pnPRD (pPR1 and nPS D21) can be placed also in a
(D11)-dimensional ‘‘ambient’’ space, where it occupies the coneÃ5(p,p)P∨1. The momen-
tum thus defined by the Shapiro functions has certain features, however, which do not corre
to those of a standard relativistic momentum vector. Iff (x) is a monochromatic wavefield with
definite value ofp, this wavenumber will not change under SO(D,1) translations of the hyperbo
loid ~‘‘boosts’’!, because it is the invariant value of the Casimir operator~9!–~12!. Only the
direction of momentum,n, can shift over the sphere; it will do so following the well-know

Bargmann deformation of the circle,13 where the colatitude angle ‘‘boosts’’ as tan1
2f°e2ztan1

2f
for rapidity zPR. Quotation marks are used for ‘‘boost’’ because here we mean a translati
the hyperboloid, and not the well-known relativistic acceleration.

E. Oscillators on conics

The Laplace–Beltrami equation~9!–~12! provides the free fields~whose energy is purely
kinetic! on the hyperboloid. In Eq.~10! we allowed a potential energy term as in the Schro¨dinger
equation of quantum mechanics, by adding a function of positionV(x).7,14,15A straightforward
and useful generalization of the SO(D)-isotropic harmonic oscillator potential from flat to con
D-dimensional configuration space is14

V~x!5
1

2
mv2R2

uxu2

x0
2 5

1

2
mv2R2tanh2x5

1

2
mv2R2 ~12sech2x!, ~23!

wherexPR0
1 is the hyperbolic angle coordinate defined in Eqs.~14!. This is the Po¨schl–Teller

‘‘secant-hyperbolic-squared’’ trough.

III. WIGNER FUNCTION ON THE HYPERBOLOID

With the Shapiro basis of wavefunctions of the free system, we construct now our pro
Wigner function following the double-integral form in Eq.~3! for two wavefunctions,f (x) and
g(x), by means of integrals on two hyperboloids,ux8u5R and ux9u5R.

A. Definition

With the measures in Eqs.~15! and the Shapiro functions in~13!, we define the Wigner
function on the hyperboloid by

WH~ f ,gux,p!5
R2

~2p!D E
x8PRD

dDx8

x08
E

x9PRD

dDx9

x09
f ~x8!* g~x9!

3Fp
(D)~x8! DD~x;x8,x9! Fp

(D)~x9!* , ~24!

whereDD(x;x8,x9) takes the place of the Dirac deltadD(x2 1
2(x81x9)) on flat space, Eq.~3!, and

which will be detailed below.
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The crucial property that we must require of this ‘‘binding-D’’ in ~24! is that it should guar-
antee thatx be the midpoint of thegeodesicbetweenx8 andx9, so that all three points lie on th
hyperboloidH 1

D . We achieve this in the following way:16 givenxPRD11 in the upper sheet of a
two-sheeted hyperboloid, we build anyyPRD11 on a one-sheeted hyperboloidH̃D of the same
radiusR, such that it be Minkowski-orthogonal tox,

y5~y0 ,y!, uyu25y0
22y252R2, x0y02x"y50. ~25!

Then, we can expressx8 andx9 as vectors obtained fromx andy as follows:

x85x cosh1
2 t2y sinh 1

2 t, x95x cosh1
2 t1y sinh 1

2 t, ~26!

wherex8,x9PH 1
D for all tPR. Also, it is easy to show that

x08x092x8•x95R2 cosht, x0x082x•x85x0x092x•x95R2 cosh1
2 t, ~27!

i.e., the geodesic distance betweenx8 andx9 is Rt, while x is at 1
2Rt from bothx8 andx9. The

argumentsx8 and x9 in the expression~24! thus emulate the argumentsx6 1
2z in ~2! with the

parameter12t.
Using ~18! and the parametert in ~27!, we propose the binding-D in ~24! to be

DD~x;x8,x9!5
x0

R
dDS x2

x81x9

2 cosh1
2 t D . ~28!

This will yield the correct marginals~to be seen below! due to its properties

DD~x;x8,x8!5
x0

R
dD~x2x8!, RE

xPRD

dDx

x0
DD~x;x8,x9!51. ~29!

B. Integral forms

The 2D-fold integral form of the Wigner function in~24! contains Diracd ’s; it can therefore
be brought to a (D11)-fold integral noting that the definition ofyPH̃D leaves the freedom o
rotating y aroundx on a sphereS D21. When we change variables fromx8 and x9 to x and y
according to~26!, we reduce the integration toy andt while keeping Minkowski-orthogonality.
The proposed Wigner function~24! then becomes

WH~ f ,gux,p!5
R2

~2p!D E
0

`

~sinht!D21 dtE
yPH̃D

dDy d~x0y02x"y!

3 f S x cosh
1

2
t2y sinh

1

2
t D *

gS x cosh
1

2
t1y sinh

1

2
t D

3Fp
(D)S x cosh

1

2
t2y sinh

1

2
t DFp

(D)S x cosh
1

2
t1y sinh

1

2
t D *

. ~30!

The Diracd remaining in~30! can be used to find a third alternative form of the Wign
function. This is obtained with the parametrization of the ambient-space vectors given by

x5~x0 ,x!5R~coshx,j sinhx!, y5~y0 ,y!5R~sinhv,h coshv!, ~31!

wherej andh are unit vectors on the sphereS D21 andx,vPR0
1 . The Diracd in Eq. ~30! is then
 12 Dec 2002 to 132.248.33.135. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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d~x0y02x"y!5
1

R2

coshV

coshx
d~v2V!, with tanhV5j"h tanhx. ~32!

The differentialdDy of the integral inyPH̃1
D becomesRD(coshv)D21dv dD21h, so the Wigner

function ~24! becomes aD-fold integral with the structure of~2!, viz.,

WH~ f ,gux,p!5
1

~2p!D E
0

`

~sinht!D21 dtE
S D21

uyuD

coshx
dD21h

3 f S x cosh
1

2
t2y sinh

1

2
t D *

gS x cosh
1

2
t1y sinh

1

2
t D

3Fp
(D)S x cosh

1

2
t2y sinh

1

2
t DFp

(D)S x cosh
1

2
t1y sinh

1

2
t D *

, ~33!

with

y5R~sinhV, h coshV!5R
~j"h tanhx, h!

A12~j"h tanhx!2
. ~34!

C. Marginal projections

The marginal projections obtained by integrating the proposed Wigner function~24! over
momentum and configuration space should yield, respectively,f (x)* g(x) and f̃ (p)* g̃(p) as de-
fined in ~20! and ~21!. The two marginals follow from the orthogonality and completeness r
tions of the Shapiro functions, Eqs.~15! and ~16!.

The integration of the Wigner function overRD momentum space with the measure 1/N(D)(p)
in ~17! is

MH~ f ,gux!5E
pPRD

dDp

N(D)~p!
WH~ f ,gux,p!

5R2E
x8PRD

dDx8

x08
E

x9PRD

dDx9

x09
f ~x8!* g~x9! DD~x;x8,x9! dD~x8,x9!

5RE
x8PRD

dDx8

x08
f ~x8!* g~x8! DD~x;x8,x8!5 f ~x!* g~x!, ~35!

where we used~16!, ~18!, and the first property of the binding-D in ~29!.
Similarly, the integration overRD configuration space with the measureR/x0 in ~18! is

MH~ f ,gup!5RE
xPRD

dDx

AR21x2
WH~ f ,gux,p!

5
R2

~2p!D E
x8PRD

dDx8

x08
f ~x8!* Fp

(D)~x8! E
x9PRD

dDx9

x09
g~x9! Fp

(D)~x9!* 5 f̃ ~p!* g̃~p!,

~36!

where we used the second property of the binding-D in ~29! and the Shapiro transform~20!.
Finally, integrating over the whole of phase space with the appropriate measures in the

val relation~22!, we have the total probability
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RE
xPRD

dDx

x0
MH~ f ,gux!5~ f , g!H

1
D 5E

pPRD

dDp

N(D)~p!
MH~ f ,gup!. ~37!

D. Covariance under rotations and conic translations

Under rotationsRPSO(D), wavefunctionsf (x0 ,x) transform through

T~R!: f ~x!5 f ~x0 ,R21x!. ~38!

In particular, the basis of Shapiro functions~13! transforms as

T~R!:Fp n
(D)~x0 ,x!5Fp n

(D)~x0 ,R21 x!5Fp Rn
(D) ~x0 ,x!. ~39!

Applying rotationsT(R) to the wavefieldsf andg in the Wigner function~24!, we next change
variables tox85Rx̄8 andx95Rx̄9 ~the ambientx0-components behave as scalars!, then use~39!
for R21, noting that the binding-D in ~28! is invariant, DD( x̄; x̄8,x̄9)5DD(x;x8,x9) for x̄
5R21x, and so are the measuresdDx85dDx̄8. It thus follows that the Wigner function~24! is
covariant under rotations, fulfilling

WH~T~R!: f ,T~R!:gux,p!5WH~ f ,guR21x,R21p!. ~40!

Now consider translations byz ~‘‘boosts’’ of rapidity z! Bm(z)PSO(D,1)1
↑ in the direction of

unit mPS D21, which transform the ambient space vectors preserving the constant-curv
subspacesxPH 1

D for each radiusR.0. We denote byxim andx'm the projections ofx parallel
and perpendicular to the direction ofm, so thatx5xim1x'm . Then, wavefunctions on the hype
boloid transform as

T~Bm~z!!: f S x0

xim

x'm

D 5 f S x0 coshz2m"x sinhz
xim coshz2x0 m sinhz

x'm

D . ~41!

When this transformation is applied to the plane-wave basis of Shapiro functions, their dire
n on the sphere change, and they acquire a multiplier factor:

T~Bm~z!!:Fp n
(D)~x0 ,x!5~coshz1m"n sinhz!2 ~1/2!(D21)2 ipR Fp n8

(D)
~x0 ,x!, ~42!

where the components ofn8PS D21 that are orthogonal and parallel tom are

n'm8 5
n'm

coshz1n"m sinhz
, nim8 5

n"m coshz1sinhz

coshz1n"m sinhz
m , ~43!

within the same SO(D,1)1
↑ irreducible representation characterized by the invariant wavenum

p. If the angle fromm to n is f, it will transform through the well-known Bargmann SO~2,1! map
of the circle.

The expression in the multiplier factor of Eq.~42!,

m~m,z;n!5coshz1m"n sinhz, ~44!

is, not coincidentally,p8/p—if the (D11)-vectorÃ5(p,p)P∨1 were allowed to transform as
‘‘lightlike’’ vector in relativity, i.e., without being constrained to itsp-sphere. Under the inne
product ~16!, the SO(D,1) boost with the multiplier~42! is unitary nonetheless, because t
measure inp-space isdDp5pDdpdN21n, and while p is invariant, from~43! it follows that
dD21n5m(m,z;n)D21dD21n8. This cancels the absolute square of the multiplier~44! in the
 12 Dec 2002 to 132.248.33.135. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



the

y

re

rre-

et

r

nder

ted
n of
n
nction

5865J. Math. Phys., Vol. 43, No. 12, December 2002 Wigner functions for curved spaces. I.

Downloaded
Shapiro functions~41!. This type of covariance modulo a multiplier function is determined by
Shapiro function basis; we may call Eqs.~41! and ~42! the Shapiro covariancebetween the
conjugate transformations inx andp.

When the wavefields in the Wigner function~24! are translated within the hyperboloid b
~41!, the ambient vectorsx are multiplied by a (D11)3(D11) ~‘boost’! matrix Bm(z), to
x8° x̄85Bm(z)21 x8 and x9° x̄95Bm(z)21 x9. Under this transformation, the measures a
again invariant,dDx8/x085dDx̄8/ x̄08 , etc., and so isDD(x;x8,x9)5DD( x̄; x̄8,x̄9); hence, x̄
5Bm(z)21 x will appear in the first argument of the transformed Wigner function. But the co
sponding transformation ofp in each of the two Shapiro functions, Eqs.~42! and ~44!, yields a
multiplier factor. The imaginary exponents ofm(m,z;n) cancel, and there remains a positive n
multiplier factor:

WH~T@Bm~z!#: f , T@Bm~z!#:gux,p n!5~m~m,z;n!!2D11 WH~ f ,guB~z!21:x, p Bm~z!21:n!,
~45!

wheren85Bm(z)21:n is given by~43!. Note that in theD51-dimensional case, the multiplie
factor is 1.

Covariance of the Wigner function is usually understood in the simple form it has u
rotations, as given by~40!. Under these transformations, the hyperboloid in the ambientx-space
rotates on its axis, and in the momentum plane the circlesn of all radii p rotate in synchrony.
Translations within the hyperboloid~45!, on the other hand, deform the ambient and projec
space vectors,x andx, through~41!; momentum space is concurrently squeezed in the directio
the translation so that its points move on constant-p circles and with a common Bargman
deformation of the angle. Since areas are not conserved in momentum space, a multiplier fu
of p is necessary for the Wigner function to ensure the total conservation of probability~37!.

E. Contraction limit

We now show that, whenf (x) and g(x) are significantly different from zero only within a
small, essentially flat patch of the hyperboloid, the definition of the Wigner function in Eq.~33!
reduces to the standard Wigner function for flat space in Eq.~3!. In ~33!, the integrand forh @recall
Eqs.~31! and ~34!# will be significant only whenRD norms of the vectors fulfill

Ux cosh
1

2
t6y sinh

1

2
tU!R⇒H uxucosh1

2 t!R ⇒ sinhx!1

uyusinh 1
2 t!R ⇒ sinht!1

~46!

⇒x'R~1,x j!, y'R~x j"h,h!. ~47!

Also, using the limit in~19!, and approximating sinht't and cosh1
2t'coshx'coshv'1, the

Wigner function in Eq.~33! reduces to

WH~ f ,gux,p!5
RD

~2p!D E
0

`

tD21 dtE
S D21

dD21h

3 f S x0 ,x2
1

2
RthD *

exp~2 iRt h"p! gS x0 ,x1
1

2
RthD . ~48!

Finally, changing variables toz5Rt h and noticing that

E
RD

dDz¯5RD E
0

`

tD21 dt E
S D21

dD21h¯ , ~49!

we see that~48! reduces to~2!.
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F. Special case of one dimension

In the caseD51, the Wigner function~33! actually coincides in form with the correspondin
one-dimensional standard flat space form~2!, as we now proceed to show.

First, notice that the unit vectorsn andj in Eq. ~13! are now the unit scalarsn,j561, and
that the Shapiro functions become simple exponentials:

Fp
(1)~Rj coshx,Rj sinhx!5@exp~2njx!#2 ipR5exp~ injpRx!. ~50!

We can now letnp°p andjx°x with p,xP(2`,`), and recognize that~50! is a 1:1 function
of only one variable,x1PR,

Fp
(1)~x1!5exp~ ix pR!, x15R sinhx. ~51!

The argumentsx5(x0 ,x1) of the functionsf andg in ~33! then simplify, in components, to

x5S x0

x1
D°x cosh

1

2
t6ysinh

1

2
t5RS cosh~x6 1

2 ht!

sinh~x6 1
2 ht!

D . ~52!

For short, we indicatef (R coshx,Rsinhx)5f(x). The unit vectorh in ~33! and~34! also becomes
a unit scalar,h561, and the integral extends overy5hR(sinhx,coshx), andV5hx @see Eq.
~32!#. Finally, the integral overh reduces to a sum overh561, and fort°htP(2`,`), the
Wigner function~33! becomes

WH~ f ,gux,p!5
R

2p E
2`

`

dt f S x2
1

2
t D *

e2 ipRt gS x1
1

2
t D ~53!

5
1

2p E
2`

`

dy f̃ S p2
1

2
y D *

e1 iRyx g̃S p1
1

2
y D . ~54!

The last expression is the usual flat-space Wigner function in terms of the conjugate wavefun
on momentum space. Finally, note that forD51, the net multiplier which appears under ‘‘boos
transformations in~45! is unity, so standard and Shapiro covariances coincide.

IV. EXAMPLE: OSCILLATOR ON THE HYPERBOLA

We consider the open one-dimensional space which is the upper branch of a hyperb
fixed radiusR.0,

H 1
1 5$~x0 ,x1!PR2ux0

22x1
25R2%, ~55!

parametrized as usual by the hyperbolic anglexPR.

A. Laplace–Beltrami operator and the oscillator

When the potentialV(x) is a constant~corresponding to a homogeneous optical medium!, the
D51 Schrödinger equation~10! is the free wave equation, and its Shapiro solutions are simply
oscillating exponentials~51!, with energyE5p2/2m>0.

Since the Laplace–Beltrami operator on the hyperbola~55! is DLB5R22d2/dx2, the Schro¨-
dinger equation for the conic oscillator~23! is

S 21

2m

d2

dx2 2R2E0 sech2 x D f ~x!5R2 ~E2E0! f ~x!, E05
1

2
mv2R2, ~56!
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V~x!5
1

2
mv2R2

x1
2

x0
2 5As~s11! ~12sech2x!, ~57!

s52 1
2 1A~mvR2!21 1

4. ~58!

The bound solutions are17

cn
s~x!5

22(s2n)

G~s2n11!
A~s2n! G~2s2n11!

n!
sechs2nx 2F1S 2n, 2s2n11

s2n11 U 12tanhx

2 D
5A ~s2n! n!

p G~2s2n11!
GS s2n1

1

2D ~2 sechx!s2n Cn
s2n11/2~ tanhx!, ~59!

wheren is a non-negative integer bounded bys11, andCn
a(j) are the Gegenbauer~or ultras-

pherical! polynomials18 for a.2 1
2. The corresponding quantized values of the energy are

dratic in n, and counted from the lowest level up by

En
s5

mv2R2

2
2

1

2mR2 ~n2s!2, n50,1,2,...,s11. ~60!

As a check on our concepts, we verify that the contraction limitR→` of this system, when
the radius of the hyperbola grows without bound, is the harmonic oscillator on flat space. Sin
coefficients correspondingly grows ass'mvR2, the linear-quadratic spectrum of energies in E
~60! becomes the linear spectrum of the quantum harmonic oscillatorEn5v(n1 1

2). To implement
this limit on the wavefunctions~59!, it is convenient to use the following forms for the Gege
bauer polynomials inj5tanhx:

Cn
a~j!55 ~21!~1/2! n

G~a1 1
2 n!

~ 1
2 n!! G(a)

2F1S 2 1
2 n, 1

2 n1a
1
2

Uj2D , n even,

~21!~1/2!(n21)
G~a1 1

2 (n11)!

~ 1
2 (n21)!! G~a!

2j 2F1S 2 1
2 ~n21!, 1

2 ~n11!1a
3
2

Uj2D , n odd.

~61!

Then, for a5s2n1 1
2→`, the hypergeometric polynomials simplify: forn even, 2F1(2 1

2n,

a; 1
2;j

2)'1F1(2 1
2n; 1

2;aj2)5Hn(Aaj), and similarly forn odd. Replacing this into Eq.~59!,

with j5tanhx'sinhx5x1 /R and cosh2s1nx'exp(2stanh2 1
2x), we obtain the harmonic oscilla

tor wavefunctions on flat space,

1

AR
cn

s~x!'
1

A2nn! Ap/mv
e2mvx1

2/2 Hn~Amv x1!. ~62!

The factorAR restores the proper normalization on thex1 axis.
In addition to the bound states, the sech-trough Po¨schl–Teller potential also has free stat

with energy above the asymptotic value of the potential limx→6`V(x)5 1
2mv2R2. These scatter-

ing solutions contain associated Legendre polynomials of imaginary upper index:
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p5RA2mE2m2v2R2.0,

cp~x!5
uG~12 ip !u

2p
Ps

ip~ tanhx!, ~63!

s5 1
2 6Av2m2R41 1

4.

These wavefunctions are Dirac-orthonormal.

B. Momentum representation of the wavefunctions

The bound wavefunctions of the Po¨schl–Teller sech-trough potential in the momentum re
resentation,c̃n

s(p), are found through the ordinary Fourier transform@Eqs. ~20! and ~21! for D
51 and~51!# of the wavefunctionscn

s(x) found in Eq.~59!. The result is

c̃n
s~p!5A R

2p E
2`

`

dx exp~2 ipRx! cn
s~x!

5
R

2
AG~2s2n11!

p~s2n!n!

uG~ 1
2 ~s2n2 ipR!!u2

G~s2n!2 3F2S 2n, 2s2n11,1
2 ~s2n2 ipR!

s2n11,s2n
U1D

~64!

5
~2 i !n R

2Ap

A~s2n! n! G~2s2n11!

G~s! G~s11!
UGS 1

2
~s2n2 ipR! D U2

3RnS 2
1

2
ipR;

1

2
~s2n!,

1

2
~s2n!,

1

2
~s2n!,

1

2
~s2n!11D , ~65!

whereRn(z;a,b,g,d) are the continuous Hahn polynomials.19 On the other hand, the unboun
solutions~63! are not square-integrable, so their Fourier transform must be performed allowin
the phase difference between asymptotic incoming and outgoing waves, as determined
scattering properties of this Po¨schl–Teller potential. We shall not further detail the free states h
they can be found in Ref. 9 among the coupling coefficients between theD13D2→(D11*C
irreducible representations series of SO~2,1!.

C. Wigner function for the oscillator eigenstates on the hyperbola

On the one-dimensional hyperbolaH 1
1 , the Wigner function~24! collapses to~53! and~54!,

its usual form in Eqs.~2! and ~3! for D51.
We are interested in the single-function formW( f ux,p)[W( f , f ux,p)5W( f̃ , f ũp,2x) for the

Pöschl–Teller wavefunctions, whose explicit form is in Eq.~59! for cn
s(x), and in Eq.~64! for

c̃n
s(p); we find the latter more amenable to analytic solution. We change the integration

contour along the imaginary axis, and find

W~cn
sux,p!5

R2

8p2

s2n

n! G~2s2n11! (
m,l 50

n
~2n!m ~2n! l

G~s2n1m! G~s2n1 l !

3
G~2s2n1m11! G~2s2n1 l 11!

G~s2n1m11! G~s2n1 l 11!

1

l !m!
I n

s~x,p!, ~66!

where
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I n
s~x,p!52

4i

R E
2 i`

i`

dzGS 1

2
~s2n!2

1

2
ipR2zD GS 1

2
~s2n!1

1

2
ipR1z1mD

3e24xz GS 1

2
~s2n!1

1

2
ipR2zD GS 1

2
~s2n!2

1

2
ipR1z1 l D . ~67!

The last integral can be computed in the complex plane straightforwardly, and leads to a
complex conjugate2F1-functions ofe24x. We thus finally have

W~cn
sux,p!5

2R ~s2n! n! e22x(s2n)

pG~2s2n11! (
m,l 50

n
G~2s2n1m11! G~2s2n1 l 11!

G~s2n1 l 11! G~s2n1m11! G~s2n1 l !

3
~21! l 1m

l !m! ~n2m!! ~n2 l !!
ReHG~ ipR! G~s2n1 l 2 ipR! e2ipRx

32F1S s2n1m,s2n1 l 2 ipR,
12 ipR Ue24x D J . ~68!

We note that this expression is suitable for numerical computation only forx.0 because it
converges fast, but it holds everywhere analytically, with the reflection symmetriesW(cn

sux,p)
5W(cn

su2x,p)5W(cn
sux,2p).

The Wigner functions, together with their marginal projectionsucn
s(x)u2 and uc̃n

s(p)u2, are
shown in Fig. 1, forn50,1,2,3, and for the potential depth parameters54 and 30. It can be
appreciated that the Wigner function of the most tightly bound states resemble the fa
Gaussian-bell form of the harmonic oscillator ground state. According to~60!, for s54 there are
only five bound states (n50,...,4), and as the energy of the state approaches the binding en
the wavefunction stretches in space with ever-smaller momentum in a neighborhood of th
sical turning point. The contraction limit can be appreciated in thes530 column, corresponding to
a large binding energy; the Wigner functions for the eigenstates in Eq.~59! approach the familiar
Laguerre–Gaussian form that corresponds to the Wigner function of the harmonic oscillator
functions on flat space.

V. CONCLUDING REMARKS

We have generalized the Wigner quasiprobability distribution function by replacing the o
lating exponential functions of the standard version, which are Dirac solutions of the free S¨-
dinger equation on flat space, by the Shapiro functions, because they are solutions to the La
Beltrami equation on a simply connected hyperbolic space, while respecting the mid
condition through an appropriate Dirac-likeDD(x;x8,x9). The role of the Fourier transform in th
standard version is transfered by the Shapiro functions to a Mellin-like transform betwee
position and momentum coordinates of phase space. Indeed, the relation between what wer
position and momentum variables is actually defined by the argument and index of the ba
Shapiro functions. Thus built, the proposed Wigner function is covariant under the group SOD,1)
of motions of the hyperbola, with the hyperbolic translations extracting a multiplier factor.
correct marginals are found and the contraction limit to flat space returns the standard W
function.

The transformations of the momentum direction under translations of the hyperbola a
~unique! action of SO(D,1) on the sphereS D.13 There are several models of Hamiltonian syste
where momentum is restricted to a sphere, such as geometric and Helmholtz~monochromatic!
optics.20,21 In the first model, a ‘‘Descartes sphere’’ of momentum vectorsp, which is of radius
upu5n(x) ~the refractive index!, is associated to each pointx in space. This sphere of momentu
vectors has been subject to Bargmann’s ‘‘boost’’ transformation in Ref. 22~which is unique for
Lorentz groups acting on spheres! and here given by~43!, with a canonically conjugate transfo
mation of the ray positions at a plane screen. The resulting phenomenon has been called
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istic coma, because the aberration in the images projected on moving screens in vac
comatic. The Doppler effect is of course absent, so this transformation cannot be called phy
relativistic in the Helmholtz case, which involves a configuration space with a nonlocal m
Indeed, the difference between the various models consists in their space of positions; he
the hyperboloid. A Wigner function on spheres will be examined in part II of this title; i
expected to clarify further the use of function bases to define conjugate variables as a sim
substitute for phase space.

The context of this work has a wider significance as a model for phase space with no

FIG. 1. Wigner functions of the Po¨schl–Teller eigenfunctionscn
s(x) on a quadrant of phase space~axes are positionxAs

and momentumpR/As; the quadrants have reflection symmetry across the axes!. Rows are numbered by the moden
50,1,2,3. Left:s54 ~so only five states,n50,...,4, arebound!; right: s530 ~so states are bound up ton530). White is
the maximum, black is the minimum; the shade at the upper right corner corresponds to zero. From each Wigner

we project up the marginal distribution of positionucn
s(x)u2, and right the marginal of momentumuc̃n

s(p)u2.
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mutative geometry, although here the noncommutativity is restricted to momentum space o
one dimension this argument does not apply, but the example of the one-dimensional W
function of Pöschl–Teller wavefunctions is of interest on its own for the traditional quan
mechanical model, and also for the paraxial propagation of light along shallow nonharm
waveguides whose index of refraction has a sech2 profile, as given by Eq.~11!. One of the
manifestations of higher symmetry is the appearance of ‘‘closed-form’’ wavefunctions expr
in terms of well-known~and some not-so-well-known! special functions. Generally, the Fourie
transforms and Wigner functions of such wavefunctions are again known special function
cause symmetry, when it occurs, is displayed in phase space.
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