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respectively. Then the integral (5.1) reads 

¢( y y) = JOO dx e iXlOYlOjOO dx e iX 20Y20 
l' 2 0 10 0 20 

X JOO dlx111 x l 12J dQ,lj<X> dlx211x212 
o ° 

x J dQ,2 e-iIX21IY2IcOse26(x~)6(x~) 

x 6[(x 1 -x2)2]¢(x lO ,x20 , Ix11, Ix21,Q,11Q,2)' 
(5.21) 

Using the 6 functions to perform some of the integra­
tions and defining 

We get from Eq. (5. 21) 
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We construct a realization of the U. ,1 and lU. groups as multiplier representations of the space of functions 
on the Un group manifold. Making use of the orthogonality and completeness of the U. unitary irreducible re­
presentation matrix elements (UffiME' s), we are able to express the U •. 1 boost and IU. translation matrix 
elements (the generalized Wigner d-functions) of the principal series of urn's as an integral over a compact 
domain (unit disc) of two U. d-functions, phases, and the multiplier. This is an extension to the unitary groups 
of a method previously used [J. Math. Phys.12, 197 (1971») to find the SO.' SO •. 1> and ISO. UffiME's in a re­
cursive fashion. We establish a number of symmetry properties, the asymtotic (Regge-like) and contraction 
(U ft ,1 --> lU.) behaVior of these functions. 

1. INTRODUCTION 

The unitary and pseudo-unitary groups in nuclear 
and elementary-particle physics have been used 
mainly through the associated Lie algebra. 1 The 
states of a system are identified with the components 
of the bases for unitary irreducible representations 
(Urn's) classified in some mathematically conven­
ient or physically relevant chain of subalgebras. In­
teractions are then represented by operators with 
either irreducible tensor properties under the group 
or constructible in some simple fashion out of the 
universal enveloping algebra. Thus, the Wigner coef-

J.Math.Phys., Vol. 13,No. 10, October 1972 

ficients and the matrix elements of the generators of 
the Lie algebra2 have played the main role in the ap­
plications of unitary groups. 

The orthogonal, pseudo-, and inhomogeneous-ortho­
gonal groups, on the other hand, have been widely used 
in connection with their finite transformations, either 
as a geometry group or in harmonic analysis on the 
502 1 and 503 1 groups, whose um matrix elements 
(ME" s) constitUte a "best set" of functions in which 
to expand high-energy scattering data. 3 Also, a num­
ber of field theories have made use of the Poincare 
group (15° 3 ,1) manifold. 4 
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There has been a corresponding increase of interest 
in considering the UIRME's-the generalized D and 
d-functions-as "special functions," 5 that is, as or­
thogonal and complete6 sets of functions in terms of 
which one can expand any well-behaved function on 
the group manifold which, furthermore, due to the 
group properties, exhibit summation and recursion 
formulae, the emphasis being placed not so much in 
their explicit expressions which, like the series ex­
pansion of a Bessel function, provides at best a limit­
ed insight into the aforementioned properties, but in 
the relations between functions which these properties 
imply. 

It was in this spirit that we treated in Ref. 7 the 
generalized Wigner d-functions for the SOn,SOn,l' 
and [SOn groups.8 In the present paper we apply the 
techniques developed in Ref. 7 to the unitary (Un)' 
pseudo-unitary (Un.l)' and inhomogeneous unitary 
(IU n) groups. As the method is essentially parallel, 
we shall skip most of the introductory material on 
multipliers as well as the detailed description of the 
Un manifold and representation theory. In these, we 
use the concepts introduced in Ref. 9, giving a sum­
mary of notation in Sec. 2. 

The U 2 UIRME's are essentially the classical Wigner 
d-functions.Beg and Ruegg10 and T.J.Nelsonll stud­
ied the U 3 harmonic functions, the analog of the S03 
spherical harmonics on the (five-dimensional) mani­
fold of the complex 3-sphere C3 ~ U2\U3 , the eigen­
functions of the Laplace-Beltrami operators of the 
manifold. Using these techniques, Fischer and R~czka 12 
gave explicit expressions for the U and Up har­
monic functions. These can be used in orderQto find 
the UIRME's themselves, as was done by Holland13 
for SU 3 and by Delbourgo, Koller, and Williams14 for 
SUn' This technique, however, can only give the 
[JIJ···J I n] UIR's of the general Un in> 3) groups 
since 9 only these can be realized on the C n ~ Un - 1\ 
Un homogeneous space. 

A different line of approach was followed by Chac6n 
and Moshinsky,15 who expressed the general U3 trans­
formation as a product of several U 2 transformations 
and transpositions. This method was extended to Un 
by Flores and Niederle. 16 Taking these d-functions 
as known, our approach hinges in defining the action 
of a Un, 1 group as a group of transformations of the 
Un manifold such that, while the canonical Un sub­
group of Un ,l produces "rigid" mappings (leaving 
the Haar measure invariant), the boosts of U 1 pro-n, 
duce "deformations" of the manifold. This is detailed 
in Sec. 3. By considering those transformations 
which commute with the canonical U

n
_1 subgroup, 

it is sufficient to define the" deformation" on the 
G~ ~ Un -1 \ Un manifold. This leads to a multiplier 
representation and to the expression, in Sec. 4, of 
the Un,l d-functions of the principal series of 
UIR's17.18 in terms of an integral over a compact 
domain of two Un d-functions, phases, and a multiplier. 
Some properties of the d-functions are exhibited in 
Sec.5. In Sec. 6, a similar procedure gives the IU 
d-functions. These are checked to correspond to n 

contractions19 of the Un ,I d-functions. 

The formalism works best when we use the unitary 
analog of the Euler angles, 15 ,20 the" last latitude" 
angle in Un ,I being a boost and, in IU ,a real trans­
lation. As for the orthogonal groups, 't we want to 

emphasize that our procedure gives the Un ,I princi­
pal series of UIRME's classified by the canonical 
chain of subgroups. Several properties are apparent 
from the integral form. This method seems to be ex­
tendable to other groups and manifolds in essentially 
the same form. 

2. THE UNITARY GROUP MANIFOLDS AND REPRE­
SENTATIONS 

The Euler-angle parametrization15,20 of Un can be 
defined, enclosing collective variables in curly brac­
kets: 

Un ({<t>, e}(n») = Un_1 ({<t>, e}(n-l)) Cn ({<t>(n), e(n)}), 
(2.1a) 

Cn ({<t> (n), e(n)}) 

_ {(n») {(n»)c {{ (n) (n)} - cP n <t>n r n-1,n en- 1 n-l <t> ,6 ), (2.1b) 

(2.1c) 

where r pq(e) are rotations bye in the p-q plane of an 
n-dimensional complex coordinate space Zn :3 Z, and 
<J>k{<t» are phase rotations by <t> in the kth coordinate. 
Defining 

Z{{ <t>, e}) = cn ({<t>, e})-1zo 

for a fixed Zo E zn, we introduce complex- spherical 
coordinates in zn as 

Zk({<t>, e}) == rk{{<t>})e-i\l>k= re-i(¢n+"'+¢k) 

x sin6n_1" . sin6k cos6k_V (2.2a) 

for k = 2, ... , n - 1. For k = 1 we can put formally 
eo == O,while for k= n 

Zn{{<t>, e}) == rn{{e})e-i\l>n = re-i¢n cosen_ 1. (2.2b) 

ChOOSing the ranges15 6 i E: [0,1T/2] (i = 1, ... , n - 1), 
<t>j E [0, 21T) (j = 1, . ", n), we give to r l{e}) the mean­
ing of the modulus of Z and t/J k as its phase. 

For fixed r we have the (2n - I)-dimensional mani­
fold of the complex n-sphere Cn ~ Un _ 1 \ Un with 

(2.3a) 

dllk{¢k.eH) = sin2k-3ek_l cosek-1d<t>kdek_1' (2.3b) 

dc 1 {{<t>,·})=dIl 1 {<t>I,·)=d<t>1' (2.3c) 

and through (1.1) we construct the Haar measure for 
Un' Integrating (2. 3) over Cn we find its area to be 
ICn I = 21Tn/r(n). The volume of Un is,from (2.1), 
voW n = voW n -1' 1 C n I, volU 1 = 21T. 

For the Un -1,1 group, the rotation angle in the 
{n - l)-n plane in (1. 1b) is replaced by a boost 
b n -I,n (~), ~ E: [0, oc) in that plane, while for the IU n-1 

group, it is replaced by a real translation tn -1 (~), 
~ EO [0, oc) in the (n - l)th direction. 

The Un Gel'fand kets2,21 will be abbreviated7 

I I n , I n_1), where I n == [In . l' I n,2' ••• ,In,n] labels the 

UnUIR and I n - 1 its row index: I n - 1 == {In- 1,Jn- 2, 
... ,J I}' where J k denotes the UIR of the canonical 
Uk subgroup of Un' The individual labels J km obey 
the known "zig-zag" inequalities 
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Jk,m -1 ? J k- 1 ,m-1 ? J k,m' n ? k ? nz ? 2. (2.4) 

The Un representation D-matrices are thus labeled 
as 

D~:_l.-Jh_l [Un ({cp, e}(n»)) 

== (JnJ n- 1 Iun({cp, e}(n» IJnJ~-l)' (2.5) 

and can be decomposed through (1. 1) into sums of 
products of the phase functions 

P~L (cp) == (JkJk-11<I>k(CP)IJkJk-1)' (2.6) 

which are diagonal and independent of the U m (m > k 
and m < k - 1) labels, and the generalized Wigner d­
functions 

dJ k (e) 
J k -1,J k - 2 ,J'k-l 

== (Jk J k _ 1 J k- 2 lr k-1,k(e) IJkJ'k-1J k-2), (2.7) 

diagonal in the Uk and U k-2 UIR labels and indepen­
dent of the U (m > k and m < k - 2) labels. The Un 
D-functions (2.5) are orthogonal and complete on the 
Un manifold with the Un Haar measure and the Plan­
cherel weight dimJ/volUn• 

For the Un - 1•1 and IUn - 1 groups, the Gel 'fand pat­
terns 17,18 are similar to the Un ones, except for the 
labels J n1 and J nn which are,in general,complex and 
do not abide (1. 4). The representations are thus in­
finite-dimensional. The d-functions we want to cal­
culate , which we shall denote by Pd and ld for the 
pseudo- and inhomogeneous-unitary groups, are the 
matrix elements respectively, oflhe boost b(~) and 
the real translation t(~) in the corresponding Euler­
angle parametrization. 

3. THE Un ,1 ALGEBRA AND MULTIPLIER REPRE­
SENTATION 

The set of operators on the complex n-space zn 
~ k := Z _a_ _ k ~ (3. 1) 

j j az k Z azJ 

with Zk = Zk (complex conjugation) ,have the well­
known commutation relations of the generators of the 
un algebra. 21 They leave the n-sphere Cn ~ U n- 1',Pn 
invariant. If we add the Zk and zk (k = 1, ... , n) to 
the set (3.1), we have the generators of an iUn alge­
bra. USing the second-order Casimir operator 

(3.2) 

(sum over repeated indices, unless otherwise indicat­
ed), we can construct, out of the universal enveloping 
algebra of iun, the operators 

(o)e~+l:= ~['l1(n) ,Zk] + aZk = zle 1
k + (~n + a)zk' 

(3.3a) 

(0)e:+ 1 == i['l1(n),zk] + a zk = Zl el + (-~n +a)zk, 

(3.3b) 

( o)e ~ : i == [(")e: + 1, (o)e nk + 11 - <.S % = z ZZ j e j + (a + u) 

(3.3c) 

(no sum over k), where a is an (as yet) arbitrary com­
plex number. As the notation suggests, (3. 3) together 
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with (3. 1) generate au 1 algebra which leaves C 
invariant with r = 1. E~ch value of a gives a diffe~ent 
set of generators which will produce a corresponding­
ly distinct urn, as can be seen from the u 1 Casimir n, 
operator 

lJI(n,l)(a) = 'l1(n,1)(O) + a 2 + (12 (3.4a) 

and the unitary invariant 
n 

n(n,l):=2:: e~-~~!i=-a-a. (3.4b) 
k o 1 

We can build an SOn, 1 C Un ,1 subalgebra generated 
by 

M. k := e. k - e k (1.:; j < k .:; n) 
J J ) 

(3.5a) 

and 

(o)M k ,n+1 == (o)e n
k+1- (0)8:+ 1 (k = 1, •. . ,n), 

(3.5b) 

anti-Hermitean under the measure (2.3). The opera­
tors (3. 5a) will generate boosts in the kth direction. 
Now, since (o)Mn ,n+1 commutes with the genera-
tors of u n-1' its action on Un can be fully studied as 
the action on C n ~ Un _ 0 Un' It is sufficient, there­
fore, to construct (0 lM.n ,n + 1 in terms of the complex­
spherical coordinates (2.2). Direct calculation through 
(2.2), (3.1), (3. 3), and (3. 5b) yields 

(olM . e A.. a 
n,n+1 = sln n-1 cos'!-'n ae

n
-

1 

+ (sece n_1 + cosen_ 1)sincpn a!n 

• A.. a - secB
n

_
1 

Sill'!-'n ~ + cosBn_ 1 '!-' n-1 

[in + 2i Ima)cosCPn - 2i Rea sincpnl. (3.6) 

The exponentiation of (3.6), for a = 0 yields the action 
of b n .n + 1 (~) on Cn and can be found from the action 
of Un ,1 on itself (in the Iwasawa decomposition 
Un ,1 = Un' A' N) modulo N, in the same fashion as 
was done in Ref. 7, generating the following trans­
formation of z E Cn : the unit disc I zn I .:; 1, 

I Z n cosh~ - sinh~ 
z .. ~ Z - -------

n n cosh~ - zn sinh~' 
(3.7a) 

which defines CPn ~ cP~ and (jn ~ e~, and 

CPn-l ~ CP~-l 

= CPn-1 + arg(cosen_ 1 cosh~ - expicpn sinh~) 

== CPn-1 + X(CPn' en-I> ~), (3.7b) 

all other coordinates of z remaining unaffected. This 
can be seen as the "complexification" of the more 
familiar transformation tan ~e ~ tan~e' = e c tan1e 
which appears in connection with the pseudo-ortho­
gonal groups3.7,8,22. The Jacobian of the transforma­
tion (3.7) is 

dcn({cp', e'}) = dlln(CP~' e~-l) = (Sine~_1)2n (3.8) 

dcn({cp, e}) dlln(CPn' en- 1) sinen _ 1 

We have thus, for a = iT (T real), a unitary multiplier 
representation23 of bn,n+1(~) on the space of func­
tions f on Cn (and therefore on Un) as 
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T( a)(b n ,n+1 (~))f(z) ==exp[~( a)Mn ,n+1l!(z) 

== [sine~_/ sinen _l ]n +a fez'). (3.9) 

4. THE Un - 1 MATRIX ELEMENTS 

The phase functions (2.6) are the matrix elements of 
transformations generated by ('?, k k (no sum). AS21 
('?,k k iJn +1Jn ) == W k /Jn+ l J n ) with wk == El=l J kl -

E t[ J k-l.l 

p~k (¢)==exp(iw k ¢), k==j, ... ,n+ 1. (4.1) 
k-l 

The eigenvalue of the unitary invariant (3. 4b) is 
WI + w2 + ... + wn - Wn +1' For a pure imaginary, 
(3.4b) is zero and hence wn +1 == 6~1 Jnk • 

The calculation of the Un ,I P d-functions, however, 
will require the multiplier representation (3.9). 
Given a set {¢( ~) } kEN (N an index set determined 

k 
by 11) of orthogonal functions on a manifold M, a 
representation of a group of transformations G3 g 
of M can be constructed as 7 

D~~:')(g) == [w(k)w(k,)]l/2(q/:), TO')(g)¢~»)M' (4.2) 

where W is the Plancherel weight of N. Using for M 

the U manifold and DJ~ , J---'- as the set of ortho-
n n-1 n-1 

gonal functions, we proceed to prove that, in close 
analogy with the orthogonal groups7, the Pd-functions 
can be found as 

(4.3) 

where the connection between a, J~ _ l' {3, and the Un. 1 
urn labels I n +1 will be clarified below. 

At ~ == 0, the orthogonality of the D's insures that 
Pd~ny J' (0) == 6 J J' (the Kronecker 6 in the coI-

n n-l n n' n 

lective indices I n and J~ stands for a product of 6's 
in the individual indices J nk and J~k' k == 1, ... , n). 
The completeness of the D's gives the addition for­
mula 

~ Pd~n:/ J" (~1) Pd~~;P J, (~2) == d~n;p J, (~1 + ~2)' 
J" n n-l n n n-l n n n-l n 

n (4.4) 

hence (4.3) together with (4.1) and (4.2) for g E Un 
provide us with a representation Un ,1' There is no 
invariant subspace. This construction gives us the 
classification through the Gel'fand patterns of the 
Un,l urn I n + l == {a,J~ -1,{3} since the individual in­
dices I n + l 1 == a, I n +1 k+1 == J~-l. k (k == 1, ... , n), 
~+1.n+1 ~ (3 restricted through the zig-zag inequali­
ties ~2. 4) for Un ~ Un -1> when taken as the Un. 1 UIR's 
restrict in turn the urn labels of Un C Un ,I' The 
"end point" labels a and (3 will now be related to a 
when we identify them as the continuation of the values 
of J 1,1 and I n+ I.n + 1 entering into the expressions 
for (i) the unitary invariant (3. 4b) eigenvalue 

(4.5a) 

(the sum extending over the allowed values of the free 
index) and (ii) the second-order Casimir operator 

(3.4a) eigenvalue 

~Jn, l,k(Jn t 1.k - 2k + n + 2) == a(a + n) + (3({3 - n) 

+~J~_1.k(J;'_1,k-2k+ n), (4.5b) 

which, if the representation is to be unitary, (iii) has 
to be real. Lastly, (iv) the dependence of (4. 5b) on 
a == iT must be that given by (3.4a). 

All four conditions (i)-(iv) can be satisfied by the 
choice a == - -Hn + ~J~_l,J + iT and (3 == ~(n-
~J~ -1 k) - iT. The parameter T can be identified 
with Chakrabarti' sl 7 parameter E, and seen to label 
the continuum of principal series urn's of Un l' 
Values of T and - T give equivalent urn's. . 

The integral over Un in (4.3) can be simplified when 
the D's are written in terms of P' s, d's, and the Un - l 
D's as in (2.1). Orthogonality relations can be used 
to yield Kronecker 6' s in the corresponding labels, 
and the multiple integral reduces to an integral over 
the unit disc: 

(dimJn dimJ~)l/2 (vOW n _1)2 
Pd{a·J~-l·J3J (0 == X 

I n J n -1 J~ dimJ n _ 1 dimJ~ _ 1 voW n voW n - 2 

x ~ dimJn_2 j'dlln(¢, e) p~:)¢) d~~_l I n-
2 

I n-
1 

(e) 
In -2 

X (:~~~)n+iT expf(~Jn-1- ~Jn-2) x(¢, e, ~~P~t-l (¢,) 

x d~~ J J (8'), (4.6) 
n-l n-2 n-l 

where the primed variables are related to the un­
primed one through the transformation (3.7). 

5. SOME PROPERTIES OF THE Pd-FUNCTIONS 

We will not attempt here the explicit evaluation of 
(4.6). Several properties are apparent, however, from 
the integral form (4.3)-(4.6): 
(i) the group property yields the addition formula (4.4); 
(ii) unitarity of the representation gives 

(5.1) 

(iii) invariance of the scalar product (4.3) under the 
involution un 4 u~l and the unitary of the UnD's 
imply 

(5.2) 

(iv) the asymptotic behavior (~ -7 <Xl) is similar to the 
Regge behavior of the SO 1 d-functiond4 ,7.8: It is n, 
exponentialy decreasing in ~. As the disc (3. 7a) 
streches towards the point z" == -1, sine'/sine ~ ci: 

and 

6. THE IU MATRIX ELEMENTS 
n 

We consider now the finite translations generated by 
zk and Zk as a multiplier representation on the space 
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of functions f on C n' The real translat ion f n (;) E 

ISO n C fUn [taking the place ofr'L1,n(e) in (2.1b)] is 
generated by x = 'Hzn + zn) = r cosen_ 1 cosCPn and n .. 
has the action 

(6.1) 

which is unitary for real r, but produces no deform a -
tion of the Cn manifold. Again, as xn commutes with 
the generators of un _ 1> the action (6. 1) of x n on en 
can be used to construct the fUn UIR's through (4.2) 
and, analogously to (4.3) and (4.6), we find the IU n 

Id-functions as 

Id{y,J~-1,s} ( ) _ (dimJn dimJ~)l/2 
J J J' ; - --v-ol"""U---"--

n n-l n n 

(D~k_1 J n-l' T(YJ( fnW)D:1_1 ,In-J 

[dimJn dimJ~]l/2 (voW n_1)2 

dimJn _ 1 dimJ~_1 voWn voWn _2 

~ dimJn _2 jdJln(cp, e) 
In-2 

x P~:-l (cp) d~nh_l I n-2 I n- 1 (8) 

exp[ir; cose coscp]P~~ (cp)d~~ J J (e). 
n-l n-l n-2 n-l 

(6.2) 

The iU n second-order Casimir operator z zZz has 

1 E. p. Wigner, Group Theory and lis Application to the Quantum 
Mechanics of Atomic SPectra (Academic, New York, 1959); Y. 
Ne'eman, Algebraic Theory of Particle Physics (Benjamin, New 
York, 1967); M. Moshinsky ,The Harmonic Oscilator in Modern 
Physics: from Atoms to QWlrks (Gordon and Breach, New York, 
1969). 
J. P. Louck, Amer. J. Phys. 38, 3 (1970). 
M. Toller, Nuovo Cimento 53,671 (1968); 54, 295 (1968); A. 
Sciarrino and M. Toller, J .. Math. Phys, 8, 1252 (1967); G. Consenza, 
A. SCiarrino, and M. Toller, Nuovo Cimento 57A, 253 (1968). 

4 F, Lur<;at, Physics 1,95 (1964); N.X, Hai, Commun. Math. Phys.12, 
331 (1969); A. Kihlberg, Arkiv Fysik 28, 121 (1964); 32, 263 (1966); 
Nuovo Cimento 53,592 (1968); J. D. Hind, ibid. 4, 71 (1971). 

5 N, Ya. Vilenkin, SPecial Functions and the Theory vf Group Repre­
sentations, Mathematical Monographs, Vol. 22 (Amer. Math. Soc., 
Providence, R. 1.,1968), Vol. 22; J, D, Talman, SPecial Functions, A 
Group-Theoretic Approach (Benjamin, New York, 1968); w. Miller 
Lie Groups and SPecial Functions (Academic, New York, 1968); R. 
Hermann, Fourier Analysis on Groups and Partial- Wave Analysis 
(New York, 1968); K. Maurin, General Eigenfunction Expansions 
and Unitary Representations of Topological Groups (Polish Scien­
tific Publ., Warsaw, 1968). 

6 Completeness of the UIRME's for compact groups is guaranteed 
by the Peter-Weyl theorem (see J. D. Talman, Ref. 5, Chap. 7; 
K. Maurin, Ref. 5, p, 157). For noncompact, semi simple groups, see 
R, Rq,czka "Operator Distributions in Group Representation-

J, Math, Phys., Vol. 13, No. 10, October 1972 

eigenvalues r2, and thus r (real) labels the fUn UIR's 
corresponding to Chakrabarti's17 parameter K. The 
Id-functions (6.2) are independent of the label s. This 
label enters into the picture when we consider the 
phase of the translation ~n +1 (cp). Its matrix elements 
follow from (4. 1) and will not be considered again. 
Properties analogous to those presented in the last 
section follow. 

As was the case for the orthogonal groups 7, the Un 1 
group can be defomed in the Inonii-Wigner sense19' 

into the fUn group when we consider UIR's with 
T --7 OCJ while keeping T~ = r;. The multiplier (3.9) 
becomes then 

(sine'/sin8)n+iT ~exp[ir; cose coscp] 

while, as ~ --7 0, there is no deformation of the group 
manifold. Comparing (4.6) and (6.2) we see that 

w, 
~T = ~ Y 

thus, characterizing the value of the last IU n label 
when we maintain the eigenvalue of the unitary in­
variant (3.4b) as zero. 

ACKNOWLEDGMENT 

It is a pleasure to thank Dr. Elpidio Chac6n and Dr. 
Thomas Seligman for several discussions. 

Theory and Their Applications," Lecture Notes,Institute of Theo­
retical Physics, Goteborg, Sweden, (1969). 

7 K. B. Wolf, J. Math. Phys.12, 197 (1971). 
8 These have also been treated from a similar standpoint by C. P. 

Boyer, J. Math. Phys.12, 1599 (1971); C. P. Boyer and F. Ardalan, 
ibid., 2070 (1971). 

9 R. L. Anderson and K. B. Wolf, J. Math. Phys.11, 3176 (1970). 
10 M. A. B. Beg and H.Ruegg, J. Math. Phys. 6, 677 (1965). 
11 T. J.Nelson, J. Math. Phys.8, 857 (1967). 
12 J. Fischer and R. Rq,czka, Commun. Math. Phys. 3, 233 (1966); 4, 8 

(1967). 
13 D. F. Holland, J. Math. Phys.l0, 531,1963 (1969). 
14 R. Delbourgo, K. Koller, and R. M. Williams, J. Math. Phys. 10, 957 

(1969). 
15 E. Chac6n and M. Moshinsky, Phys. Letters 23,567 (1966). 
16 J. Flores and J. Niederle, Czech. J. Phys. B20, 1241 (1970). 
17 A. Chakrabarti, J. Math. Phys. 9, 2087 (1968). 
18 U. Ottoson, Commun. Math. Phys.lO, 114 (1968); 1. M. Graev, Izv. 

Akad. Nauk SSSR, Ser. Mat., 29, 1329 (1965). 
19 E. Inonii and E. P. Wigner, Proc. Natl. Acad. Sci. (U.S.) 39,510 

(1953). 
20 A. Maduemezia, J. Math. Phys.12, 1681 (1971). 
21 1. M. Gel'fand and M. L. Tsetlin, Dokl. Akad. Nauk SSSR 71,825 

(1950); J. Nagel and M. Moshinsky, J. Math. Phys.6, 682 (1965). 
22 V.Bargmann,Ann.Math.48,568 (1947). 
23 Reference 7, Sec. 2. 

Downloaded 29 Jun 2011 to 132.248.33.126. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions


