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The canonical Kravchuk basis for discrete quantum mechanics
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Abstract. The well known Kravchuk formalism of the harmonic oscillator obtained from the
direct discretization method is shown to be a new way of formulating discrete quantum phase space.
It is shown that the Kravchuk oscillator Hamiltonian has a well defined unitary canonical partner
which we identify with the quantum phase of the Kravchuk oscillator. The generalized discrete
Wigner function formalism based on the action and angle variables is applied to the Kravchuk
oscillator and its continuous limit is examined.

1. Introduction

A satisfactory model of discrete and finite quantum mechanics can be based on correspondingly
discrete and finite phase space. The formulation of quantum mechanics on a finite-dimensional
phase space has commonly used the bases natural to the Fourier transform: circular functions
and Kronecker δ. This approach, for which some very early references exist [1], implies
that phase space is a toroidal lattice; the dynamical operators are elements of the discrete
unitary Weyl–Heisenberg group [2, 3]. In this paper, we use the Kravchuk functions [4],
the discrete and finite quantum harmonic oscillator functions studied by Atakishiyev and
Suslov [5], and recently used for optical models [6], to provide a pair of canonically conjugate
Weyl–Heisenberg operators. The advantage afforded by the Kravchuk basis over the Fourier
basis is that the Weyl–Heisenberg dynamical operators are those of the harmonic oscillator,
rather than those of the free particle.

In section 2 we follow the discretization of the harmonic oscillator Hamiltonian in the
way of Atakishiyev and Suslov [5]. The solutions of the discrete Schrödinger equation are
special orthogonal polynomials, with orthogonality and completeness relations on a discrete
set of points [4]. Particularly for the discrete and finite harmonic oscillator, the solutions are
Kravchuk functions [6]: the ground state is the square root of the binomial distribution (which
is in the class of ‘discrete Gaussians’), and the Hamiltonian has an equidistant quantized energy
spectrum, as the standard harmonic oscillator—but finite. These functions have recently been
used to describe an SU(2) group of optical Fourier-like transformations and, in particular,
the fractional Fourier–Kravchuk transformation [6]. This basis, its Fourier–Kravchuk, and its
standard Fourier transform are described in section 3.

Section 4 reviews the construction of the discrete, unitary Weyl–Heisenberg–Schwinger
representation of the canonical phase space operators [2, 3], which is now possible in the
Kravchuk basis, for a discrete subgroup of the Fourier–Kravchuk transform. The discrete
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Wigner function of the action–angle variables is computed for the Kravchuk basis in section 5.
It is shown to fulfill expectations for the action and angle intepretations of its marginal
distributions, including the case of split (‘Schrödinger cat’) states. In section 6 we build
the quantum phase operator for the Kravchuk oscillator and examine its time evolution. The
time evolution of the action–angle Wigner function is also examined. The continuum limit is
addressed in section 7 for the action–angle variables in the discrete Wigner function, for which
it is a proper limit. We summarize some conclusions in section 8.

2. The Kravchuk oscillator

In this section we will recapitulate the discretization of the quantum harmonic oscillator, as
formulated by Atakishiyev and Suslov in [5], and introduce the Kravchuk basis [4].

The stardard integrable solutions of the harmonic oscillator Schrödinger equation in the
x-representation (in the range −∞ < x <∞),

−i
∂

∂t

(x; t) = 1

2

(
− ∂2

∂x2 + x2

)

(x; t) = µn
(x; t) (1)

are found as 
n(x; t) = eiµnt
n(x) in terms of the well known Hermite functions and
eigenvalues


n(x) = 1√√
π2nn!

e−x2/2Hn(x) µn = n + 1
2 (2)

where µn are the energy eigenvalues in units of h̄ω.
To formulate the direct discretization of (1), we recall that the classical Hermite orthogonal

polynomials are solutions of the differential equation

d2yn(x)

dx2
− 2x

dyn(x)

dx
+ λnyn(x) = 0 λn = 2n (3)

with n = 0, 1, 2, . . . . Now consider a discrete subset of points x in steps of h, and
write x �→ xk = hk + xo, with k integer and xo arbitrary, but conveniently put to zero.
Correspondingly in (3), we write

df (x)

dx
�→ �f (xk) = 1

h
(f (xk+1)− f (xk)) (4)

d2f (x)

dx2
�→ �∇f (xk) ∇f (xk) = �f (xk−1). (5)

After substitution and for h = 1, (3) gives rise to a second-order difference equation which
relates the values of the solution at three equidistant points.

From the Hermite differential equation one obtains the Kravchuk difference equation
whose solutions are the Kravchuk polynomials

kn(xk,D) = (−1)n

2n

(
D

n

)
2F1(−n,−k; −D; 2) (6)

for D = 0, 1, 2, . . . . These are continuously defined for complex x, as all polynomials are,
but they satisfy the discrete orthogonality and completeness relations

D−1∑
k=0

ρ(xk)kn(xk,D)km(xk,D) = d2
nδn,m (7)

D−1∑
n=0

1

d2
n

kn(xk,D)kn(x�,D) = ρ(xk)δk,� (8)
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where the discrete measure and the normalization constant are binomial distributions,

ρ(xk) = (D − 1)!

2(D−1)xk!(D − 1 − xk)! d2
n = (D − 1)!

4nn!(D − 1 − n)! . (9)

The orthogonality relation is proven in a manner similar to the partial integration argument
used for the classical orthogonal polynomials. Note that the measure is nonzero for integer
0 � xk = k � D − 1, and the normalization is nonzero for 0 � n � D − 1.

The Kravchuk functionsKn(xk,D) are then built [6] to be orthonormal and complete with
respect to a unit measure. Thus,

Kn(xk,D) = 1

dn

√
ρ(xk)kn(xk,D) (10)

are a basis for the D-dimensional space of vectors. They are analytic on the slightly larger
interval (−1,D) (with branch-point zeros at the ends), and satisfy orthogonality relations on
the integers contained therein,

D−1∑
k=0

Kn(xk,D)Km(xk,D) = δn,m =
D−1∑
k=0

Kk(xn,D)Kk(xm,D). (11)

Their time-dependent discrete Schrödinger equation [5] can be found using (5) and
multiplying (3) by ρ(xk). One obtains

−i
∂

∂t
Kn(xk,D; t) = ĤDKn(xk,D; t) = µnKn(xk,D; t) (12)

where the discrete harmonic oscillator Hamiltonian is the difference operator with an equally
spaced spectrum corresponding to unit frequency,
√
ρ(xk)ĤD

1√
ρ(xk)

= −�
(
σ(xk)ρ(xk)∇ 1

ρ(xk)

)
+

1

2
µn = n + 1

2 (13)

where σ(xk) = xk here (we retained the standard general notation adopted in [4]). The
time dependence of the Kravchuk solutions of the discrete oscillator is Kn(xk,D; t) =
eiµntKn(xk,D), as was the case with the Hermite functions. The centre of the oscillator is
at the midpoint between 0 and D, namely at x = 1

2D; when D is even, this coincides with a
point in the set xk .

In figure 1 we plot a few of Kravchuk functions Kn(xk,D) for D = 61, joining the
values at the integers by straight lines. The lowest-n functions visibly resemble the harmonic
oscillator wavefunctions; the highest-n plots relate to the lowest ones through the symmetry
relation KD−1−n(xk,D) = (−1)kKn(xk,D). The Kravchuk functions also have definite
parity: Kn(D − 1 − xk,D) = (−1)nKn(xk,D). Finally, in the limit D → ∞, the Kravchuk
functions (10) approach the continuous Hermite–Gaussians (2),

lim
D→∞

( 1
2D)

1/4Kn

(
1
2D +

√
1
2Dx,D

)
= 
n(x). (14)

The Kravchuk functions for fixed D are also the unitary irreducible representation matrix
elements of the angular momentum group SU(2) for spin � = 1

2 (D−1) [4,5,7]. TheD → ∞
limit is then described by an Inönü–Wigner contraction of the SU(2) generators to those of
the Heisenberg algebra.

3. The Fourier–Kravchuk transform

The equidistance of the spectrum of the discrete Hamiltonian ĤD in the Kravchuk basis, (13),
permits its use to define a fractional Fourier-like operator F̂K , with all the desirable properties
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of (but distinct from) the standard Fourier transform F̂ . This is the fractional Fourier–Kravchuk
operator [6],

F̂α
K = exp

(
π

2
iα

(
ĤD − 1

2

))
. (15)

The Fourier–Kravchuk operators are unitary, and elements of a one-parameter cyclic group
parametrized by real α modulo 4,

F̂α1
K F̂α2

K = F̂α1+α2
K (composition)

(F̂α
K)

† = F̂−α
K = (F̂α

K)
−1 (unitarity and inverse).

(16)

The desirable Fourier-like properties occur for α ∈ {0, 1, 2, 3} = Z4, and are

F̂4
K = F̂0 = I (identity)

F̂2
K = P̂ (parity).

(17)

The parity operator P in (17) multiplies Kn by (−1)n, and thus has the same effect as the
inversion of the function in xk through 1

2 (D − 1). The eigenvalues of the Fourier–Kravchuk
operator (15) are e

π
2 in ∈ {1, i,−1,−i} for 0 � n � D− 1, so their multiplicities can be put in

terms of N = 0, 1, 2, . . . , distinguishing the cases by D modulo 4, as follows:

D 1 i −1 −i
4N N N N N

4N + 1 N + 1 N N N

4N + 2 N + 1 N + 1 N N

4N + 3 N + 1 N + 1 N + 1 N

(Fourier–Kravchuk).

The Fourier–Kravchuk transform should be compared with the Fourier transform operator
F̂ in the standardD×D matrix representation, whose elements are powers of theDth root of
unity ω = e−2π i/D , ωD = 1,

F̂ �→ 1√
D




1 1 1 · · · 1
1 ω ω2 · · · ωD−1

1 ω2 ω4 · · · ω2(D−1)

...
...

...
. . .

...

1 ωD−1 ω2(D−1) · · · ω(D−1)2


 = ‖ωkl‖√

D
. (18)

This matrix is unitary, symmetric and satisfies the properties (17). Its eigenvalues are also in
the set {1, i,−1,−i}, and with multiplicities which also grow in a modulo-4 fashion, but of
the form

D 1 i −1 −i
4N N + 1 N N N − 1
4N + 1 N + 1 N N N

4N + 2 N + 1 N N + 1 N

4N + 3 N + 1 N + 1 N + 1 N

(Fourier).

For even D, the multiplicities of the Fourier and the Fourier–Kravchuk matrices are different.
This is a strong selection rule against the existence of a unitary transformation between the
(F̂K)D and (F̂)D for even dimensions.

The discrete Fourier transforms of the Kravchuk functions with respect to the energy index
are given by

H�(xk,D) = (F̂K�)(xk,D) = 1√
D

D−1∑
n=0

ω−n�Kn(xk,D). (19)
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Figure 1. Kravchuk functions Kn(xk,D) given by (10)
and (6) for D = 61. From bottom to top, energy
index n = 0, 1, 2, . . . , 29, 30, 31, . . . , 58, 59, 60. The
Kravchuk functions are plotted for the integer values of
xk , k = 0, 1, 2, . . . , 60.

Figure 2. Fourier transforms of the Kravchuk functions
with respect to the energy index, H�(xk,D) given
by (19) for D = 61. From bottom to top, � =
0, 1, 2, . . . , 29, 30, 31, . . . , 58, 59, 60; the functions are
plotted for integer values of xk , k = 0, 1, 2, . . . , 60.

These are plotted in figure 2 in the order corresponding to figure 1. We want to emphasize that
we could not find a ‘closed’ expression for these functions (19). Indeed, several linear and
bilinear generating functions for Kravchuk polynomials can be found in the literature [4, 8],
but not the one needed for (19). This equation therefore defines what are probably new special
functions, which indeed are analytic on the interval (−1,D) and are complete and orthonormal
on the contained integers, namely

D−1∑
k=0

Hn(xk,D)Hm(xk,D) = δn,m =
D−1∑
k=0

Hk(xn,D)Hk(xm,D). (20)
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4. The finite Kravchuk canonical pairs of operators

In this section we summarize the construction of the analogue of the discrete unitary Weyl–
Heisenberg–Schwinger representations of the canonical phase space [2, 3], but in the discrete
Kravchuk basis.

We begin by noting that the set of fractional Fourier–Kravchuk operators F̂α
K , 0 � α < 4

given in (15), have a finite subgroup, CD of order D, for discrete α = αr = 4r/D with
0 � r � (D − 1). In the Kravchuk basis, the matrix representing F̂αr

K is diagonal,

F̂αr
K �→ diag(1, ωr, ω2r , . . . , ω(D−1)r ) ω = exp(−2π i/D). (21)

We define the unitary canonical partner Ôr of F̂αr
K through the standard Fourier transformation

F̂ in (18), as

Ôr = F̂F̂αr
K F̂−1. (22)

It is represented by the matrix of elements

(Ôr )k,� = 1

D

D−1∑
m=0

ωm(k−�+r) = δk+r,� (23)

where we consider the indices counted moduloD, i.e. k, r, � ∈ ZD . We note thatωD = F̂αD
K =

ÔD = 1.
Using (21) and (23) one can prove that

F̂αk1
K Ôk2 = ωk1k2Ôk2F̂αk1

K k1, k2 ∈ ZD (24)

namely that F̂αk1
K and Ôk2 are elements of the D-dimensional Weyl–Heisenberg group. As

a result of the Fourier transform in (22), the eigenfunctions of Ô are spanned by the set of
functions H�(xk,D) in (19).

The two orthonormal sets of functions Kn(xk,D) and H�(xk,D) are discrete functional
representations of the D-dimensional vector bases {|Kn〉}0�n�(D−1) and {|H�〉}0���(D−1),
where we find it advantageous to use the finite-dimensional Dirac ket notation. We thus
have

F̂αr
K |Kn〉 = ωnr |Kn〉 F̂αr

K |H�〉 = |H�−r〉
Ôr |Kn〉 = |Kn−r〉 Ôr |H�〉 = ω−r�|H�〉.

(25)

An irreducible unitary representation of the canonical Fourier–Kravchuk pairs (F̂αk1
K , Ôk2)

in the cyclic group CD can be obtained from (21) and from its Fourier transforms. The
generators of this cyclic group are the D ×D Weyl matrices [1]

F̂α1
K �→




1 0 0 · · · 0
0 ω 0 · · · 0
0 0 ω2 · · · 0
...

...
...

. . .
...

0 0 0 · · · ωD−1


 =

D−1∑
n=0

|Kn〉ωn〈Kn|

Ô �→




0 1 0 · · · 0
0 0 1 · · · 0
...
...
...
. . .

...

0 0 0 · · · 1
1 0 0 · · · 0


 =

D−1∑
n=0

|Kn〉〈Kn+1|.

(26)

A convenient phase space representation of the Kravchuk oscillator can be constructed with
the Schwinger operators [1]

Ŝ�k = ωk1k2/2F̂αk1
K Ôk2 �k = (k1, k2) ∈ ZD × ZD. (27)
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The discrete-unitary-cyclic Schwinger operator basis (27) has the following properties which
can be deduced from (21), (23) and (25),

Ŝ�kŜ�k′ = ω�k×�k′/2Ŝ�k+�k′ (composition)

Ŝ�kŜ−�k = Ŝ�0 = I (unit and inverse)

(Ŝ�kŜ�k′)Ŝ�k′′ = Ŝ�k(Ŝ�k′ Ŝ�k′′) (associativity) (28)

Ŝ
†
�k = Ŝ−�k (unitarity)

TrŜ�k = Dδ�k,�0 (trace)

where �k × �k′ ≡ (k1k
′
2 − k2k

′
1). The first property states that Ŝ�k is a projective representation

of the Weyl–Heisenberg algebra generated by the operators F̂α1
K and Ô. WhenD is prime, the

representation is irreducible. The trace identity ensures the orthogonality of the basis.

5. Action–angle Wigner function of the Kravchuk oscillator

The finite D-dimensional Kravchuk oscillator Hamiltonian ĤD was connected with the
fractional Fourier–Kravchuk operators F̂αk1

K and Ok2 by (15) and (22). The Schwinger operators
(27) are therefore a natural action–angle basis for the Kravchuk oscillator. We introduce now
the discrete action–angle Wigner function [2,3] based on this discrete-unitary-cyclic Schwinger
basis as the expectation value of the operator [2, 3]

�̂(n1, n2) = 1

D2

∑
�k∈ZD×ZD

ω
�k×�nŜ�k �n = (n1, n2) ∈ ZD × ZD (29)

with ω = exp(−2π i/D) as before. For a state |ψ〉, the Wigner function is

W(ψ |n1, n2) = 〈ψ |�̂(n1, n2)|ψ〉 n1 angle
n2 action

(30)

�→ 1

D2

∑
�k∈ZD×ZD

ω
�k×�n+k1k2/2〈ψ |F̂αk1

K Ôk2 |ψ〉. (31)

We choose the normalization such that
∑
n1,n2

W(ψ |n1, n2) = 1 for normalized states ‖|ψ〉‖ =
1. The Wigner function is periodic on the toroidal lattice ZD × ZD: W(ψ |n1 + D, n2) =
W(ψ |n1, n2 +D) = W(ψ |n1, n2). The properties of the kernel operator �̂(n1, n2) in (30) have
been studied in [2,3], where it was shown that it complies with all the fundamental properties
of a phase space distribution function [9]. In the following we find the Wigner function of
the action and angle eigenvector bases. We will be interested specifically in systems with one
degree of freedom and choose D to be prime.

When the state of the system is Km, a Kravchuk eigenfunction of the Hamiltonian, from
(27), (29) and (30), we find

W(Km|n1, n2) = 1

D
δn2,m. (32)

On the other hand, when the state is the Fourier transform over the energy values, H� in (19),
the Wigner function is

W(H�|n1, n2) = 1

D
δn1,�. (33)

These result confirmKm in (32) as a finite-dimensional ‘action-eigenstate’ for which the angle
distribution is uniform, and H� in (19) as a ‘angle-eigenstate’, independent of action.
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Another example of the discrete action–angle Wigner function is when |ψ〉 is a split
Kravchuk state defined in analogy with the split photon states in quantum optics [10] (more
commonly called ‘Schrödinger cat’ state) and given by

|ψSC
m1,m2

〉 = 1√
2
(|Km1〉 ± |Km2〉) m1 �= m2. (34)

The corresponding discrete Wigner function is the sum of the Wigner functions of the
summands, plus an interference term (also called the ‘smile of the cat’ term):

W(ψSC
m1,m2

|n1, n2) = 1

2D

[
δn2,m1 + δn2,m2

± 2

D

(D−1)/2∑
r=−(D−1)/2

ωr[n2−(m1+m2)/2] cos

(
2π

D
n1(m1−m2)

)]
. (35)

This Wigner function is of the same form as the well known continuous one; they exhibit two
discrete-δ lines at n2 = m1 and n2 = m2, and a ‘smile’ function on the line in the middle of
the two; the ‘teeth’ of the smile are the oscillations of the cosine function. The farther apart
m1 and m2, the greater number of teeth in a length of the smile; in the discrete case (since
m1 −m2 is an integer) the smile is periodic and contains only a whole number of teeth.

The marginal distributions (or projections) of the split-state Wigner function (35) on the
action and angle variables are respectively

M2(ψ
SC
m1,m2

|n2) =
D−1∑
n1=0

W(ψSC
m1,m2

|n1, n2) = 1
2 (δn2,m1 + δn2,m2) (36)

M1(ψ
SC
m1,m2

|n1) =
D−1∑
n2=0

W(ψSC
m1,m2

|n1, n2) = 1

D
[1 ± cos(γ0n1(m1−m2))]. (37)

The marginal distribution of the action variablen2 is consistent with |ψSC
m1,m2

〉 being a symmetric
mixture of two pure action states. On the other hand, the marginal probability distribution in
the angle (phase) variable n1 contains the interference between the pure action states. It is clear
that the Wigner function and the marginal probabilities in (35)–(37) are properly normalized.

6. The quantum phase operator for the Kravchuk oscillator and its time evolution

Let us recapitulate the reasons for the construction of well defined action (Hamiltonian) and
angle operators, since it is the latter which is not satisfactorily defined in the continuum case.
In [2,3] it was shown that a quantum action–angle formalism is equivalent to the formulation of
the quantum phase problem in phase space. The search for the quantum phase of the standard
harmonic oscillator is obstructed by the fact that the standard oscillator Hamiltonian (which
we symbolically denote by Ĥ∞) is invariant under the Fourier transformation.

The solution to the phase operator problem for the quantum harmonic oscillator is made
possible by working in finite-dimensional spaces, for which the canonical algebraic formulation
provides the unitary canonical pair. Of particular interest to this approach are the Hamiltonians
for which a unitary canonical partner exists for all dimension D. The Kravchuk oscillator
Hamiltonian ĤD in (13) is one example in the set of such Hamiltonians, whose discrete
spectrum is naturally equidistant. We also note here that the Kravchuk oscillator eigenstates
are the natural basis for the finite-dimensional ‘truncated’ Hilbert space formalism introduced
by Pegg and Barnett [11].
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We now examine the time evolution of the quantum phase operator Ok in (22) generated
by the Kravchuk oscillator ĤD , identified via [3] with its unitary canonical partner. From (15)
we find its time evolution to be

Ôk(t) = eiĤDtÔke−iĤDt . (38)

Its matrix elements in the Kravchuk basis can be found using (25); they are

〈Kn|Ôk(t)|Km〉 = ei(µm−µn)t 〈Kn|Ôk|Km〉
= eikt δm,n+k n,m, k ∈ ZD. (39)

Therefore, the time evolution of the exponential phase (angle) operator is given by the classical
result.

We now examine the time dependence of the action–angle Wigner function for the
Kravchuk oscillator. The time dependence of the Wigner function is calculated by

W(ψ |n1, n2; t) = 〈ψ |eiĤDt�(�n)e−iĤDt |ψ〉. (40)

It can be directly checked that the Wigner function in pure action state has no time depedence.
This result can be obtained very easily once the state Km is inserted into (40) instead of (30).
Since the time evolution of the pure states does not affect the Wigner function, we will instead
show the time dependent action–angle Wigner function initially prepared in a split (Schrödinger
cat) state |ψSC

m1,m2
〉 in (34). A simple calculation yields

W(ψSC
m1,m2

|n1, n2; t) = 1

2D

[
δn2,m1 + δn2,m2

± 2

D

(D−1)/2∑
r=−(D−1)/2

ωr[n2−(m1+m2)/2] cos((γ0n1−t)(m1−m2))

]
(41)

for which we obtain the marginal distributions

M2(ψ
SC
m1,m2

|n2; t) = 1
2 (δn2,m1 + δn2,m2) (42)

M1(ψ
SC
m1,m2

|n1; t) = 1

D
[1 ± cos((γ0n1 − t)(m1 −m2))] (43)

where both distributions are appropriately normalized. We observe that the action distribution
(42) is time independent, whereas the angular distribution rotates (43) with unit frequency (as
assumed in (13)) as

θn1(t) = θn1(0)− t where θn1(0) = γ0n1. (44)

7. The continuum limit

As shown in (14), the Kravchuk functions have a well defined limit, when D → ∞ [4–6],
to the continuous Hermite functions of the standard quantum oscillator. Hence, in this limit
the matrix elements of the unitary operator Ô in (39) are also well defined. However, the
Hamiltonian ĤD has a singular behaviour in this limit, at which it becomes a fixed point in the
Fourier automorphism generated by F̂ .

There are several ways to obtain continuous limits for the discrete Wigner function in (29),
(30). One way is to replace in the operator (29) the discrete index n1 by the continuous one
θ = limD→∞ 2π [n1 − (D − 1)/2]/D and keep the other one discrete as J = n2, so that
−π � θ � π becomes an angle. Let us also similarly use a symmetric range for J as
−(D − 1)/2 � J � (D − 1)/2. We write the operator

�̂D(θ, J ) = 1

2πD

∑
�k

ei(2πk1J/D−k2θ)Ŝ�k (45)
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to find the limit of the Wigner function

W(ψ |θ, J ) = lim
D→∞

〈ψ |�̂D(θ, J )|ψ〉. (46)

We have changed the normalization of (45) in compliance with the continuum Wigner function
normalization [9], given by

∫ π
−π dθ

∑∞
J=−∞W(ψ |θ, J ) = 1. Another adaptation is that the

sum over �k in (45) will also be performed over the symmetric range − 1
2 (D − 1) � k1, k2 �

1
2 (D − 1). Since we confine our attention to systems with D prime, the limit is understood to
occur over the range of primes.

In the action (Kravchuk) basis, where ψ = Km, we can use (25) and (29) to perform the
following straightforward calculation:

W(Km|θ, J ) = lim
D→∞

1

2π

1
2 (D−1)∑

k=− 1
2 (D−1)

e−ikθ 〈Km|Ô−k/2|KJ 〉〈KJ |Ô−k/2|Km〉

= lim
D→∞

1

2π

1
2 (D−1)∑

k=− 1
2 (D−1)

e−ikθ 〈Km|KJ−k/2〉〈KJ+k/2|Km〉 (47)

= lim
D→∞

1

2πD

1
2 (D−1)∑

k=− 1
2 (D−1)

e2π ik(J−m)/D = 1

2π
δJ,m. (48)

In the above derivation, in (47) it must be noted that the statesKJ−k/2 andKJ+k/2 are fractionally
shifted Kravchuk states; for a general discussion on the finite-dimensional fractionally shifted
orthonormal sets, see [2]. Equation (48) leads to the expected result that the phase is uniformly
distributed over the 2π -range of θ and the action variable J has a distribution given by the
discrete delta function.

For split Kravchuk states (34), where now m1,m2 ∈ Z, m1 �= m2, we calculate the time
dependence of the continuous Wigner function. Using (34) we find [3]

W(ψSC
m1,m2

|θ, J ; t) = lim
D→∞

1

2π

1
2 (D−1)∑

k=− 1
2 (D−1)

e−ikθ 〈ψ |KJ−k/2〉〈KJ+k/2|ψ〉

= 1

4π

{
δJ,m1 + δJ,m2 ± 2

∫ π

−π

dγ

2π
eiγ [J−(m1+m2)/2] cos[(θ − t)(m1 −m2)]

}
.

(49)

Finally, the marginal distributions in the action and phase variables are

M2(ψ
SC
m1,m2

|J ) =
∫ π

−π
dθW(ψSC

m1,m2
|θ, J ) = 1

2 [δJ,m1 + δJ,m2 ] (50)

M1(ψ
SC
m1,m2

|θ) =
∞∑

J=−∞
W(ψSC

m1,m2
|θ, J ) = 1

2π
[1 ± cos((θ−t)(m1−m2))] (51)

which are the correct distributions for a split state [10]. The action distribution is time
independent, whereas the angular distribution advances as θ(t) = θ − t . This implies that the
action–angle Wigner function traces in time a circle in phase space of radius J and phase θ(t)
rotating uniformly with unit frequency.

8. Conclusions

We have examined the action–angle quantum phase space formulation of the discrete, finite
harmonic oscillator in the Kravchuk basis. It was shown that the Kravchuk oscillator
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Hamiltonian has a unitary canonical partner in the standard Fourier sense for all finite
dimensions. The infinite-dimensional limit yields another canonical algebraic approach to the
quantum phase problem of the harmonic oscillator [2, 3]. We suggest [12] that the absence of
the standard quantum oscillator phase operator is connected with the fact that its Hamiltonian
is invariant under the Fourier transformation, which manifests itself as a singularity in the
D → ∞ limit.

The direct discretization method has much to offer in the understanding of discrete
quantum mechanics. In particular, a canonical algebraic extension of the Kravchuk formalism
to other cases has not been studied yet. We expect that this extension, which was the basic
motivation of this work, should bring additional insight to the discretization process.
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