
342 J. Opt. Soc. Am. A/Vol. 17, No. 2 /February 2000 R. Simon and K. B. Wolf
Structure of the set of paraxial optical systems

R. Simon

The Institute of Mathematical Sciences, C.I.T. Campus, Tharamani, Chennai 600 113, India

Kurt Bernardo Wolf

Centro de Ciencias Fı́sicas, Universidad Nacional Autónoma de México, Apartado Postal 48-3,
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1. INTRODUCTION: PARAXIAL OPTICAL
SYSTEMS
Paraxial optics is a well-defined mathematical structure
in which geometric and wave optics are in exact, though
not trivial, correspondence. Roughly said, optical ele-
ments are represented by symplectic matrices that multi-
ply in a definite order as light traverses them. In geo-
metric optics, these matrices act on a column vector that
contains the canonical coordinates of phase space and
whose points label straight lines in space—the light rays
of geometric optics. In wave optics, on the other hand,
the elements act through integral transforms on a Hilbert
space of functions that describe a scalar wave field. The
latter are actually in two-to-one correspondence with the
former, in a way that is often misunderstood in the cur-
rent optical literature. Questions about the realizability
of a given transformation and its possible fractionaliza-
tion are often plagued with ad hoc solutions and errors
that could be easily avoided by a careful reading of the
mathematical literature. Doing so is not an easy propo-
sition, though, because abcd-matrix theory has entered
mainstream optics only since the beginning of the 1980’s,
and the previous decades’ research has to be translated
into the current language of optics.

The mathematical structure transcends the geometri-
cal model analyzed here, moreover. A thorough under-
standing of the symplectic groups is based well on this
geometric-optical model, which is their simplest realiza-
tion by matrices. Other realizations include paraxial
wave (or Fourier–Gauss) optics, as mentioned above, in
which the same group is represented by operators (which
act on wave fields). Optical information processing is
served when the waveguides and image-producing de-
vices are reinterpreted as Fourier transformers and time
lenses. Further, the linear theory of quantum optics re-
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interprets the effect of magnifiers by squeezing, and frac-
tional Fourier transformations by time evolution of the
field.

In this paper we address specifically two- and three-
dimensional paraxial optical systems characterized by
two- and four-dimensional symplectic matrices and give
enough elements to permit the theory to be generalized to
any dimension. In Section 2 we show that the preserva-
tion of a Hamiltonian system under linear transforma-
tions implies the symplectic conditions that characterize
the Lie group Sp(2N, R) of matrices. We find the
Iwasawa decomposition1 particularly suited for optical
applications because the subgroups of the symplectic
group can be identified with basic constituents and ar-
rangements: lenses, magnifiers, and various phase-
space rotators. In this respect, the Iwasawa decomposi-
tion is preferable to the Bargmann decomposition2 that is
common in the mathematical literature.3 The two-
dimensional case Sp(2, R) is analyzed in Section 3, and in
Section 4 its elements are realized as optical arrange-
ments made from positive displacements (free propaga-
tion through a homogeneous medium) and lenses built
into magnifiers and phase-space rotators; the latter bear
the metaplectic winding number. The fractionalization
of the Fourier transform has been the subject of much in-
terest, yet in Section 5 we determine the class of paraxial
systems that cannot be fractionalized.

Three-dimensional paraxial optics is addressed in Sec-
tion 6 with the study of the symplectic group of 4 3 4 ma-
trices Sp(4, R). In the Iwasawa decomposition we sepa-
rate the optical constituents into astigmatic lenses, pure
magnifiers, and a subgroup of unitary rotators and gyra-
tors of phase space. The axisymmetrical fractional Fou-
rier transformation carries the metaplectic winding num-
ber, but there are other subgroups of interest, such as
instruments that will rotate the image by any angle or
2000 Optical Society of America
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cross Fourier transform the two coordinates, that do not
seem to have been considered in the literature. Finally,
Section 7 offers a résumé and some closing comments.

2. STRUCTURE OF THE SYMPLECTIC
GROUPS
Light rays in paraxial, three-dimensional geometric op-
tics are characterized by their phase-space coordinates,
written as a column vector v 5 (qx , qy , px , py)T referred
to a Cartesian system (x, y) on a standard screen, whose
normal at the origin is the optical axis, z. The position
coordinates of the ray, q 5 (qx , qy)T P R2, indicate its in-
tersection with the screen, and the momentum or direc-
tion coordinates are p 5 ( px , py)T P R2. For a small
neighborhood upu ! 1, px and py are the angles from the
optical axis to the x and y coordinates of the ray times the
refractive index of the medium. Beyond this neighbor-
hood the geometric interpretation becomes invalid but,
because of the simplicity of linear vector spaces, one
adopts the extension of the range of momentum to the full
plane; this is the paraxial model of geometric (and wave)
optics. Mathematically, there is no reason to limit the
position and momentum vectors to two components; we
apply the following considerations for generic dimension
N.

A. Linear Canonical Transformations
The Poisson bracket between two functions of phase space
R2N, f(v) and g(v), is4
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]p
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where

V 5 F 0 1

21 0G , (2)

and allows us to write the Hamilton equations for evolu-
tion of rays along the optical axis as

dv~z !

dz
5 $H, v~z !%, H 5

p2

2n0
2 v~q, z !, (3)

where n0 1 v(q, z) is the refractive index of the medium
and H(v, z) is the paraxial Hamiltonian function. The
paraxial model of optics is thus an integrable Hamil-
tonian system, and v P R2N is its phase space. A trans-
formation of phase space v ° v8(v) that maps a Hamil-
tonian system onto a Hamiltonian system is called
canonical, and the Poisson brackets between the compo-
nents of v8(v) are the same as between the components of
the original v, i.e., $vi8 , vj8% 5 V i, j 5 $vi , vj%. Canonical
transformations are invertible, and we note that VT

5 2V and V2 5 21.
We are interested here in linear canonical transforma-

tions T (M) of functions of phase space, where M is a ma-
trix and v ° Mv. When we follow a ray v as usual from
left to right, which passes first through an optical element
a given by a transformation T (Ma) and second through
an element b given by T (Mb), then the map of the phase-
space coordinates is

v ° v8 5 Mav,

° v9 5 Mbv8 5 MbMav. (4)

The composition rule for the abstract transformations
T (M) that will follow the order of placement of the optical
elements along the z axis is anti-isomorphic to the matrix
product:

T ~Ma!T ~Mb! 5 T ~MbMa!. (5)

Here and in Section 3 we shall work with matrices. In
Section 4, when optical systems are built, we shall find
Eq. (5) useful.

The requirement that the components of v8(v) have the
same Poisson brackets [Eq. (1)] as those of v leads to the
symplectic conditions

MVM T 5 V. (6)

Below, we shall show that there is only one connected set
of solutions to Eq. (6), so

det M 5 1. (7)

The matrices that satisfy Eq. (6) are called symplectic ma-
trices. It can immediately be seen that V is symplectic
and that, if M is symplectic, so are its transpose M T and
its inverse M21. Moreover, the product of two symplectic
matrices is symplectic, unit matrix 1 is symplectic, the in-
verse M21 5 2VMT V always exists and is symplectic,
and associativity holds as it does for all matrices. The
set of 2N 3 2N real symplectic matrices thus forms the
group denoted Sp(2N, R). When M is written in 2 3 2
block form,

M 5 FA B

C DG , (8)

the symplecticity condition [Eq. (6)] reads as

F AB T 2 BA T AD T 2 BC T

CB T 2 DA T CD T 2 DC TG 5 F 0 1

21 0G . (9)

For 2 3 2 matrices this entails the single scalar restric-
tion [Eq. (7)] on their four elements, so Sp(2, R) has three
parameters. For 4 3 4 matrices, the antisymmetric ma-
trix, Eq. (9), yields 6 independent bilinear equations
among the 16 elements of the matrix, so Sp(4, R) has 10
free parameters. Correspondingly, the 2N 3 2N matri-
ces of Sp(2N, R) that apply to (N 1 1)-dimensional
paraxial optics have 2N2 1 N independent, real param-
eters.

B. Iwasawa Decomposition of Sp(2N, R)
We now analyze the manifold of symplectic matrices. To
do this, Bargmann2,3 applied a complex similarity trans-
formation, for reasons much like those used in the study
of multivalued real and matrix functions, to explain the
two-fold cover that the spin provides over the orbital an-
gular momentum. Indeed, the symplectic groups have in
common with the complex logarithm function an infinity
of Riemann sheets; but this is at best merely an analogy,
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which, nevertheless, we shall exploit to understand the
rather peculiar manifold of the symplectic groups.

We consider here the generic Iwasawa (or NAK)
decomposition5,6 of an arbitrary, real nonsingular 2N
3 2N matrix M into the (unique and global) product SR
of a solvable matrix S (lower-triangular, with positive el-
ements on the diagonal) and an orthogonal matrix, RT

5 R21. Both sets of matrices are groups by themselves,
and, since S1 and 1R are symplectic matrices, so are S
and R themselves; thus SVS 5 V 5 RVR21. The or-
thogonal matrices constitute a maximal compact sub-
group (K, of finite volume); the solvable part is itself the
product of an Abelian subgroup (A, of mutually commut-
ing elements) consisting of positive-definite diagonal ma-
trices, and a nilpotent subgroup (N, of lower-triangular
2 3 2-block matrices, which have unit entries along the
full diagonal, and where one N 3 N diagonal block is
lower-triangular). Unlike for the elliptic subgroup K,
powers of the matrices of the hyperbolic subgroup A and
those of the parabolic subgroup N grow without bounds
and never return to the identity (i.e., they are noncom-
pact). Even though the defining symplecticity condition
[Eq. (6)] may appear to permit the values 61 for the de-
terminant of symplectic matrices, the value 21 can never
occur because in the decomposition M 5 SR, det S 5 1,
and also det R 5 1.

A 2N 3 2N solvable matrix [Eq. (8)] will have its
upper-right block B 5 0, and hence 2N2 1 2N param-
eters; but we see from Eq. (9) that ADT 5 1 and so D is
completely determined by (solvable) A; hence 1

2 (N2

1 N) parameters are removed. Then, because CDT is
symmetric, C is subject to another 1

2 (N2 2 N) restric-
tions, leaving thus only N2 1 N free parameters for the
solvable matrix. The orthogonal matrix thus contains
N2 free parameters ranging in a compact domain: They
lie in the intersection of the group SO(2N) of
2N-dimensional real orthogonal matrices of unit determi-
nant and Sp(2N, R); they have the form of Eq. (9) with
C 5 2B and D 5 A, for which Eq. (6) reads as (A
1 iB)(A 2 iB)T 5 1. This means that A 1 iB are
N 3 N unitary matrices U(N) but are written as R in a
2N 3 2N real form.7 Finally, we realize that, whereas
the manifold of solvable matrices is the Cartesian mani-
fold RN21N, the manifold of U(N) is the simply connected
manifold of SU(N) (the group of N 3 N unitary matrices
of unit determinant) times the circle of phases U(1),
modulo the matrices exp(2pik/N)1, for k 5 0, 1, 2, ..., N
2 1, that belong simultaneously to SU(N) and U(1); this
quotient set, denoted ZN , is all too often overlooked.
Thus we conclude that, as a manifold, the symplectic
group has the global structure7

Sp~2N, R! ; RN21N 3 @SU~N ! 3 U~1 !#/ZN . (10)

C. Connectivity and Covers of Sp(2N, R)
The importance of this manifold decomposition is that it
shows the nonsimple connectivity of the symplectic group
manifold to be that of circle U(1). This means that
Sp(2N, R) is a connected, but infinitely connected, mani-
fold. Unlike the group SO(3), which admits only SU(2)
as the double and universal cover, Sp(2N, R) can be cov-
ered any number of times. Its double cover is
Mp(2N, R), called the metaplectic group, which appears
as the group of canonical8 (or generalized Fresnel9) inte-
gral transforms, where U(1) is covered twice: As the 2p
face of a clock is covered twice by one rotation of the
Earth, so the clock angles should be counted modulo 4p.
This symplectic–metaplectic connection is at the heart of
the Maslov index and the Gouy phase. It may be re-
marked that the Gouy phase has received much attention
in class and quantum optics in recent years5,10; it has
been shown to be the geometric phase associated with the
Lobachevskian or hyperbolic geometry that is inherently
associated with the symplectic group.11

Similar three-fold, four-fold, etc. covers extend U(1),
counting its angle modulo 6p, 8p, etc. The infinite cover
of the circle is the real line that parameterizes the ele-
ments of the universal covering group Sp(2N, R). In
other words, Sp(2N, R) has the manifold structure
RN21N11 3 SU(N). In the N 5 1 case, as we shall see,
Sp(2, R) covers twice the radial paraxial group of 3 3 3
pseudo-orthogonal matrices SO(2, 1) 5 Sp(2, R)/Z2 ; this
fact has provided the basis for several applications in
optics.12,13 In the N 5 2 case, it turns out that Sp(4, R)
covers twice the de Sitter group of 3 1 2 pseudo-
orthogonal matrices SO(3, 2) 5 Sp(4, R)/Z2 ; this result
has found applications in classic and quantum optics.14

However, these connections (accidental homomorphisms)
with the pseudo-orthogonal groups occur only in low di-
mensions.

3. Sp(2, R) IN TWO-DIMENSIONAL
PARAXIAL OPTICS
The previous argument on manifold connectivity was pre-
sented abstractly. For the reader to appreciate the solu-
tion when faced with the product of two 2N 3 2N sym-
plectic matrices it will prove sufficient to follow the
explicit Iwasawa product in the case N 5 1 of two-
dimensional paraxial optics. In relation (10), moreover,
SU(1) 5 1 is the identity and the 2 3 2 real symplectic
matrices satisfy Eq. (9) identically, so the only remaining
condition is that the determinant be unity. In the
Iwasawa decomposition parameters we indicate the ma-
trices in the following way:

Fa b

c dG 5 F e2b 0

2ge2b ebGF cos v sin v

2sin v cos v
G

5 MI~g, b, v!

5 MI~g, b, 0 !MI~0, 0, v!

5 MI~g, 0, 0 !MI~0, b, 0 !MI~0, 0, v!,

2` , g, b , `, 0 < v , 2p, (11)

and the relation to the abcd parameters is

e2b 5 1Aa2 1 b2 . 0,

g 5 2
ac 1 bd

a2 1 b2 ,

v 5 arg~a 1 ib !. (12)
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In the abcd parameters, the group composition law is sim-
plest but the U(1) connectivity is invisible. When we use
the Iwasawa parameters for the product of two such ma-
trices, we find that

MI~g, b, v! 5 MI~g2 , b2 , v2!MI~g1 , b1 , v1!

5 MI~g2 , b2 , 0 !MI~0, 0, v2!MI~g1 , b1 , 0 !

3 MI~0, 0, v1!

5 MI~g2 , b2 , 0 !MI~g3 , b3 , v3!MI~0, 0, v1!

5 MI~g2 1 g3e2b2, b1 1 b3 , v3 1 v1!,
(13)

with the parameters (indicated by subscripts 3) of the
middle matrix obtained from Eqs. (12) and given explic-
itly by

e22b3 5 ~cos v2e2b1 2 sin v2e2b1g1!2 1 ~sin v2eb1!2,

g3 5 cos 2v2e22b1g1

1
1
2 sin 2v2@e22b1~g1

2 2 1 ! 1 e2b1#,

v3 5 arg~a3 1 ib3!

5 arg~cos v2e2b1 1 sin v2e2b1g1 1 i sin v2eb1!.

(14)

Since a and b cannot be simultaneously zero, the argu-
ment in Eqs. (14) is always well defined and can be
compounded by Eq. (13) to any value v̄ P R to label
uniquely the elements of the universal cover Sp(2, R). If
we work in Sp(2, R), we count v̄ modulo 2p; if in
Mp(2, R), modulo 4p. Generally we can record the phase
by an integer winding number nw so v̄ 5 2pnw
1 v, nw counted modulo the cover of Sp(2, R) and angle
v counted modulo 2p times the cover. The full composi-
tion rule for the Iwasawa parameters is Eqs. (13) and
(14), but for most practical cases we can use the abcd
form. For the metaplectic group integral kernel, how-
ever, the two distinct elements MI(b, g, v)nv50 and
MI(b, g, v)nv51 5 MI(b, g, v 1 2p) have the same rep-
resentative matrix and correspond to the same element of
the symplectic group: Mp(2, R) and Sp(2, R) have no
faithful finite-dimensional matrix representatives.

As we shall now see, the Iwasawa decomposition builds
optical systems with the basic blocks of imaging systems
(composed of lenses and pure magnifiers, in NA) and frac-
tional Fourier transformers (in K). Of course, lenses and
free spaces only can also be used, but the resulting pa-
rameterization for the manifold of paraxial systems is in-
convenient, as it separates the manifold into regions that
are realizable by one, two, and three lenses;15,16 from our
point of view, this hides the simpler structure afforded by
the Iwasawa decomposition.

4. TWO-DIMENSIONAL OPTICAL
ELEMENTS
Propagation (displacement) through positive distances in
free space, and thin lenses are the two elementary con-
stituents of aligned, paraxial two-dimensional optical sys-
tems.
A. Displacements and Lenses
The action of a displacement on the ray and on phase
space-coordinates is shown in Fig. 1. (We can equiva-
lently see this as free propagation through empty space.)
It is

D~z ! 5 T @D~z !#, D~z ! 5 F1 z

0 1G ,
D~z ! : S q

p D ° S q 1 zp
p D , (15)

with z > 0 occurring naturally; note that D(z1)D(z2)
5 D(z11z2) .

Next, the map of rays and phase space that is due to a
thin lens of Gaussian power g is shown in Fig. 2; it is

L~ g ! 5 T @L~ g !#, L~ g ! 5 F 1 0

2g 1G ,
L~g! : S q

p D ° S q
p 2 gq D . (16)

The Gaussian power g is the reciprocal of the focal length:
f 5 1/g; positive g means that the lens is convex (as in
Fig. 2), and negative g indicates a concave lens. The set
of thin-lens transformations [Eq. (16)] can be concat-
enated as L( g1)L( g2) 5 L( g11g2) , the neutral element
( group unit) is L(0), the inverse of L( g) is L(2g) , and as-
sociativity holds. These transformations constitute the
one-parameter nilpotent Iwasawa subgroup N. Displace-
ments (15) on the other hand, form only a semigroup with
identity, since z is physically restricted to the region
z > 0. With optical arrangements built of displacements
and thin lenses we can reach all other elements of
Sp(2, R), including free propagation D(z) corresponding
to negative values of z, as we now proceed to show.

Fig. 1. Free displacement along the optical axis (left) acts on
phase space by slanting the coordinate grid vertically (right); the
map is (q8, p8) 5 (q 1 zp, p). The ray angle (;p) and the area
of phase space are conserved.

Fig. 2. A lens acts on an incoming bundle of rays (left) through
horizontal slanting of the phase-space coordinate grid (right); the
map is (q8, p8) 5 (q, p2gq). A convex lens of Gaussian power
g . 0 turns parallel rays ( p 5 0) to cross the z axis at focal dis-
tance f 5 1/g. At the plane of the lens where the transforma-
tion takes place, the position q of the rays and the phase-space
area are conserved.
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B. Magnifiers
We concatenate two displacements and one lens in the fol-
lowing arrangement, labeled DLD:

D~z1!L~ g !D~z2! 5 T F1 2 z2g z1 1 z2 2 z1gz2

2g 1 2 gz1
G .
(17)

If g 5 1/z1 1 1/z2 (called the focal condition), the upper-
right element of Eq. (17) is zero. The arrangement is
then an imaging system because the position of the image
ray depends only on the position of the object ray; the map
is q ° (1 2 z2 g)q, with magnification factor z 5 1
2 z2 g P R.

But Eq. (17) is not a pure magnifier because the mo-
mentum (angle) of the image ray is a linear combination
of the object p and q and not of p only. For the magnifier
to be pure, a final lens must be added, with a Gaussian
power g8 such that the lower-left element cancels, and the
DLDL configuration is represented by a purely diagonal
matrix. This happens when g8 5 2g/(1 2 z2 g) and re-
sults in the phase-space map of Fig. 3. It is the magnifier

M~z! 5 D~z1!L~g !D~z2!L~g8! 5 T @M~z!#

M~z! 5 F z 0

0 z21G , z 5 1 2 z2 g. (18)

For 0 , z1 , z2 , `, the focal condition implies that
z1 , z2 . g21, and hence z 5 1 2 z2 g is negative; we can
obtain positive magnification by concatenating two such
systems. In this way we realize all diagonal matrices
that are elements of the Iwasawa Abelian subgroup A.
Of course, the DLD arrangements that satisfy the focal
condition will by themselves also form the solvable group
NA of lower-triangular matrices.

C. Phase-Space Rotators
The third Iwasawa subgroup, K, is the group of rotations
of phase space, also called fractional Fourier
transformations.17 If we try to build a phase-space rota-
tion in a single-lens configuration, D(z1)L( g)D(z2), we
are forced to have z1 5 z2 5 z, as can be seen from Eq.
(17). Thus we obtain the following single-lens realization
of phase-space rotations shown in Fig. 4:

F ~u! 5 D~z !L~ g !D~z ! 5 T @F~u!#, (19)

Fig. 3. Left, a pure magnifier built with two convex lenses in the
DLDL configuration; right, in phase space, as the position coor-
dinate is squeezed, the momentum coordinate is stretched to con-
serve areas. The magnifier is called pure because the concomi-
tant slanting of phase space in a DLD configuration is corrected
by the rightmost lens, which is coincident with the output screen.
F~u! 5 F cos u sin u

2sin u cos u
G ; (20)

g 5 sin u . 0, z 5 tan~u/2! . 0. (21)

Thus F (u) for 0 , u , p can indeed be realized in the
single-lens configuration involving a convex lens. The
Fourier transform corresponds to u 5 p/2. By concat-
enating two such systems, F (u1)F (u2) 5 F (u1 1 u2),
we can realize the range 0 , u , 2p. The element
u 5 0 [ 2p corresponding to the identity cannot be real-
ized in such a two-lens configuration (excluding the trivial
possibility of having no lenses and no free flights). This
is not the most general two-lens configuration, because
the middle free flight is constrained to be the sum of the
two free flights at the ends. It turns out that the situa-
tion with regard to the realization of the identity element
does not change even when this constraint is released (see
Subsection 4.E below).

Note that the matrix of F (p) is F(p) 5 21, and hence
commutes with all paraxial transformations, and that
F(2p) 5 1 but with winding number nw 5 1. Phase-
phase rotators are thus responsible for the occurrence of
the metaplectic sign in the paraxial wave-optics integral
transform when the angle u exceeds 2p. This subgroup
of maps can be also produced by a positive length of a
graded-index waveguide with refractive-index profile
n(q) 5 n0 2 q2. The system is thus mathematically
identical to the classic harmonic oscillator; its quantum or
wave analog is the fractional Fourier transformation.17

D. Hyperbolic Expanders
The hyperbolic expander can be realized also with a
single-lens configuration, provided that we use a concave
lens as in Fig. 5. Then we have

H~z! 5 D~z !L~ g !D~z ! 5 T @H~z!#,

H~z! 5 F cosh z sinh z

sinh z cosh z
G ; (22)

g 5 2sinh z , 0, z 5 tanh 1
2 z . 0. (23)

The similarity between the realizations of rotators F(u)
and hyperbolic expanders H(z) is interesting. We can
also propose as an optical element a length of hyperbolic
waveguide with refractive-index profile n(q) 5 n0 1 q2,
which acts as a repulsive oscillator. Although H(z) for
z . 0 is shown to be realizable with a single-lens configu-

Fig. 4. Left, a fractional Fourier transformer built with a DLD
arrangement; right, it rotates phase space. On the left, solid
lines correspond to the object and image screens of the u ; 40°
Fourier transformer whose action is shown on the right; dashed
lines serve for the u 5

1
2 p Fourier transform.
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ration, it turns out that the range z , 0 cannot be real-
ized, even in the two-lens configuration (see Subsection
4.E below).

The three basic group elements—lenses, magnifiers,
and rotators—will produce every element of Sp(2, R)
when they are composed in the Iwasawa form [Eqs. (12)].
Conversely, every element of Sp(2, R) can be decomposed
into these optical elements.

E. Positive and Negative Ranges
A similarity transformation by rotators will intertwine
between displacement and lens transformations. We
may use the (realizable) rotators MI(0, 0, 1

2 p)0 and
MI(0, 0, 7

2 p)0 5 MI(0, 0, 3
2 p)1 5 MI(0, 0, 2

1
2 p)0 , in the

Sp(2, R) double cover with the indicated winding num-
bers modulo 2 to compose

D~ g ! 5 F ~6
1
2 p!L~ g !F ~7

1
2 p!, (24)

L~z ! 5 F ~6
1
2 p!D~z !F ~7

1
2 p!, (25)

where we have taken advantage of the fact that F(p) com-
mutes with all elements in Sp(2, R). Equation (24) per-
mits the construction of negative displacement transfor-
mations with paraxial optical arrangements.

A hyperbolic waveguide of negative length can be simi-
larly built from one of positive length:

H~2u! 5 F ~6
1
2 p!H~u!F ~7

1
2 p!. (26)

A rotator MI(0, 0, 1
4 p)0 and its corresponding inverse

element, MI(0, 0, 15
4 p)0 5 MI(0, 0, 7

4 )1 5 MI(0, 0, 2
1
4 p)0 ,

can be used to turn a hyperbolic expander (with z > 0)
into a pure magnifier:

M~z! 5 F ~
1
4 p!H~z!F ~2

1
4 p!. (27)

F. Three Lenses Are Sufficient
We have demonstrated that the entire Sp(2, R) group
manifold of abcd matrices can be realized by use of thin
lenses separated by free-propagation sections; however,
one may ask what is the minimum number of lenses
needed to realize a particular system. This question was
thoroughly analyzed in Ref. 15. We quote only the prin-
cipal results to wrap up our analysis:

1. Every Sp(2, R) system can be realized in a configu-
ration that involves no more than three lenses.

Fig. 5. Left, a hyperbolic expander built as DLD with one con-
cave lens stretches phase space along a 45° line (right) and
squeezes it along the orthogonal direction. A hyperbolic reducer
cannot be built with a single lens.
2. The region in the Sp(2, R) manifold that cannot be
realized in configurations that involve one or two lenses
consists of the following two pieces:

Fa . 0 b , 0

c < 0 d . 0 G , Fa . 0 0

c < 0 a21G . (28)

We have already encountered in this section several ex-
amples of the three-parameter family in the first piece of
the bad region [inequalities (28)], such as negative dis-
placements D(z) with z , 0, noninverting hyperbolic ex-
panders H(z) with z . 0, and pure, positive magnifiers
M(z) with z . 0. These are examples of Sp(2, R) sys-
tems that require three-lens configurations for their real-
ization. The second piece in inequalities (28) is the two-
parameter family of noninverting magnifiers, preceded or
followed by the converging phase curvature of a convex
lens. It describes that portion of the solvable part that
cannot be realized in any configuration that involves
fewer than three lenses. To realize the identity as a non-
trivial concatenation of D’s and L’s requires that L occur
in the arrangement a minimum of three times. (If the
identity were realizable in the two-lens configuration, so
also would be free flight through a negative distance.)

5. EXPONENTIAL-TYPE ELEMENTS OF
Sp(2, R) AND THEIR FRACTIONALIZATION
Equivalence relations between optical systems can be eas-
ily systematized by use of the following set related to the
Pauli s matrices

t1 5 s3 5 F1 0

0 21G ,
t2 5 s1 5 F0 1

1 0G ,
t0 5 is2 5 F 0 1

21 0G ; (29)

t1 5
1
2 ~t2 1 t0! 5 F0 1

0 0G ,
t2 5

1
2 ~t2 2 t0! 5 F0 0

1 0G . (30)

A. Strata of Matrices of the Exponential Type
Among the transformations seen in Section 4 [Eqs. (15),
(16), (18), and (20)], the basic optical elements ( positive
length of a homogeneous medium or a thin lens) can be
compounded easily. They are represented by exponential
matrices as follows:

D~z ! 5 exp~zt1!, z > 0, (31)

L~ g ! 5 exp~2gt2!, (32)

F~u! 5 exp~ut0!, u > 0, (33)

H~z! 5 exp~zt2!, z > 0. (34)

Each of these elements can be fractionalized, i.e., built
from two or more identical systems, each of which has a
fraction of the parameter, e.g., F (u) 5 @F (u/n)#n or
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M(z) 5 @M(z/n)#n, because they lie upon one-parameter
subgroups. It may come as a surprise, however, that not
every paraxial optical system can be subjected to this pro-
cess, contrary to what has been implied or stated occa-
sionally in the literature.18 This is so because Sp(2, R)
has one more commonly ignored peculiarity: It is not of
the exponential type,6,19 as we now proceed to put in evi-
dence.

Matrices M of the exponential type are those for which
a real matrix T exists such that M 5 exp T. Symplectic
matrices have unit determinants and, because det M
5 exp(tr T), T must be traceless. In the 2 3 2 case, the
matrices ti in Eqs. (29) are a basis for all traceless matri-
ces, so we can write

M@x1 , x2 , x0# 5 exp~x1t1 1 x2t2 1 x0t0!

5 expF x1 x2 1 x0

x2 2 x0 2x1
G , (35)

indicating the polar parameters xW of such M by brackets.
A similarity transformation of Eq. (35) by an Sp(2, R)

matrix will lead to a linear transformation of the polar pa-
rameter vector12:
Fa b

c dGM@xW #Fa b

c dG21

5 M@xW 8#, (36)

S x18

x28

x08
D 5 F ad 1 bc cd 2 ab 2cd 2 ab

bd 2 ac 1
2 ~a2 2 b2 2 c2 1 d2! 1

2 ~a2 2 b2 1 c2 2 d2!

2bd 2 ac 1
2 ~a2 1 b2 2 c2 2 d2! 1

2 ~a2 1 b2 1 c2 1 d2!
G S x1

x2

x0

D . (37)
This leaves invariant the 2–1 norm of vector xW , namely,

2x1
2 2 x2

2 1 x0
2 5 sx2,

s 5 11 (timelike) or

s 5 0 (lightlike) or

s 5 21 ~spacelike!. (38)

The sign s thus separates the exponential-type matrices
[Eq. (35)] into three disjoint strata of one-parameter sub-
groups that have the following representatives:

s 5 11 elliptic: rotator M@0, 0, u#,

s 5 0 parabolic: displacement M@0, 2
1
2 z, 1

2 z#,

lens M@0, 1
2 g, 1

2 g#,

s 5 21 hyperbolic: expander M@0, 2z, 0#,

magnifier M@2z, 0, 0#.

The determinants and the traces of matrices remain in-
variant under similarity transformations. This is true
for the matrices M as well as for their logarithms ( gen-
erators) T. Now, since the matrices M P Sp(2, R) have a
unit determinant and the matrices T in its Lie algebra
[Eq. (29)] have identically null trace, these two invariants
are trivial. The determinant of the matrices in the alge-
bra, Eq. (35), is the invariant norm [Eq. (36)]. There re-
mains to be examined the trace of the symplectic matrices
M: since tr(M8MM821) 5 tr M for any M8 in the group,
it is sufficient to regard the representatives of the sub-
group strata, Eqs. (16), (20), and (22). Excluding the
group center $1,21%, we thus divide the ranges of tr M
P R into the following disjoint intervals:

s 5 11 elliptic: tr M 5 2 cos u, P~22, 2 !,

s 5 0 parabolic: tr M 5 12,

s 5 21 hyperbolic: tr M 5 2 cosh z, P~2, `!.

It should be appreciated that the two nontrivial invari-
ants of symplectic M 5 exp T are not independent. From
Eq. (35) they are related by

tr M@xW # 5 2 cosAdet T@xW #, det T@xW # 5 sx2, (39)

as defined in Eq. (38).
B. Matrices of the Nonexponential Type
It is clear now that Sp(2, R) matrices exist that are not
accounted for in the previous enumeration; for example,

F21 2z

0 21G , F2cosh z sinh z

sinh z 2cosh z
G

do not belong to any one-parameter subgroup, because
their traces are outside the range (22, `). Therefore, the
group Sp(2, R) is not of the exponential type. This fact
plays an important role as an obstruction in the generali-
zation of Hamilton’s theory of turns, originally developed
for the compact group SU(2),20 to the noncompact group
SU(1, 1) 5 Sp(2, R).19 This generalization is rather in-
teresting because it so happens that SO(2, 1) is of the ex-
ponential type, whereas its covers Sp(2, R), Mp(2, R),
and Sp(2, R) are not. The geometry of the one-
parameter subgroups of these groups is analyzed in detail
in Ref. 6. For our present purpose, however, it is suffi-
cient to note that the region in the Sp(2, R) manifold,
through which no one-parameter subgroup passes, con-
sists of all matrices M of the following two types:

tr M , 22, or tr M 5 22 except M 5 21. (40)
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C. Fractionalization
For the fractionalization of a paraxial system T (M), the
fact that Sp(2, R) is not of the exponential type becomes
an obstruction, and this subtle fact does not seem to have
been appreciated (cf. Ref. 18). The fractionalization
problem, however, can be solved for all matrices of the ex-
ponential type:

M~j!

5 exp~juW • t¢!

5 H 1 cos j 1 uW • t¢ sin j tr M 5 2 cos j P ~22, 2 !

1 1 juW • t¢ tr M 5 2

1 cosh j 1 uW • t¢ sinh j tr M 5 2 cosh j . 2
,

(41)

where we denote by uW a vector normalized to uxu 5 1 in
Eq. (38) for the elliptic and hyperbolic strata (and for the
parabolic stratum we can agree that u0 5 1/2). The
generator matrix uW • t¢ and the logarithm parameter j can
be then found from the trace of Eq. (41), m 5 tr M (and,
for the parabolic subgroup, from its antidiagonal ele-
ments), as follows:

umu , 2 ⇒ uW • t¢ 5
M 2

1
2 m1

@1 2 ~
1
2 m !2#1/2

,

j 5 arccos 1
2 m 1 2pnw ,

m 5 2 ⇒ uW • t¢ 5
M 2 1

M2,1 2 M1,2
,

j 5 M2,1 2 M1,2 ,

m . 2 ⇒ uW • t¢ 5
M 2

1
2 m1

@~
1
2 m !2 2 1#1/2

,

j 5 arccosh 1
2 m. (42)

The fractionalization of an Sp(2, R) matrix to an rth
root M1/r is thus solved by the same generator matrix
uW • t¢ and fractional parameter j/r. For the parabolic
and hyperbolic cases the root is unique; in the elliptic
case, however, there will be r roots distributed around the
circle, (j 1 2pl)/r, for l 5 0, 1, ...r 2 1. In the k-fold
cover group of Sp(2, R) the roots will be spaced by 2pk/r.
For Sp(2, R) elements [relations (40)], which do not be-
long to any one-parameter subgroup, fractionalization
cannot be defined in any sensible manner within
Sp(2, R). Our fractionalization procedure differs from
that of Ref. 18, and, in particular, our procedure brings to
light the existence of the nonexponential (nonfractionaliz-
able) region of Sp(2, R).

6. Sp(4, R) IN THREE-DIMENSIONAL
PARAXIAL OPTICS
A three-dimensional optical system transforms linearly
the four-dimensional phase space of paraxial rays. The
system is called axially symmetric when its elements are
invariant under rotations about a common optical z axis
and inversions through this axis; in this case the three-
parameter group Sp(2, R) is sufficient to identify all such
systems. We consider now three-dimensional astigmatic
(or nonaxially symmetric) systems, for which the under-
standing of the full ten-parameter group Sp(4, R) is
needed. The Cartan root diagram of the Lie algebra of
Sp(4, R) (Ref. 21) suggests that three well-chosen ele-
ments will be necessary and sufficient to produce the
most general paraxial optical system for this dimension;
we may use free displacements and two cylindrical lenses
with distinct orientations. In this section we proceed
systematically, examining in turn the nilpotent, Abelian,
and compact subgroups of the NAK Iwasawa decomposi-
tion of Sp(4, R). Their respective numbers of param-
eters are four, two, and four.

A. Displacements and Lenses
Free displacement in a homogeneous medium, D(z), is an
axisymmetric optical element. The subgroup reduction
Sp(4, R) . Sp(2, R) 3 O(2) contains the trivial represen-
tation of the rotation-and-inversion subgroup O(2) that
rotates simultaneously the position and momentum x –y
planes. It is characterized by 4 3 4 matrices D(z) of the
form of Eq. (15), with 2 3 2 unit matrix 1 in each block:

D~z ! 5 F1 z1

0 1 G , z > 0. (43)

Positivity is no real restriction since, as we saw in Eq.
(24), we can invert the sign of z by means of spherical
lenses.

An x-cylindrical lens of Gaussian power gx has focal
length fx 5 1/gx in the x direction; the generator axis of
the cylinder is in the orthogonal y direction, where its
power is gy 5 0. The lens transformation Lx( gx) will
map (qx , qy , px , py)T ° (qx , qy , px 2 gxqx , py)T, as in
Eq. (32). If the cylinder generator subtends an angle k
with the y axis, the representing 4 3 4 symplectic matrix
[Eq. (8)] will have a symmetric lower-left block
R(k)CR(2k), where C 5 diag(2g, 0) and R(u) is the ro-
tation matrix [Eq. (20)]:

L~ g, k! 5 F 1 0

2g cos2 k g cos k sin k

1

g cos k sin k 2g cos2 k

G . (44)

Generally, two such cylindrical thin lenses, superposed
and with different orientations, constitute the most gen-
eral astigmatic thin-lens matrix:

L~g! 5 F 1 0

2g 1G , g 5 Fgxx gxy

gxy gyy
G . (45)

Astigmatic lenses [Eq. (45)] represent elements of a
three-parameter subgroup of lower-triangular block ma-
trices. Spherical lenses are built of two cylindrical lenses
with orthogonal generators and equal power g, so that the
lower-diagonal block is g 5 g1, a multiple of the unit
2 3 2 matrix. Note that this three-parameter manifold
does not yet exhaust the Iwasawa nilpotent subgroup N,
which has four parameters. The parameter that we have
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missed is in the lower-left position of the A block and [be-
cause of the symplectic condition ADT 5 1 (Ref. 7)] also in
the upper-right position of the D block. This extra pa-
rameter will now be accounted for.

B. Astigmatic Magnifiers
From Subsection 4.B we see that pure inverting magnifi-
ers can be built with DLDL configurations. Consider one
such magnifier along the x direction, built with cylindrical
lenses of powers gx and gx8 and (axisymmetric) displace-
ments z1 and z2 such that gx 5 1/z1 1 1/z2 and gx8
5 2gx /(1 2 z2gx) in the x entries, as given in Eq. (18),
and the accompanying free displacement by z1 1 z2 in
the y entries. Now we build a second such magnifier
along the y direction, with corresponding Gaussian pow-
ers gy and gy8 and distances z18 and z28 , placing it within
the same available total length z1 1 z2 5 z18 1 z28 . See
Fig. 6. These systems M(z1 , z2 , z18) are represented by
negative-definite diagonal matrices:

M~z1 , z2 , z18 !

5 diag~1 2 z2 gx , 1 2 z28 gy , 1 2 z1gx , 1 2 z18gy!.
(46)

By concatenation with an axisymmetric image inverter,
this diagonal matrix can be turned into a positive-definite
matrix.

The set of astigmatic magnifiers [Eq. (46)] is a three-
dimensional group, with parameters z1 , z2 , and z18 , say.
As we shall now show, two of these parameters belong to
Iwasawa Abelian group A, whereas the third is the nilpo-
tent group parameter that we missed in subsection 6.A.
Note first that the rotation of the axis of a cylindrical lens
in the x –y plane by an angle k as in Eq. (44) will turn di-
agonal submatrices into symmetric submatrices. So, if
the two cylindrical subsystems in Fig. 6 are set at an
angle k Þ p/2 to each other, they will not produce any ex-
tra freedom, because the symmetric submatrices A and D
(satisfying ADT 5 1) can always be brought to diagonal

Fig. 6. Astigmatic magnifier built with one DLDL configuration
in the x direction and another in the y direction. The two share
the same input and output screens. The system is a pure astig-
matic magnifier when the two superposed cylindrical lenses at
the exit face (an astigmatic lens) are chosen appropriately.
With all lens powers and orientations, these arrangements are
all negative-definite elements of the solvable Iwasawa subgroup
NA of Sp(4, R); the positive-definite elements are obtained by
the concatenation of two astigmatic magnifiers.
form by a rotation in the x –y plane to principal axes.
However, if instead we now factor a rotation to the right,
using the Iwasawa decomposition for the A block (and
now keeping this rotation for Subsection 6.C), the matrix
that remains of A is lower-triangular. The off-diagonal
matrix element is thus the missing parameter of the nil-
potent Iwasawa subgroup N seen in Subsection 6.A. The
two remaining diagonal elements parameterize the Abe-
lian subgroup A. Together, matrices in the Abelian and
nilpotent subgroups of Sp(4, R) constitute a six-
parameter solvable group whose elements can be realized
by optical arrangements such as that shown in Fig. 6,
with the two cylindrical lenses at the exit having arbi-
trary power and orientation.

C. Gyrators of Phase Space
The pending subgroup in the Iwasawa decomposition is
K, the four-parameter compact subgroup U(2) whose ele-
ments we shall generically call gyrators. They rotate
four-dimensional phase space symplectically, including
rotation of the image or the fractional Fourier transforms
or both among the two pairs of canonically conjugate co-
ordinates. Their central (commuting) subgroup will be
shown here to be the set of axisymmetric fractional Fou-
rier transformers.

Consider first the spherical-lens arrangement that ro-
tates the x and y phase-space planes jointly; this is the di-
rect generalization of the fractional Fourier transformers
in Eq. (20) to 4 3 4 matrices with 2 3 2 blocks that are
multiples of the identity. From the discussion preceding
relation (10), the 2 3 2 unitary matrices A 1 iB that cor-
respond to these orthogonal transformations are

F cos u 0

0 cos u
G 1 iF2sin u 0

0 2sin u
G 5 e2iu1 P U~1 !.

(47)

Since they commute with all other unitary matrices
A8 1 iB8, they are in the U(1) center of U(2) [although
they do not commute with the rest of the Sp(4, R) group].
Hence the corresponding 4 3 4 matrices

F~u! 5 F cos u1 sin u1

2sin u1 cos u1G (48)

constitute the central U(1) submanifold of the compact
Iwasawa subgroup. This subgroup carries the onus of
the connectivity of Sp(4, R) as well as its winding num-
ber.

To illustrate that by means of cylindrical lenses and
free flights we can build any element in the compact sub-
manifold SU(2) , Sp(4, R) in relation (10), we now ex-
amine two particularly important arrangements that we
have not hitherto found described in the literature: im-
age gyrators and cross gyrators.

D. Image Gyrators and Reflectors
An image gyrator G(f) 5 T @G(f)# rotates the position
and momentum planes jointly by an angle f. The de-
sired effect of this arrangement is shown in Fig. 7 (and
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the system is not supposed to be produced with mirrors!).
It is represented by the matrix whose block form is

G~f! 5 F cos f sin f 0

2sin f cos f cos f sin f

0 2sin f cos f
G

5 F cos f1 1 sin ft0 0

0 cos f1 1 sin ft0
G . (49)

This gyrator can made out of two identical reflectors I
placed at an angle. Figure 8 shows the reflector that we
now proceed to construct.

Consider the transformation J ( f ) between an object
and its inverted image, of unit magnification, produced by
a convex cylindrical lens [written first as an Sp(2, R)
transformation] of focal distance f 5 1/g:

J ~ f ! 5 D~2 f !L~1/f !D~2 f ! 5 T F 21 0

21/f 21G , (50)

and the concatenation of two such inverting imagers:

@J ~ f !#2 5 T F 1 0

2/f 1G . (51)

Fig. 7. An image gyrator is a paraxial instrument that will ro-
tate the x –y planes of phase space. Does it exist? We can
build it with two identical pieces (see Fig. 8) rotated at half the
gyration angle.

Fig. 8. The reflector preserves the x axis and inverts the y axis.
It is built with inverting DLD subunits (cf. the two-dimensional
Fig. 3), two for the x axis and (within the same available length)
one on the y axis; at the end there is a common astigmatic lens to
correct the slant of four-dimensional phase space.
The placement of a convex lens of focal distance f after ar-
rangement (50) and of a convex lens of focal distance f/2
after two such arrangements [Eq. (51)] will yield the re-
flection (of winding number 0) and the unit (of winding
number 1), respectively:

J ~ f !L~1/f ! 5 T F21 0

0 21G , (52)

@J ~ f !#2L~2/f ! 5 T F1 0

0 1G . (53)

Now we build the arrangement of Fig. 8 with two in-
verting imagers [Eq. (50)] in the x direction, indicated by
Jx( f ), and one inverting imager in the y direction,
Jy(2 f ), of double focal length 2 f, finally correcting both
for the diverging phase curvatures by means of an appro-
priate astigmatic lens. Thus we obtain the transforma-
tion represented by an Sp(4, R) diagonal matrix:

I0 5 Jx~ f !Jy~2 f !Jx~ f !Lx~2/f !Ly~
1
2 f ! 5 T ~I0!

5 FD~2 f !Lx~1/f !D~4f !Lx~1/f !D~2 f !Lx~2/f !

D~4f !Ly~1/2 f !D~4f !Ly~1/2 f ! G ,
(54)

I0 5 diag~1, 21, 1,21 !. (55)

In the second line of Eq. (54) the array has the evident
vectorial meaning of the x and y components of the trans-
formation. This is a reflector that inverts the y axis and
is the unit (of winding number 1) in the x direction. Note
that from matrices (49) and (55) it follows that I0G(f)
5 G(2f)I0 .

Whereas Eq. (55) represents a reflection across a mir-
ror placed on the y 5 0 plane, one can obtain a mirror If

at any other angle f with the y axis by simply rotating the
entire arrangement. For the matrices, we have

If 5 G~f!I0G~2f!. (56)

Because the product of two reflections is a rotation, when
we follow one reflector I0 with another at an angle 1

2f, the
result is the gyration (rotation) of angle f between the x
and y components of phase space:

G~f! 5 If0 1 ~1/2!f If0
. (57)

This is the desired gyrator. It is an Sp(4, R) transforma-
tion completely contained in the SU(2) subgroup, of wind-
ing number 0, that will yield an image identical to the ob-
ject but rotated by the angle p. Clearly, placing the two
reflectors at angles 1

2 f 5 0 or p yields the same, perfect
imager. Changing the angle between the two reflectors
involves rotating only one reflector with respect to the
other on the same axis, so an actual optical device with
this property can be easily fabricated and adjusted.

Other means of building an image gyrator exist; for in-
stance, use of a pair of dove prisms. Our point here is
that image rotators and reflectors in planes that contain
the optical z axis are elements of the symplectic group
and as a matter of principle can be realized by use of only
thin lenses and free displacements; this is what we have
demonstrated here. The image gyrator is a system that
is invariant under rotations about the optical axis, as at-
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tested to by the independence of Eq. (57) from f0 ; it is not
fully axisymmetric, however, because a mirror-reflected
version of the arrangement will rotate the image by 2f.

E. Cross Gyrators
The cross gyrator is an optical element X0(f)
5 T @X(f)# that performs joint rotations in the (qx , py)
and (qy , px) phase spaces. It has the following matrix
representation:

X~f! 5 F cos f 0 0 sin f

0 cos f sin f 0

0 2sin f cos f 0

2sin f 0 0 cos f

G
5 F cos f1 sin ft2

sin ft2 cos f1 G , (58)

where the latter expression uses the ti matrices of Eqs.
(29). We now show that the cross gyrator can be pro-
duced from the image gyrator G(f) defined in Eq. (49)
through a similarity transformation by the phase-space
rotator Fy( 1

2 p). This last element is a Fourier trans-
former [Eq. (20)] in the (qy , py) phase-space plane and
the identity transformation in the (qx , px) plane; it can be
built within the same length along the optical axis, as
shown in Fig. 9, and represented by [cf. Eq. (20)]

Fy~
1
2 p! 5 FD~

1
2 !Lx~4 !D~1 !Lx~4 !D~

1
2 !Lx~8 !

D~1 !Ly~1 !D~1 !
G

Fy~
1
2 p! 5 F 1 0 0 0

0 0 0 1

0 0 1 0

0 21 0 0
G , (59)

where again we use vector notation for the x and y direc-
tions. We note that the transformation Fy( 1

2 p) was used
by Lohmann and co-workers22 in an equivalent arrange-
ment to produce optically a (smoothed or squared) Wigner
function of a one-dimensional signal. The desired cross
gyrator [Eq. (58)] is now obtained as

X~f! 5 Fy~
1
2 p!G~f!Fy~2

1
2 p! (60)

and is shown in Fig. 9. One obtains image gyration sim-
ply by rotating the second arrangement together with the
coordinate axes of the end screen.

Fig. 9. Left, arrangement of a Fourier transformer in the y di-
rection with perfect imaging in the x direction. On the right:
Two such arrangements concatenated at an angle will produce
cross gyration. Cross gyrators performs fractional Fourier
transformations in the qx –py and qy –px planes.
Cross gyration for the angle f 5
1
4 p was used by Si-

mon and Mukunda23 to design a lens system that is ca-
pable of converting a familiar beam of a well-defined type
into the twisted Gaussian Schell-model beam. This
beam carries a novel type of nonseparable phase with
definite chirality (handedness) that has come to be known
as the twist phase. In an interesting subsequent work
Friberg and collaborators24 used the same lens system for
an experimental realization of twisted Gaussian Schell-
model beams.

F. Gyrators of U(2)
Performing a similarity transformation with the gyrator
on the cross gyrator, we define

Xg~a! 5 G~
1
2 g!X~a!G~2

1
2 g! (61)

to obtain a family of rotated one-parameter subgroups of
cross gyrators. The value g 5

1
2 p corresponds to an im-

portant one-parameter subgroup for our purposes, so we
single it out by denoting it through

Y~b! 5 Xp/2~b! 5 G~
1
4 p!X~b!G~2

1
4 p! 5 T @Y~b!#,

(62)

Y~b! 5 F cos b 0 sin b 0

0 cos b 0 2sin b

2sin b 0 cos b 0

0 sin b 0 cos b

G
5 F cos b1 sin bt1

2sin bt1 cos b1 G . (63)

We can now incorporate the previous four transforma-
tions, Eqs. (48), (49), (58), and (63), into the structure of
compact subgroup U(2) of Sp(4, R) and write them in a
form that is surely familiar to the reader:

U0~v! 5 F~v! 5 exp~2ivJ0! ↔ exp~2iv1!,

U1~a! 5 X~a! 5 exp~2iaJ1! ↔ exp~2ias1!,

U2~b! 5 Y~b! 5 exp~2ibJ2! ↔ exp~2ibs2!,

U3~g! 5 G~g! 5 exp~2igJ3! ↔ exp~2igs3!. (64)

The 4 3 4 generator matrices Jm , m 5 0, 1, 2, 3, defined
through expressions (64), are readily found to have the
following suggestive direct product forms:

J0 5 2s2 ^ 1, J1 5 2s2 ^ s1 ,

J2 5 2s2 ^ s3 , J3 5 21 ^ s2 . (65)

The J’s obey the same commutation relations as the
2 3 2 Pauli s’s (with s0 5 1), the better-known form of
the generators in the defining representation of the group
U(2), namely,

@Jj , Jk# 5 2ie jklJl , @J0 , Jk# 5 0, j, k 5 1, 2, 3.
(66)
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G. Realizability and Fractionalizability
The one-parameter subgroup U(1) generated by J0 and
the three one-parameter subgroups of SU(2) generated by
J1 , J2 , and J3 , as shown in expressions (64), can be con-
catenated to exhaust the Iwasawa maximal compact sub-
group (K) of Sp(4, R), which is thus realizable by paraxial
optical arrangements. [Indeed, we have done more work
than necessary to establish the realizability of U(2); for
instance, the two one-parameter subgroups generated by
J3 and J1 imply the realizability of the whole SU(2) mani-
fold.] Since the realizability of the Abelian (A) and nilpo-
nent (N) subgroups is already established, the realizabil-
ity of the entire Sp(4, R) manifold of first-order optical
systems with thin lenses follows from the global nature of
the Iwasawa decomposition.1

The analysis of the ten-parameter Sp(4, R) for ques-
tions of minimal realizability is more arduous than that
for Sp(2, R) undertaken in Section 5; it will not be pre-
sented here beyond Eqs. (65). In fact, it is through the
homomorphic group SO(3, 2) that we can examine best
the orbit structure as we did in Eq. (35), but now it is a
five-dimensional space with metric (1 1 2 2 2). As we
proceeded there, however, the trace of the 4 3 4 repre-
senting matrices can give us the crucial information on
whether a given group element is of the exponential type.
Elements in the Iwasawa maximal compact group [see
Eqs. (48), (49), (58), and (63)] have traces in the interval
[24,4]; we exclude the end values that occur for 21 and 1.
The Iwasawa nilpotent group is of exponential type by it-
self and is represented by matrices with 1’s on the diago-
nal, so their trace is 14. The onus of the argument is
again on the Iwasawa Abelian subgroup obtained from
the astigmatic pure magnifiers; cf. Eqs. (18) and (46):
Exponential-type matrices are of the form
diag(zx , zy , zx

21, zy
21), so their trace is a value in [4,`). We

conclude, as for inequality (40), that when a 4 3 4 sym-
plectic matrix satisfies

tr M , 24 or tr M 5 24 except M 5 21, (67)

it is not of the exponential type. The corresponding op-
tical system then cannot be fractionalized.

H. SU(2) in Polarization Optics
To conclude this section we draw from polarization optics
an analogy that throws additional light on the unitary
group structure that appears in paraxial optical transfor-
mations. Polarization optics, too, is governed by an
SU(2) structure,25 with optically active media serving as
image gyrators G(g) and birefringent media acting as
cross-gyratorsXu(a). In particular,X0( 1

4 p) and X0( 1
2 p) cor-

respond, respectively, to quarter-wave plates and half-wave pl
andu is the angle of these plates about the propagation axis o
light beam.

On the basis of the Hamilton theory of turns20 (see also
Refs. 19 and 25), it was shown recently that every SU(2)
transformation can be realized by use of two quarter-
wave plates and one half-wave plate.26 Transcribed to
the paraxial optics context, this result says that every ro-
tation of phase space UPSU(2) can be realized as

U~u1 , u2 , u3! 5 Xu1
~

1
2 p!Xu2

~
1
4 p!Xu3

~
1
4 p!, (68)
,

where u1 , u2 , and u3 are well-defined linear combina-
tions of the Euler parameters of SU(2).

This result gives a special status to 1
2p and 1

4p cross gy-
rators, which we may call quarter and half cross gyrators.
The realizability of these cross gyrators amounts to that
of the entire SU(2) manifold. From a practical point of
view it is important that there is no need to change free-
flight distances and focal powers of the lenses to go from
the realization of one SU(2) element to that of another.
Imagine an arrangement in which a half cross gyrator
and two quarter cross gyrators are mounted coaxially,
with circular dial rings attached to monitor their angular
positions about the common axis. To realize a specific
SU(2) transformation, one has only to rotate the three
pieces about the common axis so the dials bear the values
of the Euler parameters of the SU(2) element under con-
sideration. It should be appreciated that using this gad-
get to produce this three-parameter group of transforma-
tions is as simple as anything can be.

7. CONCLUDING REMARKS
Weyl27 designated the Cartan C family of semisimple
groups ‘‘symplectic,’’ using the Greek verb 1plékein,
whose meaning is ‘‘to twine, plait, weave,’’ to reflect their
imbricate structure. Next to the Heisenberg–Weyl
groups, the symplectic groups lie at the very root of
paraxial geometric and wave optics. They are also the
dynamic groups of the quantum-harmonic oscillators;
thus they have been inherited by quantum optics to de-
scribe squeezed light and other phenomena of quantized
fields. Here we have realized the transformations of the
symplectic groups of two and four dimensions by classical
geometric models of optical arrangements. This treat-
ment applies practically verbatim to paraxial wave optics
and provides the foundation for higher-order aberration
geometric optics. For quantum optics, phase space can
be seen through the Wigner function, as we indicate be-
low.

The model of paraxial optical systems for monochro-
matic wave fields uses the same transformations of the
symplectic groups but represented by integral transform
kernels (the optical transfer functions of paraxial sys-
tems) that faithfully follow the metaplectic cover groups
on Hilbert spaces of functions. Much work was done on
this subject from the point of view of quantum
mechanics8,28 before it was recognized that it applied
straightforwardly to optical models.9,29 The results that
we have presented here resolve the vexing problem of the
metaplectic phase on the level of classical geometry; we
deem this derivation to be clearer than the more arduous
analytic properties of sign changes in Gaussian integrals
that bear the abcd parameters. This group of linear ho-
mogeneous transformations can be extended, moreover,
by adding the phase-space translations generated by qj
and pk , representing a thin prism (which translates the
ray angle, i.e., momentum) and a thin inclined slab
(which translates the ray position), respectively; the ex-
tended paraxial group is called Weyl symplectic.29

The generators of the symplectic groups have also been
used as a foundation for the theory of aberrations in
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metaxial geometric optics.30 The Lie-algebraic structure
of the Poisson brackets [Eq. (1)] allows the construction of
Lie–Poisson operators $f,+% that are associated with dif-
ferentiable functions f(v) of phase space v 5 (q, p). The
generators of the symplectic Lie algebra are the quadratic
functions qjqk , qjpk , and pjpk ; polynomials of higher
degree generate groups of nonlinear (and generally non-
global) transformations of phase space. When their ho-
mogeneous degree is A . 2, the generated transforma-
tions correspond to the (A 2 1)st-order aberrations.
Symplectic groups Sp(2, R) and Sp(4, R) serve to classify
these aberrations into irreducible multiplets that belong
to the totally symmetric representation.31 In this con-
text, the question of whether arbitrary aberration-group
elements can be realized is still wide open and probably
will be answered in the negative.

The coordinate grid of phase space is the arena for the
Wigner function32 that contains both the wave field and
its Fourier transform along orthogonal directions in a
plane (as in Figs. 1–5); coherent states have Gaussian
Wigner functions characterized by their center in phase
space (a light ray of geometric optics), with squeezing (a
circle becomes an ellipse under the image reduction by
the DLDL arrangement of Fig. 3) and slant (Fig. 1). The
harmonic evolution of a field in a waveguide corresponds
to DLD arrangements in Fig. 4. Of course, nonlinear
transformations, such as those that occur in optically ac-
tive Kerr media, are currently of great interest; their cor-
respondence to geometric aberrations has been explored
by Atakishiyev and co-workers,33 who used the Wigner
function to characterize the wave fields deformed by geo-
metric optical aberrations and its moments to measure
their classicality.

Problems in the geometric–wave–quantum correspon-
dence (such as operator ordering) are likely to remain:
Of the same symplectic group, one has two structures
(universal enveloping Lie algebras), the geometric and
the wave–quantum, that are distinct. The former can be
seen as the unique contraction of several models of the
latter in the limit where the wavelength of light becomes
zero. The linear symplectic group studied here is the do-
main where all of the above models are in complete cor-
respondence.
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