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Fractional Fourier transforms in two dimensions
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We analyze the fractionalization of the Fourier transform (FT), starting from the minimal premise that re-
peated application of the fractional Fourier transform (FrFT) a sufficient number of times should give back the
FT. There is a qualitative increase in the richness of the solution manifold, from U(1) (the circle S 1) in the
one-dimensional case to U(2) (the four-parameter group of 2 3 2 unitary matrices) in the two-dimensional case
[rather than simply U(1) 3 U(1)]. Our treatment clarifies the situation in the N-dimensional case. The pa-
rameterization of this manifold (a fiber bundle) is accomplished through two powers running over the torus
T 2 5 S 1 3 S 1 and two parameters running over the Fourier sphere S 2. We detail the spectral representa-
tion of the FrFT: The eigenvalues are shown to depend only on the T 2 coordinates; the eigenfunctions, only on
the S 2 coordinates. FrFT’s corresponding to special points on the Fourier sphere have for eigenfunctions the
Hermite–Gaussian beams and the Laguerre–Gaussian beams, while those corresponding to generic points are
SU(2)-coherent states of these beams. Thus the integral transform produced by every Sp(4, R) first-order
system is essentially a FrFT. © 2000 Optical Society of America [S0740-3232(00)00512-3]
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1. INTRODUCTION
The ease of producing a Fourier transform (FT) by optical
means,1 together with its inherent usefulness for signal
analysis,2,3 has spurred interest in its fractionalization.
Most of the literature, however, is concerned with one-
dimensional (1D) signals in two-dimensional (2D) optical
systems, and there are statements to the effect that 2D
Fourier analysis in 3D optics is the simple generalization
of a direct product for the two coordinates.

In 2D optics (one transverse and one longitudinal di-
mension) the fractional Fourier transform (FrFT) is
equivalent to evolution of the field along a parabolic-index
fiber (or a quantum harmonic oscillator).4 The manifold
of these transforms is a circle, S 1, and they form the 1D
unitary group U(1) of phases. In the case of two trans-
verse dimensions there is indeed a qualitative increase in
the richness of the Fourier fractionalization problem.
The manifold of fractionalizations does not become just
U(1) 3 U(1) but rather grows to U(2), the group of
2 3 2 unitary matrices; while U(1) 3 U(1) is a 2D mani-
fold, the manifold of U(2) has four dimensions. This
shows the way for generalizations to N dimensions.
There should be a corresponding diversification regarding
the possibilities for application of these results in 2D im-
age analysis. In this paper we offer a systematic study of
both the manifold of the FrFT’s and their optical imple-
mentation.

The 2D FT is an operator F that acts on square-
integrable functions of the plane, f P L 2(R2). In Carte-
sian coordinates q 5 (qx , qy)T (a column vector), we write
F in official form as

~Ff !~qx , qy! 5
1

2p
E

R2
dqx8dqy8

3 exp@2i~qxqx8 1 qyqy8!#f~qx8 , qy8!. (1)
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Its best-known (and basic) properties are linearity, uni-
tarity F † 5 F 21, and the fact that its fourth power is the
unit operator F 4 5 1 [whose integral kernel is d (q
2 q8)]. Also noteworthy facts are that its square, F 2

5 J, is a parity (or inversion) operator [of integral kernel
d (q 1 q8), such that J 2 5 1]. Equation (1) is actually
only an integral transform realization of an abstract op-
erator F, which also has matrix representations that sat-
isfy the same basic properties. The integral form of the
FT (1) is in fact completely defined (up to a phase) in
L2(R2) by its well-known intertwining with the Schrö-
dinger operators of position and momentum, q̂ f(q)
5 q f(q) and p̂ f(q) 5 2i]q f(q), given by5

Fp̂ 5 q̂F, Fq̂ 5 2p̂F. (2)

In Section 2 we first analyze what the roots of F are in-
dependently of its realization. It is shown that there are
sufficient roots to properly define the FrFT Fa for any
power a mod 4. The matrix representation of 3D
paraxial optical systems (see, e.g., Refs. 6–8) is used in
Section 3 to display the FrFT manifold as the unitary sub-
group of the group of linear transformations by paraxial
optical systems. The commuting center of this Fourier
subgroup is the U(1) circle of central FrFT’s, which is the
naı̈ve generalization of the 1D case. Two other FrFT’s of-
ten found in the literature are the separable and the gy-
rating FrFT’s; these are the subject of Section 4, where we
prepare the analysis of the generic U(2) case presented in
Section 5. The U(2)-FrFT’s are characterized by two
powers: a, b mod 4 on a torus (the order), and one axis
rW (q, w) on the sphere (the type). In Section 6 we detail
the action of U(2)-FrFT’s on phase space and their com-
position.

The group of 2D FrFT’s can be represented by complex
unitary 2 3 2 matrices, by real symplectic 4 3 4 matri-
2000 Optical Society of America
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ces, and as unitary integral transforms in a Hilbert space
of optical (or quantum) wave fields. We use the standard
generators of the Lie algebra,9 which are quadratic func-
tions of the phase-space coordinates and, in the wave/
quantum representation, are second-order differential
operators.10,11 In Section 7 we identify the eigenfunc-
tions of these generators; we thereby determine the U(2)
Fourier integral kernel as their bilinear generating func-
tion. In Section 8 we discuss the Iwasawa decomposi-
tion. In Section 9 the U(2)-FrFT is explicitly displayed
as a canonical transform12; the coefficients are deter-
mined from the torus and sphere parameters. In Section
10 we recapitulate the main results of the paper and in-
dicate their generalization to N dimensions.

2. ROOTS OF THE FOURIER TRANSFORM
Properly speaking, a fractional FT is any operator F1/n

such that its nth power (F1/n)n 5 F is the FT. (In the pre-
ceding statement 1/n should be viewed simply as a super-
script, and not as an exponent.) Thus F1/n can be called a
root or fraction of the FT. Even in one dimension we can
expect that there will be more than one nth root for the
FT, since in the case of complex numbers there are n of
them. In higher dimensions there will be a correspond-
ing increase in the number of transformations whose nth
power is the official FT (1). And all of them qualify to be
called FrFT’s.

A. One-Dimensional Case
First we illustrate the issues, using the N 5 1 case cor-
responding to one transverse dimension. This will indi-
cate the nature of the generalization to two and higher di-
mensions. It is well known that the FT F is a (1/2)p rigid
rotation of the optical phase-space plane (q, p)T (we use
the superscript T to indicate transposition) around the
origin. There it is represented (°) by the 2 3 2 matrix

F ° F 5 F 0 1

21 0G . (3)

We may embed F as a particular element of the closed
one-parameter Lie group

U~1 ! 5 5 F a ° Fa

5 F cos
p

2
a sin

p

2
a

2sin
p

2
a cos

p

2
a
GU0 < a , 46 , (4)

where it is clear that the nth roots of F are given by F am,
with

am 5
1

n
1 4

m

n
, m 5 0, 1,..., n 2 1. (5)

The summand with the factor 4 arises because F 4 5 1.
There is a principal root m 5 0 with a fractional power
a0 5 1/n, while the roots am 5 (1 1 4m)/n require m
windings around the circle 0 < (p/2)a , 2p before fall-
ing on the FT F. See Fig. 1.

We should now ask, For what values of the rational
power n1 /n2 with n1 , n2 integers and (n1 , n2) 5 1 (i.e.,
n1 prime relative to n2) does F n1 /n2 (where n1 /n2 should
be now viewed as an exponent, and not simply as a super-
script) qualify to be called a FrFT? Examining Eqs. (5), we
can see that there are four cases to be considered. If n1
[ 1 mod 4, then (F n1 /n2)n, the integer powers of F n1 /n2

for n 5 1, 2,..., (eventually) pass through F, F 2, F 3

5 F 21, 1 at n 5 n2, 2n2, 3n2, 4n2 , so that F n1 /n2 is an
(n2)th root of F. Similarly, if n1 [ 3 mod 4, the sequence
(F n1 /n2)n passes through F 3 5 F 21, F 2, F, 1 at n
5 n2, 2n2, 3n2, 4n2 , so that F n1 /n2 is a (3n2)th root of F.
If n1 [ 2 mod 4, the sequence (F n1 /n2)n passes through
the inversion F 2 at n 5 n2 and through 1 at n 5 2n2 but
never visits F or F 21. Finally, if n1 [ 4 mod 4 (i.e., n1
[ 0 mod 4), the sequence visits 1 at n 5 n2 but never
visits F or its second and third powers. Thus we con-
clude with the following theorem:

Theorem 1. Let a be a rational number of the form
n1 /n2 , with (n1 , n2) 5 1. F a is a root of the FT (in the
strict sense that some integer power of it yields F ) if and
only if n1 is odd.

The interesting point is that not all rational values of a
qualify. Even so, the values of a that do qualify form a
dense subset of the U(1) circle 0 < a , 4. With continu-
ous representations in mind (by matrices or integral ker-
nels), we make a deliberate logical jump and simply call
F a the FrFT of order a, for every 0 < a , 4 (cf. Ref. 13).
That such a logical jump is being undertaken should be
appreciated, particularly in view of generalizations to
higher dimensions.

B. Two-Dimensional Case
In the case N 5 2 of two transverse dimensions we ar-
range the entries according to the phase-space coordi-
nates v 5 (q, p)T. Clearly, the first-order or paraxial op-
tical systems are then represented by 4 3 4 matrices
acting as linear canonical transformations on the optical
phase space or, equivalently, as operator kernels acting

Fig. 1. Circle of FrFT’s Fa, a counted modulo 4. Powers of F 3/4

successively fall on (F 3/4)4 5 F 21, (F 3/4)8 5 F 2, and (F 3/4)12

5 F. Next would come (F 3/4)16 5 1.
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on the Hilbert space L2(R2) of field amplitudes that are
square integrable over the transverse plane R2.

One can naı̈vely generalize the known 1D results and
define two separate 1D FrFT’s acting on the two trans-
verse directions, x and y, respectively. Such a 2D FrFT is
a direct sum when viewed as a 4 3 4 matrix (but is a di-
rect product when viewed as an operator kernel). With
the phase-space coordinates arranged as (qx , qy ,
px , py)T, the official FT (1) is represented by the matrix

F 5 F 0 0 1 0

0 0 0 1

21 0 0 0

0 21 0 0
G . (6)

As in the 1D case, we may embed the above matrix as a
particular element of the two-parameter compact Abelian
Lie group U(1) 3 U(1) comprising matrices of the form

Fa,b 5 3
cos

p

2
a 0 sin

p

2
a 0

0 cos
p

2
b 0 sin

p

2
b

2sin
p

2
a 0 cos

p

2
a 0

0 2sin
p

2
b 0 cos

p

2
b

4 .

(7)

The range of the angles is 0 < a, b , 4, consistent with
the fact the group manifold of U(1) 3 U(1) is the 2D
torus T 2.

As in the 1D case, we may now ask, For the correspond-
ing transformation F a,b with

a 5
nx

n
, b 5

ny

n
, ~nx , n ! 5 1, ~ny , n ! 5 1,

(8)

for what (rational) values of a, b does F a,b qualify to be
called a FrFT in the strict sense? It is clear from the 1D
discussion that neither nx nor ny should be 0 mod 4 or
2 mod 4. Assume that, while one of nx ,ny is 1 mod 4, the
other is 3 mod 4. Then the sequence (F a, b)k, k
5 1, 2,... will visit the inverse FT in x when it visits the
FT in y, and it will visit the inverse FT in y when it visits
the FT in x, so the sequence never passes through the of-
ficial FT. Thus we are led to the following characteriza-
tion:

Theorem 2. Let a, b be rationals of the form a
5 nx /n, b 5 ny /n, and (nx , n) 5 1 5 (ny , n). F a,b is
a root of the 2D FT (1) (in the strict sense that some in-
teger power of it yields the 2D F ) if and only if both nx
and ny equal 1 mod 4 or both equal 3 mod 4.

Having pinned down this restriction on a, b, we notice
that the set of values permitted by the above criterion
forms a dense subset of the torus T 2 5 $(a, b)u0 < a,b
, 4%. As in the 1D case, we may now make a logical
jump and call F a,b a FrFT of order a, b for every (a, b)
P T 2.
It should be appreciated, however, that this toroidal
generalization to the 2D case is naı̈ve, for it is devoid of
any genuinely 2D richness. The principal aim of this
study is to go beyond this naı̈ve generalization and to de-
fine the FrFT in a manner that captures the increasing
richness of the higher-dimensional cases.

3. MATRIX AND INTEGRAL
REPRESENTATIONS
In this section we shall work with matrices; their rela-
tionship to integral transforms will be resolved in Section
9. It is well known in the literature14 that linear canoni-
cal transformations between N position coordinates and
their conjugate N momentum coordinates are represented
by 2N 3 2N real symplectic matrices M, which satisfy

MFMT 5 F, F 5 F 0 1

21 0G , (9)

where F is the symplectic metric matrix for 2N Cartesian
coordinates, with N 3 N zero and unit blocks; for N
5 1 and N 5 2, F is the Fourier matrix (3) and (6), re-
spectively. The Fourier matrix plays a fundamental dual
role as the defining metric and as the symplectic transfor-
mation that rotates by (1/2)p each one of the N canonical
position–momentum pairs in phase space. Also, F repre-
sents F, the official Fourier integral transform (1) on the
Hilbert space L 2(R N) of optical wave fields.

Through multiplication, the manifold of matrices that
satisfy Eqs. (9) form the 2N-dimensional real symplectic
group, denoted by Sp(2N, R). When the matrix M is
written in block form,

M 5 FA B

C DG , (10)

the N 3 N blocks obey the symplectic conditions

ABT 2 BAT 5 0, ADT 2 BCT 5 1,

CBT 2 DAT 5 21, CDT 2 DCT 5 0. (11)

These conditions entail 2N2 2 N constraints and leave
2N2 1 N free parameters. In the case considered here,
N 5 2 for 3D optics (two transverse dimensions), the
manifold of these matrices forms the real 10D symplectic
group Sp(4, R) (Refs. 9, 15, and 16). From Eqs. (9) it fol-
lows that the determinant of M can be 61; further analy-
sis (see, e.g., Ref. 6) shows that only 11 can occur.

Consider now the subset of symplectic matrices O that
commute with F, i.e., FO 5 OF. From Eqs. (9) we can
see that OOT 5 1 this characterizes O as a 2N 3 2N or-
thogonal matrix (of unit determinant), indicated as an el-
ement of the group SO(2N). When O is written in the
block form (10), the blocks will satisfy

AAT 1 BBT 5 1, ACT 1 BDT 5 0,

CAT 1 DBT 5 0, CCT 1 DDT 5 1. (12)

The set of matrices that are both symplectic and orthogo-
nal is also a group of matrices, whose N 3 N blocks sat-
isfy both Eqs. (11) and (12). We can see the structure of
this group by writing and verifying that
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U~O! 5 A 1 iB 5 D 2 iC, UU † 5 1 5 U †U, (13)

O~U! 5 F Re U Im U

2Im U Re UG , OOT 5 1 5 OTO,

(14)

U~O1!U~O2! 5 U~O1O2!, O~U1!O~U2! 5 O~U1U2!.

(15)

The matrices U(O) and O(U) are N-dimensional and
2N-dimensional representations, respectively, of one and
the same group element. Therefore the intersection
Sp(2N, R) ù SO(2N) is U(N) (the group of N 3 N uni-
tary matrices), which has an N 3 N complex representa-
tion by unitary matrices and a 2N 3 2N real representa-
tion by symplectic orthogonal matrices.11,16 This group
U(N) is the commutant in Sp(2N, R) of the official FT
matrix F.

It is important to appreciate that the N 3 N unitary
matrix that corresponds, through Eqs. (13), to the FT F is
U(F) 5 i1, a scalar fourth root of the identity matrix 1
characterized by the phase exp(ip/2). This observation
leads us to define a distinguished subgroup of central
FrFT’s by the matrices that are phase multiples of
the unit: exp(ipa/2)1 P U(1). These commute among
themselves and with all U(N) matrices in Eqs. (13) to
constitute the center of U(N). We also recall that the
manifold decomposition of the unitary groups is U(N)
5 U(1) 3 SU(N)/ZN , where U(1) is the commuting cen-
ter of phases, SU(N) is the special unitary subgroup that
contains all matrices of unit determinant, and we have di-
vided the direct product manifold by ZN
5 $exp(2pik/N)1%k50

N21, which is the subset of matrices
common to both factors. The unitary and the symplectic
representations of the central FrFT’s (henceforth indi-
cated by a subindex 0) are

U~F0
a! 5 exp@i~p/2!a#1,

F0
a 5 F cos

p

2
a1 sin

p

2
a1

2sin
p

2
a1 cos

p

2
a1
G . (16)

Evidently, F0
a1F0

a2 5 F0
a11a2 5 F0

a2F0
a1, F0

a 5 F for a
[ 1 mod 4, and F0

a 5 1 for a [ 0 mod 4. We have de-
tailed the matrix construction here, but the definition of
the central FrFT is coordinate free.

When we consider lenses and free spaces (positive dis-
placements) as the basic building blocks of paraxial opti-
cal systems,6,8,17 the assembly of central Fourier trans-
formers is reduced to the problem of writing the fractional
Fourier matrix (16) in terms of the triangular matrices

L~g! 5 F 1 0

2g 1G , D~z ! 5 F1 z1

0 1 G , (17)

where g is the symmetric matrix of Gaussian astigmatic
lenses, which is a multiple of the 2 3 2 unity only when
the lens is axis symmetric, and z > 0 is the displacement
distance. The central FrFT can be built with a symmet-
ric system F0

a 5 LgDzLg , which we obtain by equating
the corresponding matrix product with Eq. (16); for 0
< a , 2, this results in z 5 sin(p/2)a P @0, 1# and g
5 tan(p/4)a P @0, `). Similarly, a symmetric system
composed of a single lens within a total length z8, F0

a

5 D (1/2)z8Lg8D (1/2)z8 , will yield Eq. (16), resulting in z8
5 2 tan(p/4)a P @0, `) and g8 5 sin(p/2)a P @0, 1# for
the same range of a. Concatenation of several such sys-
tems covers the full group of central FrFT’s; this we de-
note by U0(1).

In paraxial wave optics, lenses and displacements mul-
tiply the wave field by a quadratic phase and act with the
Fresnel transform, respectively:

~Lgc!~q! 5 exp~i 1
2 qTgq!c ~q!, (18)

~Dzc!~q! 5
exp@2i~z 1

1
2 p!#

2pz
E

R 2
dq8

3 expF i

2z
~q 2 q8!2Gc ~q8!

5 exp~2iz !exp~iq 2/2z !
exp~2ip/2!

2pz
E

R 2
dq8

3 expS 2
i

z
q • q8D exp~iq 82/2z !c ~q8!. (19)

The integral transform produced by the LgDzLg system of
the previous paragraph will then act [up to the phase
exp(iz)] as the 2D central integral FrFT, which we define
also by using the index 0, as

~F 0
ac!~q! 5 exp~iz !exp~i 1

2 pa!

3 @Ltan~p/4!aDsin~p/2!aLtan~p/4!ac#~q! (20)

5 E
R 2

dq8F0
a~q, q8!c ~q8!, (21)

F0
a~q, q8! 5

exp@i 1
2 p~a 2 1 !#

2p sin~p/2!a
exp iF q 2

2 tan~p/2!a

2
q • q8

sin~p/2!a
1

q 82

2 tan~p/2!a
G . (22)

This integral kernel is well known for the 1D case,18

where the phase in front is exp(2ip/4) and a square root
appears in the denominator.10 In the 2D case we obtain
the official FT (1) when a 5 1.

4. SEPARABLE AND GYRATING FOURIER
TRANSFORMS
In the case that interests us, N 5 2, we define the
x –y-separable FT’s F1

a,b [cf. Eq. (1)] by
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U~F1
a, b! 5 F expS i

p

2
a D 0

0 expS i
p

2
b D G

5 expF i
p

4
~a 1 b!G

3 F expF i
p

4
~a 2 b!G 0

0 expF2i
p

4
~a 2 b!GG

5 expH i
p

4
~a 1 b!F1 0

0 1G J
3 expH i

p

4
~a 2 b!F1 0

0 21G J , (23)

F1
a,b 5 3

cos
p

2
a 0 sin

p

2
a 0

0 cos
p

2
b 0 sin

p

2
b

2sin
p

2
a 0 cos

p

2
a 0

0 2sin
p

2
b 0 cos

p

2
b

4 .

(24)

This is a 2D torus T 2 of matrices; see Fig. 2. The
x –y-separable fractional Fourier matrix (24) acting on 4D
acting on 4D phase space v 5 (qx , qy , px , py)T is a rota-
tion in the (qx , px) plane by (p/2)a and a separate rota-
tion in the (qy , py) plane by (p/2)b. Separable FT’s thus
form a group that we denote by Ux(1) 3 Uy(1), with com-
mutative product F1

a1 ,b1F1
a2 ,b2 5 F1

a11a2 ,b11b2 with expo-
nents modulo 4, and the official FT is F1

a,b 5 F for a, b
[ 1 mod 4. The factorization (23) shows that the mani-
fold of separable F1

a,b’s is a (p/4)(a 1 b) circle of central
FT’s, in direct product with a (p/4)(a 2 b) circle, where
the rotations in the (qx , px) and the (qy , py) planes are
equal and opposite. We can thus characterize the torus
group Ux(1) 3 Uy(1) of separable FT’s in the isomorphic
form U0(1) 3 U1(1) also, which is better suited for fur-
ther generalization.

To build x –y-separable Fourier transformers we can
use Lgx

DzLgx
systems with cylindrical lenses of powers gx

in the x direction, sharing the same total length z with a
cylindrical lens system in the y direction, composed as
Lgy8

D1/2zLgy9
D1/2zLgy8

, i.e., with two cylindrical lenses gy8 at
the ends and one gy9 in the middle.1,6,8,17 In the x direc-
tion we can have a FrFT of order a, choosing z
5 sin(p/2)a and gx 5 tan(p/4)a. Then in the y direc-
tion we can choose another order b, provided that gy8 and
gy9 satisfy gy8 sin(p/2)b 1 (1/2)zgy9 5 1 2 cos(p/2)b, as
can be seen through multiplication of the five matrices
(17). Correspondingly, the integral transform and its
kernel [cf. Eqs. (21) and (22), with a similar phase] will be

~F 1
a, bc!~q! 5 E

R 2
dq8F1

a,b~q, q8!c ~q8!, (25)

F1
a,b~q,q8! 5

exp$i~1/2!p@~1/2!~a 1 b! 2 1#%

2p@sin~p/2!a sin~p/2!b#1/2

3 exp iF qx
2 1 qx8

2

2 tan~p/2!a
2

qxqx8

sin~p/2!a

1
qy

2 1 qy8
2

2 tan~p/2!b
2

qyqy8

sin~p/2!b
G . (26)

It is evident in Eq. (23) that this transform is a central
FrFT of power (1/2)(a 1 b) in the U0(1) cycle, multiplied
by an element of the U1(1) cycle of FT ’s that act in the
direction x with power (1/2)(a 2 b) and in the direction y
with power 2(1/2)(a 2 b).

Other kinds of FrFT’s can be produced in N 5 2 dimen-
sions. We now define the gyrating FrFT’s F3

a,b , again la-
beled by the points of a 2D torus, by the matrices

U~F3
a, b! 5 expH i

p

4
~a 1 b!F1 0

0 1G J
3 expH i

p

4
~a 2 b!F 0 i

2i 0G J , (27)

U~F3
a, b! 5 expF i

p

4
~a 1 b!GRFp

4
~a 2 b!G ,

R~u! 5 F cos u sin u

2sin u cos u
G , (28)

Fig. 2. Torus T 2 of x –y-separable FT’s F1
a,b . The unit trans-

form is at 1 5 F1
0,0 , and the official FT is at F 5 F1

n1 ,n2, with
n1 , n2 [ 1 mod 4. The a 5 b circle is composed of central FT’s.
For a given (a0 , b0), the continuous powers (ta0 , tb0) may or
may not pass through the official transform.
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Gyrating FrFT’s are direct products of a central FrFT
through (p/4)(a 1 b) and a joint rotation in the x –y
planes of phase space through (p/4)(a 2 b); they form
the group that we label U0(1) 3 U3(1). The official FT is
again F 5 F3

a,b , for a,b [ 1 mod 4. See Fig. 2 once
again.

To build gyrating FrFT’s we need an optical device Ru

that will perform the task of R(u) in Eqs. (27)–(29),
namely, the joint rotation of position and momentum
planes,

~Ruc!~q! 5 c @R~u!21q #, (30)

for u 5 (p/4)(a 2 b). This image gyrator was intro-
duced in Ref. 6 (see also Ref. 17); it is built out of two im-
age reflector devices, each of which inverts images across
one coordinate axis, set at an angle 2u. The gyrating
FrFT is this gyrator concatenated with a central FrFT, in
either order.

In paraxial wave optics the gyrating FrFT (27) is rep-
resented by the integral transform with the kernel

F3
a,b~q, q8! 5

exp$i~1/2!p@~1/2!~a 1 b! 2 1#%

2p sin~p/4!~a 1 b!

3 exp iH q 2 1 q 82

2 tan~p/4!~a 1 b!

2
q • R@~p/4!~a 2 b!#q8

sin~p/4!~a 1 b!
J . (31)

We recall that, since R(u) is orthogonal, q • R(u)q8
5 @R(u)21q# • q8; thus, after integration by parts with
the invariant measure dq8, the matrix R(u)21 will act on
the argument of the function that is subject to the central
transformation.

5. U(2)-FRACTIONAL FOURIER
TRANSFORMS
Separable and gyrating FrFT’s are but two special cases
within the manifold of all U(2)-FrFT’s. Indeed, there is a
very suggestive analogy between the 2D FrFT and the
Poincaré sphere of polarization optics.19,20 We recall
that, in the latter, circular polarization is associated with
the north and the south poles, whereas linear polariza-
tions correspond to points on the equator. Here we show
that a similar characterization can be made for FrFT’s,
inasmuch as the 4 3 4 symplectic matrices that repre-
sent the U(2) group on the coordinates of phase space v
5 (qx , qy , px , py)T are also orthogonal, so they will
leave invariant the S 3 sphere vTv 5 qx

2 1 qy
2 1 px

2 1 py
2

in phase space.
To keep a standard enumeration of axes, we introduce

the t matrices (related to the Pauli s matrices, below)
and associate them (↔) with the well-known Schwinger
generators of U(2) that are built from the creation and an-
nihilation coordinates, aj 5 (qj 1 ipj)/A2 and aj

† 5 (qj

2 ipj)/A2, respectively, for j 5 x, y. Commutators of
operators are associated with the Poisson brackets of
their classical functions on the phase-space coordinates.21

We let

t0 5 s0 5 F1 0

0 1G ↔ T0 5 ax
†ax 1 ay

†ay

5
1
2 ~ px

2 1 py
2 1 qx

2 1 qy
2! 2 1, (32)

t1 5 s3 5 F1 0

0 21G ↔ T1 5 ax
†ax 2 ay

†ay

5
1
2 ~ px

2 2 py
2 1 qx

2 2 qy
2!, (33)

t2 5 s1 5 F0 1

1 0G ↔ T2 5 ax
†ay 1 ay

†ax

5 pxpy 1 qxqy , (34)

t3 5 s2 5 F0 2i

i 0 G ↔ T3 5 i~ax
†ay 2 ay

†ax!

5 pyqx 2 pxqy . (35)

Written in these terms, the x –y-separable and gyrating
FrFT’s, Eqs. (23) and (28), contain exponentials of t1 and
t3 , respectively; thus we attached the subindices 1 and 3.
Now we generalize this subindex to a point on the sphere
S 2 that we shall call the Fourier sphere.

We parameterize each U(2)-FrFT by a fixed unit vector
on the Fourier sphere, rW (q, w) P S 2, with Cartesian coor-
dinates rW 5 (r1 , r2 , r3) 5 (sin q cos w, sin q sin w, cos q)
and two powers (a, b) counted modulo 4. We let m
5 (p/4)(a 1 b) and n 5 (p/4)(a 2 b) and define the
unitary matrices

UrW
a,b 5 exp~imt0!exp~inrW • t¢!

5 exp~im!~1 cos n 1 irW • t¢ sin n!

5 exp~im!F cos n 1 ir1 sin n ~r3 1 ir2!sin n

~2r3 1 ir2!sin n cos n 2 ir1 sin n
G .
(36)

Thus, for every axis rW (q, w) on the Fourier sphere, there
is a corresponding torus T rW

2 (with coordinates a, b as in
Fig. 2) of 2 3 2 unitary matrices that satisfy
UrW

a1 ,b1UrW
a2 ,b2 5 UrW

a11a2 ,b11b2, UrW
0,0 5 1, and (UrW

a, b)21

5 UrW
2a,2b 5 (UrW

a, b)†. Hence they form a group that we
denote by U0(1) 3 UrW(1). In particular, for a, b
[ 1 mod 4, UrW

a,b 5 U(F).
F3
a,b 5 F cos Fp

4
~a 1 b!GRFp

4
~a 2 b!G sin Fp

4
~a 1 b!GRFp

4
~a 2 b!G

2sin Fp

4
~a 1 b!GRFp

4
~a 2 b!G cos Fp

4
~a 1 b!GRFp

4
~a 2 b!GG . (29)
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U(2)-FrFT’s in two dimensions are defined through
Eqs. (14), (36), and

FrW
a,b 5 O~UrW

a, b! 5 O@exp~im!1#O@exp~inrW • t¢!#. (37)

By construction, this manifold of U(2) transforms is T 2

3 S 2, the product of the torus with the Fourier sphere.
Under U(2) group action this manifold is further revealed
to be a fiber bundle,22 whose base space is the sphere and
whose fibers are the tori. We can call Eq. (37) a 2D frac-
tional FT with the following justification:

Theorem 3. Let a,b be rationals of the form a
5 nx /n, b 5 ny /n, and (nx , n) 5 1 5 (ny , n). FrW

a,b is
a root of the 2D FT matrix F (in the strict sense that some
integer power of it yields F) if and only if both nx and ny
are equal to 1 mod 4 or both are equal to 3 mod 4. And
this is true for every rW P S 2.

The proof is straightforward. Using 2 3 2 unitary
matrices, for the separable case rW 5 (1, 0, 0), we can see
that U1

a,b 5 U(F1
a, b), where a, b are rationals of the form

specified in Theorem 2, is a root of the 2D FT. Now, in
SU(2) any UrW

a,b is conjugate to U1
a,b ; i.e., given a UrW

a,b ,
there exists a U P SU(2) such that UrW

a,b 5 UU1
a,bU 21.

The nth power of this equality (for n as in the theorem)
shows that (UrW

a, b)n is conjugate by U to the nth power of
the separable case, (U1

a, b)n 5 U(F 1,1), which commutes
(by definition) with any U P SU(2). Hence (UrW

a, b)n

5 U(F), and the same equality follows for the symplectic
orthogonal 4 3 4 matrices: (FrW

a, b)n 5 F. The restric-
tion to some rational values applies only to the super-
scripts a, b, with no restriction whatsoever on rW . This
completes the proof.

The restriction on a, b is of the same type as for F a in
the 1D case of Theorem 1 and in the case of the earlier
separable 2D generalization F a,b in Theorem 2. There-
fore we may make the same logical jump as in the previ-
ous two cases and call FrW

a,b , for every 0 < a, b , 4, a 2D
FrFT matrix. It will be appreciated that the earlier,
straightforward separable case corresponds in the U(2)
picture to just one point on the Fourier sphere S 2,
namely, the point rW 5 (1, 0, 0). We call FrW

a,b a 2D FrFT
of order a, b (ranging over T 2) and type rW (ranging over
S 2). The straightforward treatment covered just one of
an S 2-worth continuum of types, all of which qualify as
FrFT’s. A difference between our treatment of nonsepa-
rable 2D FrFT’s and the approach in Ref. 23 should be
noted, since it appears that the values of their parameters
are not bounded.

6. FOURIER SPHERE
We analyze now the rotations of 4D phase space produced
by the 4 3 4 symplectic and orthogonal FrFT matrices,
which leave invariant the phase-space three-sphere S 3 of
squared radius vTv 5 qx

2 1 qy
2 1 px

2 1 py
2 5 constant.

From the results given in Section 5 through the map (14),
using m, n as in Eqs. (36) and (37) and indicating sm

5 sin m,..., cn 5 cos n for brevity, we write the 4 3 4 U(2)-
FrFT matrix factored into a central and an SU(2)-FrFT:
FrW
a,b 5 F0

1
2 ~a1b!FrW

1
2 ~a2b!,2

1
2 ~a2b!

5 F cm1 sm1

2sm1 cm1GF cn r3sn r1sn r2sn

2r3sn cn r2sn 2r1sn

2r1sn 2r2sn cn r3sn

2r2sn r1sn 2r3sn cn

G .

(38)

Consider first the case in which rW is in the 1–2 equato-
rial plane of the Fourier sphere in Fig. 3, where r3 5 0
and r1

2 1 r2
2 5 1. Much insight is gained about the

transformations of type rW 5 (cos w, sin w, 0) by definition
of new Cartesian coordinates of phase space that are ro-
tated from the x –y axes by (1/2)w, and distinguished by
the superscript w, as follows:

F qx
w

qy
w

px
w

py
w

G 5 F cw/2 sw/2 0 0

2sw/2 cw/2 0 0

0 0 cw/2 sw/2

0 0 2sw/2 cw/2

GF qx

qy

px

py

G . (39)

In the new coordinates the action of the SU(2)-FrFT in
the right-hand side of Eq. (38) is

FrW
a,2a : F qx

w

qy
w

px
w

py
w

G°F cn 0 sn 0

0 cn 0 2sn

2sn 0 cn 0

0 sn 0 cn

GF qx
w

qy
w

px
w

py
w

G , (40)

with the rotation angle n 5 (1/2)pa simultaneously in
the (qx

w , px
w) and the (qy

w , py
w) planes, but in opposite

senses. Thus we find that the action of FrW
a,2a [with rW

5 (cos w, sin w, 0) in the equatorial plane of Fig. 3] on the
rotated Cartesian coordinates is precisely the separable
action of F1

a,2a in the original x –y coordinates. These
are the most general separable FrFT’s.

On the w 5 0 meridian of the Fourier sphere, for rW
5 (sin q, 0, cos q), the analog of Eq. (38) shows that rota-
tions take place in the orthogonal planes of qx and r3qy

Fig. 3. The Fourier sphere serves to classify U(2) FT’s. The 1
axis (on the equator) corresponds to FT’s separable in the x –y
coordinates. The 3 axis (north pole) corresponds to central FT’s
that also rotate the image (gyrators). The 2 axis corresponds to
cross gyrators in the planes (qx , py) and (qy , px). Around the
equator the FT is separable in rotated coordinates.
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1 r1 px and of qy and 2(r3qx 1 r1 py) or, equivalently, of
px and 2(r1qx 2 r3 py) and of py and r1qy 2 r3 px .
When q 5 0 the north pole of the Fourier sphere repre-
sents the gyrating FrFT’s in Eq. (29), where the position
coordinates rotate among each other and the momentum
coordinates do the same accordingly. When q 5 (1/2)p
we are back at the x –y-separable case (24).

Since the product of two U(2)-FrFT’s is again a trans-
form of the same group, it is straightforward to prove for
Eq. (38) that

FrW
a,bFrW8

a8,b8 5 FrW9
a1a8,b 1 b8 , (41)

where the type axes compose through

rW9sn1n8 5 rWsncn8 1 rW8sn8cn 2 ~rW 3 rW8!sn sn8 , (42)

with (as before) n 5 (p/4)(a 2 b), sn 5 sin n, cn 5 cos n,
and similarly for the primed n’s. This composition law
may appear reminiscent of the composition of nonparallel
Lorentz boosts and the consequent Wigner rotation24 or
the Thomas precession.25 In the same way, it can be
seen that

~FrW
a,b!21 5 FrW

2a,2b 5 F2rW
2b,2a . (43)

The SU(2) axis rW of a U(2) FrFT can be rotated on the
Fourier sphere by means of a similarity transformation of
the same kind. From Eq. (36) it follows that

FrW8
g,dFrW

a,b~FrW8
g, d

!21 5 FD~rW8, u!rW
a,b , u 5 ~p/4!~g 2 d!,

(44)

where D is a 3 3 3 representation of the SU(2)-FrFT of
axis rW8 and angle u :

D~rW8, u!rW • t¢ 5 rW • @U~FrW8
g, d

!t¢ U~FrW8
g, d

!21#. (45)

The order a, b of the FrFT FrW
a,b thus characterizes conju-

gation classes9 of U(2). Each conjugation class consists
of the Fourier sphere of transforms with all axes rW (q, w)
P S 2. These FrW

a,b ’s can be realized, for every value of a,
b, and rW , by a paraxial system consisting of free spaces
and thin astigmatic lenses.6

7. SPECTRAL REPRESENTATION
We have considered three realizations of the U(2) group of
2D FrFT’s: (i) in terms of complex 2 3 2 unitary matri-
ces; (ii) in terms of real 4 3 4 matrices; and, in less detail
so far, (iii) in terms of integral transform operators acting
on wave fields (Sections 3 and 4). Clearly, for complex-
valued field amplitudes of light beams, it is realization
(iii) that is of direct relevance. We now study the inte-
gral operators in some detail.

A. Generators of U(2) Fourier Transforms
A canonical way to describe an operator (and its domain)
is to exhibit its eigenfunctions and the associated eigen-
values; this is called the spectral representation of the op-
erator. For the 2D FrFT operators, the spectral repre-
sentation domain is the Hilbert space L 2(R 2) of complex-
valued square-integrable field amplitude functions over
R 2. For clarity we carry out this task first for
x –y-separable transforms and then present the general
case on the Fourier sphere. We work within the context
of coherent-mode decomposition of partially coherent
light26,27 and of two-mode squeezed states.28

Of central importance is the isomorphism (32)–(35) be-
tween the t matrices and the T functions and between the
commutators of the former and the Poisson brackets of
the latter. The t matrices are a set of generators for the
Lie algebra9 of the group U(2) because their commutators
are

@t0 ,tk# 5 0, @tj ,tk# 5 2ie jklt l , j, k, l 5 1, 2, 3.
(46)

Now, from the basic Schrödinger commutators @ q̂ j , p̂k#

5 id j,k , j, k 5 x, y, and @ q̂ j , q̂k# 5 0 5 @ p̂ j , p̂k#, the
quadratic phase-space functions T0 , T1 , T2 , T3 in rela-
tions (32)–(35) can be quantized to unique operators5; fol-
lowing Ref. 26, we denote these four operators by
T̂0 , T̂1 , T̂2 , T̂3 in the Hilbert space L 2(R 2). We first
note that T̂0 is the Hamiltonian operator of an isotropic
2D oscillator with the zero-point energy suppressed; it
generates joint rotations in the (q̂x , p̂x) and the (q̂y , p̂y)
planes of Schrödinger operators. The additive constant
21 is in principle arbitrary; our choice will be shown be-
low to generate F a from exp@2i(1/2)paT̂3# without any
intervening phase. Also, we recognize T̂3 as the angular-
momentum operator,9 which generates joint rotations in
x –y planes of both position and momentum. The four
T̂m’s generate rotations in the 4D phase space of Schrö-
dinger operators and are self-adjoint in L 2(R 2). They
obey the same commutation relations (46) as the t
matrices26:

@T̂0 , T̂k# 5 0, @T̂j , T̂k# 5 2ie jklT̂l ,

j, k, l 5 1, 2, 3. (47)

Furthermore, their commutators with the Schrödinger
operators of position and momentum are defined natu-
rally and will include Eqs. (2). Therefore the group of
Hilbert-space transformations generated by these opera-
tors is locally isomorphic to the group U(2).

B. Central Transforms
Note that the 4 3 4 matrices act on the column vector of
classical coordinates v 5 (q, p)T, whereas the transfor-
mations generated by relations (32)–(35) act adjointly
[see Eqs. (2) and discussion below] on the vector of Schrö-
dinger operators v̂ 5 (q̂, p̂)T.

In particular, for the central fractional transforms (16),
we can obtain the integral transforms F 0

a (21) and (22) by
expanding and summing the full series that we indicate
below:

F q̂~a!

p̂~a!G 5 expS 2i
1

2
paT̂0D F q̂p̂GexpS i

1

2
paT̂0D

5 F cos
1

2
pa sin

1

2
pa

2sin
1

2
pa cos

1

2
pa
G 21

F q̂p̂G 5 F 0
aF q̂p̂GF 0

2a .

(48)
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The isomorphism among the matrices F 0
a that act on 4D

phase-space coordinate vectors, the unitary matrices
U(F 0

a), the integral transform operators that act on wave
fields, and the exponentials of generators, is thus

U~F 0
a! 5 exp~i 1

2 pat0! ↔ F 0
a 5 exp~2i 1

2 paT̂0!. (49)

C. Separable Transforms
Separable FrFT matrices F 1

a,b and integral transforms
were introduced in Section 4. Their isomorphism can be
similarly established from Eqs. (23), (24) and (25), (26) to
be

U~F 1
a, b! 5 exp@i~p/4!~a 1 b!t0 1 i~p/4!~a 2 b!t1#

↔ F 1
a,b 5 exp@2i~p/4!~a 1 b!T̂0 2 i~p/4!~a 2 b!T̂1#.

(50)

We have immediate use for these relations because the
eigenfunctions of the separable FrFT’s F 1

a are easily
found by inspection. First, since T̂0 and T̂1 commute,
they have a complete set of simultaneous eigenfunctions
in L2(R 2). Second, since both T̂0 and T̂1 are linear com-
binations of ax

†ax and ay
†ay , the required eigenfunctions

are products of the well-known real Hermite–Gaussian
modes for nx , ny 5 0, 1, 2,...,

ax
†axCnx ,ny

~q! 5 nxCnx ,ny
~q!,

ay
†ayCnx ,ny

~q! 5 nyCnx ,ny
~q!, (51)

@
1
4 ~a 1 b!T̂0 1

1
4 ~a 2 b!T̂1#Cnx ,ny

~q!

5
1
2 ~nxa 1 nyb!Cnx ,ny

~q!, (52)

Cnx ,ny
~q! 5

Hnx
~qx!Hny

~qy!

@2nx1nynx!ny!p#1/2 expS 2
1

2
q 2D . (53)

These are the eigenvectors of F 1
a,b in relation (50) with ei-

genvalues exp@2i(1/2)p(nxa 1 nyb)#. Therefore we
have the following spectral representation for the kernel
(26) as a bilinear generating function,29

F1
a,b~q, q8! 5 (

nx ,ny

Cnx ,ny
~q!

3 exp@2i 1
2 p~nxa 1 nyb!#Cnx ,ny

~q8!.

(54)

D. General Case
To handle the general U(2) fractional transform F rW

a,b , it
will be convenient to label the unit vector rW
5 (sin q cos w, sin q sin w, cos q) P S 2 by its polar coordi-
nates (q, w), as F (q, w)

a,b . For each type (q, w) P S 2, we
define the matrix U(q, w) and the transform U(q, w) [both
forming groups U(2)] by26
U~q, w! 5 exp~2iwt1!exp~2iqt3!exp~iwt1!

5 F cos
1

2
q 2sin

1

2
q exp~2iw!

sin
1

2
q exp~iw! cos

1

2
q

G (55)

U~q, w! 5 exp~2iwT̂1!exp~2iqT̂3!exp~iwT̂1!. (56)

The relationship between the 2D FrFT of general type
F (q, w)

a,b and the separable one of the same order F 1
a,b fol-

lows from the isomorphism between the matrices gener-
ated by the tm’s and the transformations generated by the
T̂j’s. We let

U~F ~q, w!
a, b ! 5 U~q, w!U~F 1

a, b!U ~q, w!
21

↔ F ~q, w!
a,b 5 U~q, w!F 1

a,bU ~q, w!
21 . (57)

The detailed discussion of the action of U(q, w) on the Hil-
bert space L 2(R 2) is facilitated by the introduction of the
usual angular-momentum index combinations j 5 (1/2)
3 (nx 1 ny), m 5 (1/2)(nx 2 ny) in place of nx , ny , and
F j,m(q) 5 C j1m,j2m(q). Then

T̂0F j,m~q! 5 jF j,m~q!, j 5 0, 1
2 , 1, 3

2 ,..., (58)

T̂1F j,m~q! 5 mF j,m~q!, m 5 2j,2j 1 1,..., j. (59)

With this relabeling of the Hermite–Gaussian modes, the
mode functions associated with each point (q, w) P S 2

are defined by

F j,m
~q, w!~q! 5 U~q, w!F j,m~q!. (60)

Since F j,m(q) are the eigenvectors of F 1
a,b in relation (50),

and since F (q, w)
a,b and F 1

a,b are related through a similar-
ity transformation (57) by U(q, w) , we can conclude that
F j,m

(q, w)(q) are the eigenvectors of F (q, w)
a,b .

For a unit vector rW in the direction (q, w), we use the
linear combination of generators T̂ (q, w) 5 rW • TŴ 5 r1T̂1

1 r2T̂2 1 r3T̂3 that generates rotations about the direc-
tion (q, w):

U~q, w!T̂0U ~q, w!
21 5 T̂0 , T̂0F j,m

~q, w!~q! 5 jF j,m
~q, w!~q!,

U~q, w!T̂1U ~q, w!
21 5 T̂ ~q, w! ,

T̂ ~q, w!F j,m
~q, w!~q! 5 mF j,m

~q, w!~q!. (61)

The operator pair (T̂0 , T̂ (q, w)) determines the new modes
F j,m

(q, w)(q) in exactly the manner in which the pair
(T̂0 , T̂1) determined the original Hermite–Gauss modes
F j,m(q) in Eq. (53).

The mode functions F j,m
(q, w)(q) are linear combinations

of the more familiar Hermite–Gaussian modes F j,m(q)
through the Wigner formula.30 We use Dirac’s notation
u j, m& for the basis of vectors (61), and the Dirac eigenba-
sis of transverse position uq&, q P R 2. The Hermite–
Gaussian modes are thus F j,m(q) 5 ^qu j, m&, and then26

F j,m
~q, w!~q! 5 (

m852j

j

D m,m8
j

~q, w!F j,m8~q!, (62)
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D m,m8
j

~q, w!

5 ^ j, muU~q, w!u j, m8&

5 exp@2iw~m 2 m8!#dm,m8
j

~q!, (63)

dm,m8
j

~q!

5 ^ j, muexp~2iqT̂3!u j, m8& 5 ~21 !m82m(
n

3
~21 !n @~ j 1 m !!~ j 2 m !!~ j 1 m8!!~ j 2 m8!!#1/2

~ j 2 m 2 n!!~ j 1 m8 2 n!!n!~m 2 m8 1 n!!

3 ~cos 1
2 q!2j1m82m22n~sin 1

2 q!m2m812n. (64)

The spectral representation of the U(2)-FrFT’s is the in-
tegral transform kernel given by F (q, w)

a,b (q, q8)
5 ^quF (q, w)

a,b uq8&. [Cf. Eqs. (22), (26), and (31).] The re-
sult on bilinear generating functions that generalizes Eq.
(54) is Theorem 4.
Theorem 4. The integral kernel of the 2D FrFT of or-
der a, b and type (q, w) is

F ~q, w!
a,b ~q, q8! 5 (

j50,1/2,...
(

m52j

j

F j,m
~q, w!~q!

3 exp$2i 1
2 p@~ j 1 m !a

1 ~ j 2 m !b#%F j,m
~q, w!~q8!* , (65)

where F j,m
(q, w)(q) are the general mode functions in Eq.

(62).

E. Eigenstates of Fourier Transforms
Several comments are required regarding the spectral
representation given by Eq. (65), where the order (a, b)
P T 2 enters only in the eigenvalues and is nicely sepa-
rated from the type (q, w) P S 2, which enters only in the
mode functions.

For any fixed type (q, w), the mode functions F j,m
(q, w)(q)

form a complete and orthonormal basis in L 2(R 2):

E
R 2

d 2qF j,m
~q, w!~q!* F j8,m8

~q, w!
~q! 5 d jj8dmm8 , (66)

(
j50,1/2,...

(
m52j

j

F j,m
~q, w!~q!F j,m

~q, w!~q8!* 5 d ~q 2 q8!. (67)

Indeed, this property, combined with the fact that the
complex eigenvalues in Eq. (65) all have unit magnitude,
is equivalent to the unitarity of the operators F (q, w)

a,b . On
the other hand, for a fixed mode j, m, there is a sphere
manifold of types (q, w), all obtained from the fiducial
separable Hermite–Gaussian mode F j,m(q) by means of
F j,m
((1/2)p, w)~qx , qy! 5 F j,m~qx

w , qy
w! 5

Hj1m~qx cos 1
2 w 1 qy sin 1

2 w!Hj2m~qy cos 1
2 w 2 qx sin 1

2 w!

@n2j~ j 1 m !!~ j 2 m !!p#1/2 expS 2
1

2
q 2D . (69)
the transformation U(q, w) P SU(2) in Eq. (60). Thus, for
fixed j, m, the F j,m

(q, w)(q)’s are overcomplete for (q, w)
P S 2 and constitute the system of SU(2) coherent
states.26,31

For select values of (q, w), the modes F j,m
(q, w)(q) will be

familiar to the reader, and SU(2) transformations will ex-
press one mode in terms of the others as linear combina-
tions. The x –y-separable fiducial Hermite–Gaussian
mode Cnx ,ny

(q) 5 F j,m(q) in Eq. (53) corresponds to the
point on the 1 axis because T̂1 5 T̂((1/2)p,0) . The equator
of the sphere ((1/2)p, w) indicates the separable modes
that are eigenstates of

T̂ ~
1
2 p,w! 5 cos wT̂1 1 sin wT̂2

5
1
2 @~px

ŵ!2 1 ~qx
ŵ!2# 2

1
2 @~py

ŵ!2 1 ~qy
ŵ!2#, (68)

where the classical w-rotated coordinates were defined as
in Eq. (39). It follows that the modes F j,m

((1/2)p, w)(q) are
precisely the Hermite–Gaussian modes F j,m(q) in the ro-
tated coordinate system:
Equation (62) thus reduces to an interesting linear com-
bination of Hj1m(qx

w) 3 Hj2m(qy
w) in terms of

Hj1m8(qx)Hj2m8(qy) for fixed j and m8 P $2j,2j
1 1,..., j%. This expansion is known for Hermite polyno-
mials, but here we have derived it from the requirement
of separability under FrFT’s.

Another interesting case corresponds to the north pole
q 5 0 of the sphere in Fig. 3. In this case T̂ (0, w) 5 T̂3 is
the angular-momentum operator (35). There F j,m

(0, w) are
eigenfunctions of both T̂0 and T̂3 , and, because of Eqs.
(63) and (64), their dependence on w is only through a
phase exp(2imw); we shall set w 5 0 for simplicity. The
simultaneous eigenfunctions of the Hamiltonian and
angular-momentum operators of an isotropic 2D oscil-
lator are precisely the Laguerre–Gaussian modes that
are separable in polar coordinates. For q
5 (q sin k, q cos k)T, we can conclude that

F j,m
~0, 0 !~q! 5 F ~ j2umu!!

p~ j1umu!!G
1/2

exp~2imk!q2umu

3 exp~2
1
2 q2!Lj2umu

2umu ~q2!. (70)

Thus in the special case (0, 0), Eq. (62) is the expansion of
the Laguerre–Gaussian modes in terms of the Hermite–
Gaussian modes.26–28,32 Following our discussion in Sec-
tion 6, on the w 5 0 meridian and elsewhere on the Fou-
rier sphere of Fig. 3, we can see that, since the rotations of
phase space take place in planes that mix the position
and the momentum coordinates, the corresponding eigen-
modes will not be separable in the screen coordinates
alone (cf. Ref. 23).
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8. IWASAWA DECOMPOSITION
Given its ray-transfer matrix M P Sp(4, R), we decom-
pose the optical system into simpler factors26:

M 5 FA B

C DG 5 F 1 0

2g 1GFS 0

0 S 21GF X Y

2Y XG , (71)

where the factor submatrices are given (uniquely) by

S 5 ST 5 ~AAT 1 BBT!1/2 positive definite,

X 1 iY 5 ~AAT 1 BBT!21/2~A 1 iB! P U(2),

g 5 gT 5 2~CAT 1 DBT!~AAT 1 BBT!21. (72)

This slight modification of the well-known Iwasawa de-
composition is valid for any semisimple Lie group,6,26

which suits our purposes.
The three factors on the right-hand side of Eq. (71)

(read from right to left) represent a FrFT X 1 iY
P U(2), a 2D symmetric scaling S, and an astigmatic
lens of Gaussian matrix g, respectively. Let (q, w) be the
type and (a, b) the order associated with this FrFT, and
let c (q, w)

a,b (q) be the result of its action on c (q). We also
know that the scaling takes an input c (q) to
(det S)21/2c (S 21q) and that the Gaussian lens factor
takes c (q) to exp@2i(1/2)q Tgq#c (q). It follows that the
first-order system M P Sp(4, R) produces the following
effect on any input field amplitude c (q):

M : c ~q ! ° c M~q !

5
1

Adet S
expS 2i

1
2

q TgqDc~q, w!
a,b ~S 21q!. (73)

We have thus established the following result:
Theorem 5. Every first-order system M P Sp(4, R) is

a 2D FrFT modulo a symmetric scaling and a (generally
astigmatic) phase curvature.

For the simpler 1D case, the corresponding result was
presented in Ref. 4, and the corresponding result for free
flight in particular was presented in Ref. 33.

9. CANONICAL AND FOURIER
TRANSFORMS
The group U(2) of 2D FrFT’s will be now placed back as a
subgroup of the group Sp(4, R) of all 3D paraxial optical
systems. We follow the notions and notation presented
in Section 3. The integral representation (of the twofold
cover) of the 2N-dimensional symplectic groups was
found by Moshinsky and Quesne12 in 1971. With each
4 3 4 symplectic matrix M we associate (two) integral
transforms 6C (M) such that

C ~M!F q̂p̂GC ~M!21 5 M 21F q̂p̂G 5 F D̂T 2BT

2CT AT G F q̂p̂G , (74)

@C~M!f #~q! 5 E
R 2

dq8C~M!~q, q8!f~q8!, (75)

[cf. Eq. (48)] with an integral kernel12,34
C~M!~q, q8! 5
2i

2pAdet B
3 exp i~ 1

2 qTDB 21q

2 qTB T21q8 1
1
2 q 8TB 21Aq8!. (76)

(The generic N-dimensional case has a factor of
exp(2ip/4)/A2p for each dimension.)

The operators C(M) are unitary in L 2(R 2), and they
compose as the matrices up to a sign: C (M1)C (M2)
5 6C (M1M2), C (1) 5 61 and C (M)21 5 6C (M 21).
The two signs 6 appear because C represents faithfully
the double-cover group of Sp(4, R), called the metaplectic
group.6,34,35 Two elements of the metaplectic group cor-
respond to one 4 3 4 matrix.6 Because the matrix pa-
rameters are much more convenient, here we need men-
tion only that it is the U(1) subgroup of central
transforms that bears the onus of this bivaluation. The
symplectic matrices (74) with B 5 0 form a seven-
parameter subgroup, whose integral transform kernels
(77) collapse to Dirac d ’s with scaling and Gaussian
phase.10 They are

S CFA 0

C AT21G f D ~q!

5
1

Adet A
expS i

1
2

qT CAT21qD f~A 21q!. (77)

This is the geometric action of imaging optical devices,
and it includes the one-parameter subgroup of pure rota-
tions in the x –y planes, M 5 diag@R(u), R(u)# [cf. Eqs.
(28) and (39)]. These rotations simultaneously belong to
the group U(2) 5 Sp(4, R) ù SO(4) of 2D FrFT’s that we
defined in Section 3. Since one can factorize any real
symplectic matrix into a solvable times an orthogonal
matrix,6 the action of a 3D paraxial optical system factor-
izes into a purely geometric action (77) times the more
properly integral transform action of the U(2) Fourier fac-
tor of the system [cf. Eqs. (71) and (73)].

In particular, the official FT F in Eq. (1)
corresponds—up to an important phase—to the symplec-
tic metric matrix F in Eq. (6):

F 5 iC~F!,

F~q, q8! 5 iC~F!~q, q8! 5
1

2p
exp~2iqTq8!, (78)

Next, the central FrFT’s correspond to F 0
a in Eq. (16):

F 0
a 5 exp~i 1

2 pa!C~F 0
a!,

F0
a~q, q8! 5 exp~i 1

2 pa!C~F 0
a!~q, q8!. (79)

The x –y-separable Fourier matrices F 1
a,b in Eq. (24) lead

to the separable FrFT F 1
a,b with kernel Eq. (26), and from

Eq. (77) we have

F 1
a,b 5 exp@ip~a 1 b!/4#C~F 1

a, b!,

F1
a,b~q, q8! 5 exp@ip~a 1 b!/4#C~F 1

a, b!~q, q8!. (80)

For the gyrating transforms, Eqs. (27)–(29) lead to the in-
tegral kernel (31); the phase between F 3

a,b and C(F 3
a, b) is

the same as in Eq. (80), exp@i(1/2)pm#, with m 5 (1/2)(a
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1 b). These transforms are particular cases of the
separation of any U(2)-FrFT’s into a U(1) central trans-
formand and an SU(2) transform of power n 5 (1/2)(a
2 b) with axis rW (q, w) P S 2 [cf. Eqs. (36)–(38)], namely,

F rW
a,b 5 exp~i 1

2 pm!C~F 0
mF rW

n,2n!. (81)

This phase relation is a consequence of having added 21
to the generator T̂0 of the central FrFT’s [see relation (32)
and (49)], while the corresponding canonical transforms
are generated by the true harmonic oscillator
Hamiltonian.10,35

Consider now the SU(2)-FrFT’s F rW
a,2a given by Eqs.

(36)–(38). When m 5 0 and n 5 (1/2)pa Þ 0, p, the 2
3 2 submatrices are

A0 5 D0 5 Re U rW
a,2a 5 F cos n r3 sin n

2r3 sin n cos n
G . (82)

B0 5 2C0 5 Im U rW
a,2a 5 F r1 r2

r2 2r1
Gsin n. (83)

Since det B0 5 2r12
2 sin2 n Þ 0, with r12

2 5 r1
2 1 r2

2, B0
can be inverted for all but the purely gyrating transforms
(r3 5 61) at the north and the south poles of the Fourier
sphere of Fig. 3. Thus we find the three symmetric ma-
trices in the exponent of the SU(2)-FrFT kernel (77):

B 0
21 5

1

r12
2 sin n

F r1 r2

r2 2r1
G 5

B0

r12
2 sin2 n

5 B 0
T21, (84)

A0B 0
21 5

1

r12
2 sin2 n

~B0 cos n 1 B'0r3 sin n!, (85)

B 0
21A0 5

1

r12
2 sin2 n

~B0 cos n 2 B'0r3 sin n!, (86)

where B'0 5 F r2 2r1

2r1 2r2
Gsin n (87)

is obtained from B0 by a (1/2)p rotation about the r3 axis
[i.e., (r1 , r2) ↔ (r2 ,2r1) carries B0 ↔ B'0]. For sepa-
rable transforms (r3 5 0) on the equator of Fig. 3, all
quadratic forms are built with matrices proportional to
B0 .

For m Þ 0, p, the generic U(2)-FrFT F rW
a,b will be char-

acterized by submatrices (36) that are rotated combina-
tions of the previous ones:

Am 5 A0 cos m 2 B0 sin m, Bm 5 A0 sin m 1 B0 cos m.
(88)

The determinant in Eq. (77) is now Dm 5 det Bm

5 sin2 m 2 r12
2 sin2 n 5 D0 1 sin2 m, and

B m
21 5 Dm

21~2cos m B0 1 sin mA 0
T!, (89)

AmB m
21 5 Dm

21~1 cos m sin m 1 D0A0B 0
21!. (90)

B m
21Am 5 Dm

21~1 cos m sin m 1 D0B 0
21A0!, (91)
Thus we build the general fractional U(2) Fourier integral
transform kernel.

10. CONCLUSIONS
We have shown that the fractional Fourier transforms
(FrFT’s) in two (and more) dimensions have a consider-
ably richer structure than what is apparent in one dimen-
sion. Their manifold is U(2) rather than simply a circle
or a torus, and they are classified by order (points
of a torus) and type (points of a sphere). Our Fourier
sphere of types, the spheres recently studied by Padgett
and Courtial36 and by Agarwal37 in connection with
the orbital angular momentum of light beams, and
the sphere of U(2) coherent states of the Hermite–
Gaussian modes studied earlier in Ref. 26 are essentially
equivalent to one another: All of them are the coset
space of U(2) 5 Sp(4, R) ù SO(4) with respect to
U(1) 3 U(1)—different incarnations of one and the same
structure.

One of the main applications of FrFT’s has been in the
optical processing of 1D images. Two-dimensional im-
ages are richer, and a wider choice of transformations is
now available. The analysis of N-dimensional Fourier
transformers will lead to N-dimensional tori—because
there are N commuting U(1) subgroups—which will be fi-
bers on more-complicated N(N 2 1)-dimensional coset
base manifolds of SU(N). All definitions can be made co-
ordinate free.

Finally, FrFT’s have been revealed to be the integral
part of paraxial optical systems. An interesting chal-
lenge would be to build a paraxial optical device to imple-
ment U(2)-FrFT’s so that every point of their compact 4D
manifold can be realized, preferably by the smooth rota-
tion of a few astigmatic elements around a common axis,
as was done for the Poincaré sphere of polarization in Ref.
8.
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