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The mode analysis of signals in a multimodal shallow harmonic waveguide whose eigenfrequencies are equally
spaced and finite can be performed by an optoelectronic device, of which the optical part uses the guide to
sample the wave field at a number of sensors along its axis and the electronic part computes their fast Fourier
transform. We illustrate this process with the Kravchuk transform. © 2000 Optical Society of America
[S0740-3232(00)00408-7]
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The analysis of a signal into its orthogonal component
modes is a well-known task when the basis of the modes
is the set of oscillating exponential functions, which is
called Fourier analysis. In this case, an efficient numeri-
cal algorithm (the fast Fourier transform) and paraxial
optical setups exist that perform the harmonic analysis
satisfactorily on digital and continuous analog signals, re-
spectively. When the mode basis is different from these
harmonics, the digital or analog analysis becomes less ef-
ficient. For the numerical (i.e., digital) evaluation of the
discretized Hankel transform, see Ref. 1 and references
therein. The task to obtain the Hermite–Gauss and
Laguerre–Gauss coefficients of continuous signals was
considered recently in Ref. 2.

The question of how to discretize the fractional Fourier
transform has brought to the fore several discrete and fi-
nite function (or vector) bases that purport to approxi-
mate the quantum harmonic-oscillator Hermite functions,
since the latter self-reproduce under the fractional Fou-
rier integral transform. The mode analysis of N-point
signals in discrete bases is arduous because the trans-
forming matrix elements do not have the simple product–
sum property of the oscillating exponentials. There ap-
pear more complicated functions,3–6 including
polynomials,7 whose algorithmic efficiency (with a precon-
structed matrix) is ;O(N2).

In this communication we propose an ideal optoelec-
tronic device8: a multimodal waveguide with wave-field
sensors on a line along the guide, to perform discrete non-
Fourier mode analysis in conjunction with the fast-
Fourier-transform algorithm. The waveguide must be
harmonic: an optical medium characterized by a self-
adjoint evolution Hamiltonian H, with discrete modes
whose eigenfrequencies (eigenenergies) are equally
spaced and have a lower bound. Its eigenmodes fm cor-
respond to the eigenvalues ;m 1 constant, for m
5 0, 1, 2, ... . In realistic optics, moreover, m will have
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an upper bound N, so we need not search for more than
N 1 1 coefficients, and measurements need not be done
with more than N 1 1 field sensors.

Let fm(n) be the (complex) value of the mth mode mea-
sured at the nth sensor of a line array across the
waveguide—a discrete screen at z 5 0. The sensors
must naturally be finite in number and placed within the
bounds of the physical waveguide; if the waveguide is
symmetric under reflections across the z axis, it is
convenient to number them as n P $2

1
2 N, 2

1
2 N

1 1 ,..., 1
2N%. We build fm as a column vector of N

1 1 components, which satisfies the orthogonality and
completeness properties of an orthonormal basis,

fm
† fm8 5 dm,m8, (

n52N/2

N/2

fm~n !* fm8~n ! 5 dm,m8 , (1)

(
m50

N

fmfm
† 5 1, (

m50

N

fm~n !* fm~n8! 5 dn,n8 , (2)

where the dagger indicates adjunction, the asterisk rep-
resents complex conjugation, and 1 is the unit matrix.
This eigenbasis of the harmonic waveguide Hamiltonian
is invariant (but for phases) under translations by z along
the guide,

Hfm 5 ~m 1 k!fm⇒fm~z ! 5 exp~2izH !fm

5 exp~2izk!exp~2izm !fm , (3)

where k is the space frequency of the ground mode f0
along the z axis.

Thus let $f(n)%2N/2
N/2 be an arbitrary signal f measured at

the z 5 0 screen. This signal can be analyzed into, and
synthesized from, the mode eigenbasis with waveguide
coefficients, denoted $f m

w %0
N , by means of a unitary

waveguide-transform matrix W 5 ifm(n)* i , in the fol-
lowing way:
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f w 5 Wf, f m
w 5 (

n5N/2

N/2

fm~n !* f~n !, (4)

f 5 W†f w, f~n ! 5 (
m50

N

fm~n !f m
w . (5)

The task is to find the waveguide coefficients $f m
w %0

N with-
out having to compute the (N 1 1)2 products of the com-
ponents of f with the elements of the transform matrix W,
i.e., to find a faster transform.

The optical part of our ideal apparatus will perform
what we can call the fractional Fourier waveguide trans-
form Fz by propagation along the waveguide axis. First,
we note that, owing to Eq. (3), a signal f in the guide will
evolve to f(z) at distance z, and this is

f~z ! 5 Fzf,

f~n, z ! 5 exp~2izk! (
m50

N

exp~2imz !fm~n !f m
w

5 exp~2izk! (
n852N/2

N/2

Fz~n, n8!f~n8!, (6)

Fz 5 iFz~n, n8!i ,

Fz~n, n8! 5 (
m50

N

fm~n ! exp~2imz !fm~n8!* . (7)

It has the desirable generic properties of group composi-
tion, Fz1Fz2 5 Fz11z2 modulo 2p (i.e., F2p 5 F0 5 1),
and unitarity, (Fz)21 5 F2z 5 (Fz)†.

Next, observe that the middle expression of Eq. (6) is
also the ordinary finite Fourier transform of fm(n)f m

w at
the N 1 1 equidistant screens,

zk 5 2pk/~N 1 1 !, k 5 1, 2 ,..., N 1 1. (8)

Finally, we divide (if nonzero) by fm(n) to obtain the
waveguide coefficients,

f m
w 5

exp~izkk!

fm~n !
(
k50

N

exp@2pimk/~N 1 1 !#f~n, zk!. (9)

And so the result of the previous waveguide computation
is now subject to the fast-Fourier-transform algorithm.
The divisions in Eq. (9) require N 1 1 operations, which
add to the ;N log2 N operations of the digital algorithm;
the parallel optical part could be considered costless,
since it occurs at the speed of light in the medium.

Thus, for every chosen n, a set of sensors placed on N
1 1 screens at z 5 zk , k 5 1, 2, ..., N 1 1 along the
waveguide—with the same position n—yield the wave-
guide coefficients f m

W , as was the objective. Only when
the number of sensors is odd (and thus n 5 0 is among
them) shall we meet the impediment fm(0) 5 0 for all
odd m. Experimentally, the values of $fm(n)%m50

N could
be measured by successively exciting the N 1 1 eigen-
modes of the waveguide.

We were led to this general strategy for discrete and fi-
nite sensor arrays following the continuous and infinite
mode analysis of Ref. 2 because the finitely sampled
harmonic-oscillator wave functions are not orthogonal, as
is well known, and because several finite orthonormal
bases that broadly resemble the Hermite functions re-
quire a fair amount of numerical work.4,6

In Ref. 7 Atakishiyev and Wolf proposed the Krav-
chuk and the fractional Fourier–Kravchuk transforms,
which are based on a group-theoretical analysis of the
harmonic-oscillator Newton equation.9 The Kravchuk
functions are proper functions of a continuous argument
that form a finite orthonormal eigenbasis of a difference-
operator Hamiltonian10; they contain the Kravchuk poly-
nomials, which are orthogonal with respect to the bino-
mial distribution on N 1 1 points11; in a well-defined
limit N → ` they converge pointwise to the Hermite
functions. When this interpolating wave field advances
along the waveguide, it undergoes the fractional Fourier–
Kravchuk transform; this has a claim to provide a physi-
cally meaningful approximation to real waveguides be-
cause it correctly reproduces the behavior of its coherent
states.12,13 The analysis involves the ordinary rotation
group, and the Kravchuk functions are classified accord-
ing to spin l 5

1
2N. This Kravchuk basis, and its finite

Fourier transform, have been used recently to study the
phase-space picture of discrete, finite quantum mechan-
ics, through a proper discrete (action-angle) Wigner
function.14

The elements of the irreducible unitary representation
matrices dl(u) 5 idm,m8

l (u)i of rotations around the 2-axis
by u satisfy composition and there hold discrete orthonor-
mality and completeness relations,

(
m852l

l

dm,m8
l

~u!* dm9,m8
l

~u! 5 dm,m9
l

~0 ! 5 dm,m9 . (10)

These are the well-known Wigner little d’s [Ref. 15, Eq.
(3.65)], which naturally match the orthogonality and com-
pleteness relations Eqs. (1) and (2) for N 5 2l. For u

5
1
2p, they are the (real, symmetric) Kravchuk functions

defined by Refs. 7 and 12,

fm~n ! 5 ~21 !l2mdn,l2m
l S 1

2
p D

5
1

2 l2m F S 2l
l 1 n D Y S 2l

m D G1/2

km~l 1 n, 2l !,

(11)

km~x, 2l ! 5
~21 !m

2m S 2l
m D 2F1~2m, 2x; 22l; 2 !, (12)

where km(x, 2l) are the Kravchuk polynomials.11 When
n is taken to be a continuous variable denoted x, the
Kravchuk functions [Eq. (11)] are well defined in the in-
terval 2N 2 1 < x < N 1 1, with branch-point zeros at
the ends. The Kravchuk transform is performed with the
matrix W 5 ifm(n)i ; since its elements are real, this
Kravchuk matrix is orthogonal.

The optoelectronic device we describe here will find the
Kravchuk mode coefficients [Eq. (4)]. The optical part of
the device propagates the signal along the axis of the
waveguide, where it undergoes a fractional Fourier–
Kravchuk transform with the generating function [Eq.
(7)]. [This Kravchuk kernel has in fact a closed expres-
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sion in terms of a nonsymmetric Kravchuk polynomial
and trigonometric functions that we need not write here;
see Ref. 7, Eq. (5.3).] The wave field is sampled along the
line of sensors n and fed into the electronic part, which
performs the fast Fourier transform. We recall that the
Kravchuk transform can be performed with the
Feinsilver–Schott algorithm,12,16 which is disarmingly
simple but not fast (;N3) and also through matrix mul-
tiplication (;N2) with closed analytic expressions. Or it
can be performed with the ideal optoelectronic device
built here, where the optical component is costless and
the electronic algorithm is fast (;N log2 N).
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