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Abstract

We compare the �nite Fourier (-exponential) and Fourier–Kravchuk transforms; both are discrete, �nite versions of
the Fourier integral transform. The latter is a canonical transform whose fractionalization is well de�ned. We examine
the harmonic oscillator wavefunctions and their �nite counterparts: Mehta’s basis functions and the Kravchuk functions.
The fractionalized Fourier–Kravchuk transform was proposed in J. Opt. Soc. Amer. A (14 (1997) 1467–1477) and is here
subject of numerical analysis. In particular, we follow the harmonic motions of coherent states within a �nite, discrete
optical model of a shallow multimodal waveguide. c© 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction: canonical fractional Fourier transforms

The Fourier transform is a unitary operator F : L2(R) 7→ L2(R) that maps (the Hilbert spaces
of Lebesgue) square-integrable functions on square-integrable ones, and is represented on these
functions  (q) by the well-known integral [32]

(F  )(p) =  ̃ (p) =
1√
2�

∫
R

dq e−ipq  (q): (1)

Relevant properties are that the square (F2  )(q) =  (−q) is the inversion operator, and that its
fourth power, (F4  )(q) =  (q), is the identity; hence F3 =F−1 =F†.
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On in�nitely di�erentiable functions of fast decrease in q∈R , the Fourier operator F can be
written in hyperdi�erential form [33, Eq. (7.197)]:

F= ei�=4 exp

[
−i�
4

(
− d2

dq2
+ q2

)]
; (2)

where we recognize the Hamiltonian operator of harmonic oscillator in quantum mechanics. From
this follows that the oscillator eigenfunctions, given by Hermite functions 	n(q) with energy eigen-
values ∼ (n+ 1

2), n= 0; 1; 2; : : : ; will also be eigenfunctions of the Fourier operator, viz.,

(F	n)(q) = e−i�n=2	n(q); (3)

	n(q) = e−q2=2Hn(q)=
√
2n n!

√
� : (4)

The operator F thus generates a cyclic group of order 4.
The embedding of the Fourier transform into a continuous group of unitary transformations on

L2(R) so that F� be de�ned for �∈R mod 4 (� ≡ �+ 4), with the property that F�F� =F�+�,
was made by Condon in [11]. 1 He found the integral kernel from the requirement of the rotational
covariance of the Schr�odinger position and momentum operators Q = q·, P =−id=dq, by solving a
partial di�erential equation, and adapting the normalization and phase to the desired group property.
His result is

F�(q; q′) =
e−i�√
2� sin �

2�
exp

[
i

2 sin �
2�
(q′2 cos �2�− 2q′q+ q2 cos �2�)

]
; (5)

where �= 1
4� for

�
2� in the �rst two quadrants and �= 3

4� in its third or fourth quadrant.
Moshinsky and Quesne [22,23] employed the method of covariance to investigate general linear

(symplectic) transformations Sp(2;R), given by a 2 × 2 matrix M , between the two Schr�odinger
operators on L2(R), namely,

C(M) :
(
Q
P

)
=M−1

(
Q
P

)
; M =

(
a b
c d

)
; detM = 1; (6)

[C(M) ](q) =
∫

R

dq′CM (q; q′) (q′); (7)

CM (q; q′) =
e−i�=4√
2�b

exp
[
i
2b
(aq′2 − 2q′q+ dq2)

]
: (8)

In particular, the fractional Fourier transform subgroup is found for

F� = ei��=4C(F �); F � =

(
cos 12�� sin 1

2��
−sin 1

2�� cos 12��

)
; (9)

1 Note that this author uses the kernel eipq instead of the more common e−ipq that we use here.
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Fig. 1. Shallow multimodal waveguide, with a �nite number of coherent input light-emitting devices and of output �eld
sensors, performs the fractional Fourier–Kravchuk transform.

where the Fourier transform (1) corresponds to �=1. The integral kernel (8) for the matrix entries
of (9) is (5). The phases are nontrivial and have to be treated carefully because the canonical
transform operators C(M) actually represent the double cover of the group Sp(2;R) of 2 × 2 real
symplectic matrices M , called the metaplectic group Mp(2;R). In what follows we shall work with
Gaussians which, as we shall see, give meaning to the kernel (8) on a region of the complex plane
of the parameters, and resolve the apparent phase ambiguities.
Another approach to fractionalization of a canonical transform into a one-parameter subgroup,

uses the generating function of the eigenbasis of the subgroup generator, such as (3). There are
three nonequivalent such subgroups in Sp(2;R), from which the integral transform kernel can be
computed [33, Eqs. (9:88)]. For the cyclic subgroup where the Fourier transform lies, in 1980
Namias [24] reported that

CF�(q; q′) = e−i��=4
∞∑
n=0

	n(q) e−i�n�=2	n(q′): (10)

This form shows the non-uniqueness of the fractionalization process: the nth summand in (10) is
multiplied by the phase of exponent −i �2 (n+ 1

2)� in accordance with (3); but if this were replaced
by −i �2 [�(n)+ 1

2 ]�, where �(n) is any function on the integers such that �(n) ≡ nmod 4, the Fourier
transform will be regained for � = 1, but with di�erent fractionalizations. Only the phase in (10)
yields the canonical transform (9) and hyperdi�erential form (2).
Fractional Fourier transforms were recently introduced into paraxial wave optics by Lohmann

et al. [21,27] within the model of two-dimensional waveguides of arbitrary length, and realized by
lens-and-displacement optical arrangements. If the processing of data is to be performed through
miniaturized multimodal waveguides, however, it is of interest to replace the in�nite real line of the
Fourier transform integration by a �nite interval that re
ects better the physical limitations of shallow
waveguides; and to adapt the mathematical formalism to handle the input and output wave�elds as
data values on a �nite number of discrete sensors, in a con�guration such as that suggested in Fig. 1.
This article compares the ‘continuous’ fractional Fourier integral transform surveyed above with

discrete, �nite versions of this transform. The �rst that comes to mind is the well-known �nite Fourier
transform, that we call here Fourier-exponential transform because it is produced by a matrix with
exponential-phase elements; one of its fractionalizations is surveyed in Section 2, together with its
action on Gaussian functions. Section 3 is devoted to a r�esum�e of the fractional Fourier–Kravchuk
transform introduced in Ref. [6], that is based on the Kravchuk functions. These are the closest
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counterpart of the ‘continuous’ Hermite functions in that they satisfy a di�erence equation over a
�nite number of points, which is a discrete, �nite version of the harmonic oscillator Schr�odinger
equation.
The canonical fractional Fourier transform operator (9) of power � governs the evolution of a

quantum harmonic oscillator, and the kernel (5) is its Green function for time � = 1
2�� [2]. The

motion of Gaussian functions in this environment can be found by realizing that these are complex
canonical transform kernels [33, Eqs. (9:84) and (9:85)]:

Gw(q− q0) =
1√
2�w

exp

[
−(q− q0)2

2w

]
=

[
C

(
1 e−i�=2w

0 1

)
�q0

]
(q); (11)

where Rew¿0 is the width, q0 is the center, and �q0 (q)= �(q− q0) is the Dirac �. Because canon-
ical transforms compose as their matrices do, it follows that the fractional Fourier transform of a
Gaussian is

Gw(q− q0; �) = (F�Gw(◦ − q0))(q)

=

[
C

(
cos 12�� −sin 1

2��
sin 1

2�� cos 12��

)
Gw(◦ − q0)

]
(q)

=

[
C

(
cos 12�� −sin 1

2��
sin 1

2�� cos 12��

)
C

(
1 e−i�=2w

0 1

)
�q0

]
(q)

=

[
C

(
cos 12�� −sin 1

2��− iw cos 12��
sin 1

2�� cos 12��− iw sin 1
2��

)
�q0

]
(q): (12)

The 1–2 matrix element b in the kernel (8), which appears under a square root, has now a
well-de�ned phase in the third and fourth quadrants.
In Fig. 2 we show the fractional Fourier transform of a Gaussian of width w = 1 during the

quarter-cycle between �=0 and �=1. This Gaussian is a coherent state for the quantum harmonic
oscillator, so its motion should be familiar and serve as a useful comparison with any discrete
version of the fractional Fourier transform that purports to describe a scalar �eld in a waveguide.
Section 4 focuses on the �nite oscillator coherent states; the �gures show that the motion of these
wave�elds along the ‘�nite’ waveguide are already indistinguishable from the continuous case for
moderately large number of sensor points. The comparison between the two discrete transforms of
Sections 2 and 3 is further commented in the closing Section 5, which adds some remarks on the
fractionalization and discretization processes. Appendix contain a digest of the Feinsilver–Schott
Kravchuk-transform algorithm.

2. Fractional Fourier-exponential transform

The discrete Fourier transform is the map of an M ×M matrix E on vectors f = ‖fm‖ in RM .
Its elements involve the M th roots of unity, and are

E = ‖Em; n‖ = 1√
M

‖!−mn
M ‖ ; !M = e2�i=M : (13)
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Fig. 2. Gaussian coherent state under fractional Fourier transfomation by powers (from bottom to top) � = 0; 0:2; : : : ; 1.
The initial function is a displaced Gaussian of appropriate width (chosen so that it does not ‘breathe’); the motion of its
center is harmonic (a quarter-cycle is shown). We indicate by – – – the real part, by · · · · · the imaginary part, and by
—— the modulus.

It is symmetric (E = ET), of unit determinant, unitary (E† = E−1 = E∗ ∈SU(M)), its rows and
columns are periodic modulo M (i.e., Em; n = Em+M; n = Em; n+M); its square is the inversion matrix:
(E2 f )m = fM−m, and its fourth power is thus unity: E4 = 1. Since other ‘Fourier’ matrices will
appear in the text, we characterize this one by calling it the Fourier-exponential matrix, and count
m; n= 0; 1; 2; : : : ; M − 1.
To fractionalize the Fourier-exponential matrix (13) into a one-parameter group of unitary matrices

is not a unique proposition, because its spectrum is degenerate for M¿4. It consists of four points
on the unit circle: 1;−1; i; and −i. For dimension M , the four eigenvalues appear with multiplicities
[ 14 (M + 4)], [ 14 (M + 2)], [ 14 (M − 1)] and [ 14 (M + 1)], respectively [1,12,15,18–20,31,34], where the
brackets [�] indicate the largest integer not greater than �. An interesting set of eigenvectors found
by Mehta [20] is an in�nite sequence of Hermite functions (4) displaced by 2�; where the sum is
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evaluated on a linear, periodic lattice of M points spaced by 2�=M :

�M
n (m) =

∞∑
j=−∞

	n



√
2�
M
(m+ jM)


 ;

n= 0; 1; 2; : : : ;

m= 0; 1; : : : ; M − 1: (14)

For uniformity in the �gures it will be convenient to consider the m’s in a symmetric interval around
the origin when M is odd, from − 1

2 (M − 1) to 1
2 (M − 1); for M even, m from − 1

2M to 1
2M − 1.

The vectors (14) satisfy

E� M
n = (−i)n� M

n ; n= 0; 1; 2; : : : (15)

Two of these eigenvectors, � M
n and � M

n′ , are orthogonal when n 6= n′mod 4. But since there is
an in�nity of vectors (14), a linearly independent, �nite subset is found, for M even: n∈M =
{0; 1; : : : ; M − 1}. For M odd, Ref. [20] uses n∈M= {0; 1; : : : ; M − 2; M}.
Once a basis {� M

n }n∈M has been chosen and its dual basis {� M]
n }n∈M is known, a fractional

Fourier matrix can be de�ned using (15) in a generating function, with phases given by a function
�(n) of the integers on the integers as in (10),

E� = ‖E�
m; m′ ‖ ; E�

m; m′ =
∑
n∈M

�M]
n (m)e

−i(�=2)�(n)��M
n (m

′): (16)

By choosing di�erent �(n)’s we place the E� ∈SU(M) on di�erent one-parameter subgroups joining
(13) to the origin E0 = 1.
Mehta’s Fourier eigenbasis (14) shows also how the continuous and discrete fractional Fourier

transforms will di�er. The ground state � M
0 is ‘almost’ a Gaussian, because its neighboring copies

are 2� widths to each side and contribute little to the Gaussian in the main interval. For higher-n
states however, resemblances with the harmonic oscillator wavefunctions will end. Moreover, there
does not seem to be any closed formula for the matrix elements E�

m; m′ , nor a simple algorithm for
the transformation of the data points {fm}M−1

m=0 under the discrete Fourier transform fractionalized in
this way.
Before presenting the obvious modulo-4 fractionalization of the Fourier-exponential matrix, we

must cite other approaches to discretization of the Fourier transform in bases that involve harmonic
oscillator functions. Thus, Belingeri and Ricci [7,8] note that an (in�nite) orthogonal polynomial
system {Pn(x)}∞n=0 has �nite sub-bases: the zeros of PM+1(x), – call them x0; x1; : : : ; xM – provide the
discrete orthogonality set for the basis of polynomials {Pn(x)}M

n=0. The discrete Fourier transform
(13) is used for the Hermite case developed in Ref. [7,8], allowing the Fast Fourier Transform
algorithm to perform part of the computational load. If we interpret the points of orthogonality
{xm}M

m=0 as the coordinates of a line of �eld sensors in a two-dimensional multimodal waveguide,
their spacing will be that of the zeros of the Hermite function 	M+1(x), a set symmetric about the
origin, bounded by 1

2M , and slightly crowded towards the center of the interval.
Another approach to fractionalization of the Fourier transform seen as a phase-space rotation, is

provided by the work of Hakio�glu [16] on the Heisenberg–Weyl twist-product on a torus, with the
de�nition of a proper Wigner function on the spaces of action and angle, and phase and number.
The formalism extends to q-algebras, which apply elegantly to generalize the mechanical model of
a Brillouin lattice of masses and springs [33, Chapters 1 and 2]. However, the topology of the torus



N.M. Atakishiyev et al. / Journal of Computational and Applied Mathematics 107 (1999) 73–95 79

would seem to obstruct the fractionalization of the Fourier transform as a rotation of phase space,
because the ‘coordinate axes’ are two inequivalent circles. Also note the work of Santhanam [28,29]
on the number operator eigenbasis.
The requirements for the fractionalization of the �nite Fourier-exponential transform (13) can be

met in a rather simple way for any idempotent matrix or operator F such that FK =1, in particular
the M ×M Fourier matrix E for K =4. A linear combination of F and its powers provides a basis
for a complex, closed �eld where we can write real powers � of F modulo 4, as

F� = ’1(�)F + ’2(�)F2 + ’3(�)F3 + ’4(�)1: (17)

To �nd the coe�cients ’k(�) we can use any faithful realization of F , in particular that of diagonal
matrices diag(!;!2; !3; 1), where !=!4=ei�=2=i is a fourth root of unity. The simplest solution in
this realization is F� = diag(!�; !2�; !3�; !4�), which allows us to write (17) as a four-dimensional
vector equation for ’=(’k(�))4k=1 with elements of the 4× 4 Fourier-exponential matrix (13). This
is easily inverted to




’1(�)

’2(�)

’3(�)

’4(�)


=

1
4




−i −1 i 1

−1 1 −1 1

i −1 i 1

1 1 1 1







!�

!2�

!3�

!4�




=e5��=4




−1+i
2 sin 1

2�� (cos
1
4��+ sin

1
4��)

i cos 12�� sin
1
4��

1+i
2 sin

1
2�� (cos

1
4��− sin 1

4��)
cos 12�� cos

1
4��


 ; (18)

i:e:; ’k(�) = 1
4 e

i5�(�−k)=4 sin �(�− k)
sin 1

4�(�− k)
: (19)

This solution yields the composition property F�1F�2=F�1+�2 in all representations for F , in particular
the M ×M Fourier-exponential matrix E (13). The E� thus constructed will be unitary because the
coe�cients in (18) satisfy ’1(�) = ’3(−�)∗, ’2(�) = ’2(−�)∗, and ’4(�) = ’4(−�).
Compare now the canonical fractional Fourier transform (9) of a Gaussian, given by Eq. (12) and

shown in Fig. 2, with the discrete version (17) of the Fourier-exponential transform in
Fig. 3. As suggested by (14), we choose for input data the vector with the M values of a displaced
Gaussian, at points around the origin spaced by 2�=M . From the discussion on Mehta’s basis, we
know that the discrete Fourier transform of a Gaussian will be approximately Gaussian, with phase
oscillation due to the initial displacement. The quarter-cycle shown in Fig. 3 however, evinces that
the harmonic motion of the Gaussian is not well reproduced. This fractionalization, for all � ex-
cept the integers, contains always the original function and its mirror image, its Fourier transform
and the inverse. We conclude that the fractional Fourier-exponential discrete transform (17)–(19)
is not an appropriate model for harmonic motion.
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Fig. 3. Gaussian function under the �nite fractional Fourier-exponential transform by powers (from bottom to top)
� = 0; 0:2; : : : ; 1. There are M = 64 = 26 points on the horizontal axis m = −32;−31; : : : ; 31. The real and imaginary
parts of the vector components are marked •, and joined by lines: – – – and · · · · · respectively; the continuous line
indicates the modulus. Compare with Fig. 2.

3. Fractional Fourier–Kravchuk transform

The search for a �nite orthonormal basis of vectors {�n}N
n=0, where the fractional Fourier transform

matrix is the exponential generated by the diagonal number matrix N = diag(0; 1; : : : ; N ),

D� = exp(−i 12��N) = diag(1; e−i
1
2 ��; : : : ; e−N i

1
2 ��); (20)

can be seen in the same Lie-theoretic context as the Fourier integral transform embedded in the
linear canonical transforms in Section 1. Since the dimension of the vector space of data sets is
�nite, we should propose the (N + 1) × (N + 1) unitary representation of a compact group that
contains the one-parameter subgroup (20). As we now show, our solution is the group of 2 × 2
special unitary matrices SU(2) in the representation of spin ‘= 1

2N . This is a natural way to de�ne
the r�egime of �nite optics as the discrete analogue of paraxial optics.
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The Newton equation for a harmonic oscillator and the ray equation for a waveguide in the
paraxial r�egime are of the form �q=−wq. The quantization=wavization of this relation replaces the
position q by an operator Q represented by a matrix Q, and derivatives by i times the commutator
with a Hamiltonian operator H , represented by a matrix H , namely

[H ; [H ;Q]] = wQ; ⇒
{
[H ;Q] =−iP; (geometry)

[H ;P] = iwQ (dynamics):
(21)

The last two commutators are the two Hamilton equations that factorize the Newton equation into
a geometric de�nition of the momentum operator P through its representing matrix P, and its
dynamical equation. Nothing is said however, of the key commutator [Q;P], that in a Lie algebra
should represent [Q; P]. The operators H , Q, and P, can be the generators of a Lie algebra provided
that the Jacobi identity holds (i.e., the double commutators among the cyclic permutations of the
three generators add up to zero). Using (21), this requires the ‘missing’ commutator between position
and momentum operators to satisfy

[H; [Q; P]] = 0; ⇒ [Q; P] =



i� (center) Osc; or

−iH + i�� U (2); or

iH + i
� U (1; 1):

(22)

The �rst choice leads to the oscillator algebra and group, indicated Osc, which is generated by four
operators: Q, P, H , and a � commuting with all others. This leads to the common treatment of
the quantum mechanical oscillator, where the representing matrix � is a multiple ˜ = h=2� of 1],
or to the paraxial optical waveguide, where the multiplicative constant is the reduced wavelength,
�=2� [set to unity in Eq. (9)]. The second or third choices lead, respectively, to the Lie algebras
and groups U (2) or U (1; 1), of 2 × 2 unitary or pseudo-unitary matrices whose determinant is a
complex number of unit modulus. When the dynamics in (21) is such that w = 0, the generated
algebras and groups can be Osc, or the Euclidean or pseudo-Euclidean groups on the plane, ISO(2)
or ISO(1,1) [25].
Only the U (2) case has �nite unitary representation matrices of dimensions 2‘ + 1, for ‘ =

0; 12 ; 1; : : :; the other cases are all in�nite-dimensional or represented by integral transform kernels.
The central algebra element � generates only (necessary) phases but is otherwise uninteresting; we
shall thus consider mostly the other three, which generate the subgroup of unitary matrices with
unit determinant, commonly denoted SU(2). We freely use thus the well-known results of angular
momentum theory in quantum mechanics, to relate the position and momentum observables with
the SU(2) generator matrices

J1 =Q; J2 =−P; J3 =H − (‘ + 1
2)1; (23)

whose Lie algebra and Casimir operator are easily recognized to be

[J1; J2] = iJ3; [J2; J3] = iJ1; [J3; J1] = iJ2; (24)

J 2 = J 21 + J
2
2 + J

2
3 = ‘(‘ + 1)1; (25)

and determining the irreducible representation to be of spin ‘. The index ‘ will be henceforth
understood in the context, and supressed in the notation for vectors and matrices.
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Fig. 4. Sphere of normalized SU(2) algebra generators: position Q = J1, momentum P = −J2 and mode=energy,
H = J3 + (‘ + 1

2 )1 of the �nite oscillator; their eigenvalues are indicated on the axes. The Kravchuk transform �
rotates the J1 axis by 1

2� onto the J3 axis. The fractional Fourier–Kravchuk transform K � rotates the sphere around the J3
axis by an angle 1

2��, representing (but for a phase exp(i
1
4��)) the evolution of a wave�eld along the axis of a shallow

multimodal waveguide.

Among the elementary consequences of this correspondence is that the spectrum of any element
of the SU(2) algebra, J (
) =

∑
k u

(
)
k Jk [normalized by

∑
k u

(
)2
k =1, for 
=(�; �) on the sphere], is

the equally spaced set of 2‘+1 points m∈{−‘;−‘+1; : : : ; ‘}. See Fig. 4. The Hamiltonian operator
H has the nondegenerate spectrum of J3 plus a constant: n+ 1

2 = ‘+m+ 1
2 ∈{ 12 ; 32 ; : : : 2‘+ 1

2}, so it
de�nes an orthonormal basis. The vectors of this mode eigenbasis of J3 are labelled by m, and are
(2‘ + 1)-dimensional column vectors, that satisfy

J3Zm = mZm; Zm = (Zm(m′))‘m′=−‘: (26)

(In Dirac’s notation the eigenvectors would be indicated by |‘; m〉3.) These represent the standing
modes of the waveguide, which only evolve by a multiplicative phase,

exp(−i�H)Zm = exp(−i�(J3 + (‘ + 1
2)1))Zm = e−i�(m+‘+ 1

2 )Zm: (27)

Thus we identify the �nite oscillator, noting again that the Hamiltonian evolution (27) and the
desired diagonal form of the Fourier transform (20) di�er by a phase

D� = exp(−i 12��(H − 1
21)) = e

i��=4exp(−i 12��H): (28)

The matrices represent a one-parameter closed subgroup of U (2), 2 × 2 unitary matrices (whose
determinant can be a phase). In this basis, D2Zm = (−1)‘+mZm. As in the integral transform case,
where waveguide evolution takes place in the metaplectic group (two-fold cover of the fractional
Fourier transform cycle � mod 4), waveguide evolution in the �nite case also covers twice the
fractional Fourier–Kravchuk transform cycle: for � = 4 the evolution matrix exp(−i2�H) = −1 is
corrected by the sign ei� =−1, so that D4 = 1. The fractional Fourier–Kravchuk transform matrices
satisfy therefore the one-parameter subgroup composition property by construction, and are unitary.
It is important to note that in the �nite oscillator=waveguide model, the spectra of both the position

operator, Q = J1 and the momentum operator P =−J2, are also structurally discrete and �nite. We
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can write the eigenbasis of the position operator as the (2‘ + 1)-dimensional canonical column
vectors,

J1Xm = mXm; Xm = (Xm(m′))‘m′=−‘; Xm(m′) = �m; m′ : (29)

(These would be indicated |‘; m〉1 in Dirac’s notation.) This basis is orthonormal: XT
m Xm′ = �m; m′ ;

and complete:
∑

mXmXT
m = 1. If the �eld-sensing array across the waveguide registers the values fm

at the sensors numbered by m, the input vector will be f =
∑

m fmXm.
Now, by means of a rotation of − 1

2� around the 2-axis we can bring the 1-axis onto the 3-axis,
to express the Zm vectors (26) of mode number n= ‘+m∈{0; 1; : : : ; 2‘}, in terms of the canonical
position basis for signals Xm, (29), with sensor number m∈{−‘;−‘ + 1; : : : ; ‘},

Zm=
∑
m′
Xm′XT

m′ Zm =
∑
m′
Xm′XT

m′ e−i�=2 J2Xm

=
∑
m′
Xm′ZT

m′ e+i�=2 J2Zm =
∑
m′
Xm′d‘

m′ ; m(
1
2�); (30)

where d‘
m′ ; m(

1
2�) are the ‘Wigner little-d’ matrix elements. For any colatitude angle �, they are

de�ned in Ref. [9] [Eqs. (3:65)] as

d‘
m; m′(�) =

√
(‘ + m)! (‘ − m)! (‘ + m′)! (‘ − m′)!

×
∑
k

(−1)m−m′+k(cos12�)
2‘+m′−m−2k(sin 12�)

m−m′+2k

(‘ + m′ − k)! k! (m− m′ + k)! (‘ − m− k)!

= (−1)m−m′
√
22(‘−m)(‘ − m)! (‘ + m)!
22‘(‘ − m′)! (‘ + m′)!

k
(sin2

1
2 �)

‘−m (‘ − m′; 2‘) (31)

(The last term writes the Wigner little d-functions in terms of nonsymmetric Kravchuk polynomials
[13,17,26], k (p)n (j; 2‘), which is not given in Ref. [9].)
The rows of Zm in the canonical sensor position basis Xm′ are Zm(m′)=d‘

m′ ; m(
1
2�). While m′ ∈{−‘;

−‘+1; : : : ; ‘} numbers the sensor point, the mode number n=‘+m counts the �nite oscillator=wave-
guide wavefunctions for n∈{0; 1; : : : ; N}, N = 2‘. To indicate this explicitly, we introduce the
Kravchuk functions de�ned by

�‘
n(m) = (−1)‘−nZ‘−n(m) = (−1)‘−nd‘

m; ‘−n(
1
2�): (32)

The Kravchuk functions [4,5] have the explicit form (supressing ‘)

�n(m) =
1
2‘−n

√(
2‘

‘ + m

)/(
2‘
n

)
kn(‘ + m; 2‘); (33)

in terms of the symmetric Kravchuk polynomials [13,17,26],

kn(n′; 2‘) =
(−1)n
2n

(
2‘
n

)
2F1(−n;−n′;−2‘; 2): (34)
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In the limit ‘ → ∞, and for ever closer points x = m=
√
‘, the Kravchuk functions on the integers

converge to the values of the harmonic oscillator wavefunctions:

lim
‘→∞

�n(x
√
‘)→ 	n(x): (35)

These polynomials are real and orthogonal under the binomial weight function 2−2‘
(
2‘
n′

)
over the

set of points n′=0; 1; : : : ; 2‘. This implies that the Kravchuk functions (33) are real and orthonormal
with constant weight.
In Fig. 5 we show some of the �nite oscillator mode eigenfunctions for 2‘+1=65. For small n’s

they closely resemble the well-known harmonic oscillator wavefunctions, while for middle and large
values of n, they are increasingly di�erent. In particular, the highest-‘energy’ eigenfunction n= 2‘
has the envelope of the lowest one, only alternating the signs of neighboring points. Their parity is
�n(m) = (−1)n�n(−m), which follows from the index symmetry of the little d’s. The Kravchuk
functions (32) we place as rows of the Kravchuk eigenvectors �n, and with these columns we build
the Kravchuk matrix:

�n = (�n(m))‘m=−‘; �= (�0�1 · · ·�2‘): (36)

From (27), (28), and (20), it follows that

K ��=�D� ⇒ K � =�D��T: (37)

In particular (K 2�n)(m) = (−1)n�n(m) =�n(−m), and therefore K 2 is the inversion matrix (in the
basis of sensor points), and K 4 = 1.
A column vector f whose components in the ‘position basis’ are the readings of the 2‘ + 1

sensors {fm}‘
m=−‘, in the number basis of modes will have components {fKn }N

n=0, with N = 2‘ and
n= ‘ + m:

‘∑
m=−‘

fmXm = f =
2‘∑
n=0

fKn �n: (38)

The two vectors f = (fm)‘m=−‘ and f
K = (fKn )

2‘
n=0 will be connected by the Kravchuk matrix, which

is real and orthogonal,

f K =�T f : (39)

This is the action of the rightmost factor of the Fourier–Kravchuk matrix K � in Eq. (37). Now
that the signal has been Kravchuk-transformed to the mode basis by �T, the diagonal matrix D�

of (20) is applied, and the vector is inverse-Kravchuk-transformed to the predicted values of the
2‘ + 1 sensors. The elements of the Fourier–Kravchuk matrix K � (37) in the sensor basis can be
calculated in closed form [6] as

K�
m; m′ =XT

m exp(−i 12��(J3 + ‘))Xm′ =
2‘∑
n=0

�n(m)ein��=2�n(m′)

= ei�(m+m′−‘�)=2

√(
2‘

‘ − m

)(
2‘

‘ − m′

)
cos2‘ 14�� tan

2‘+m+m′ 1
4��

×2F1

(
m− ‘; m′ − ‘;−2‘; 1

sin2 14��

)
: (40)
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Fig. 5. Kravchuk eigenvectors �n(m) for the �nite oscillator of 2‘+1=65 points (joined by straight lines). From bottom
to top: the n= 0 ground state is the root of the binomial distribution; states n= 1; 2; : : : ; 32; : : : ; 62; 63; 64. The last is the
highest-energy state that the waveguide can carry: it is the alternating root of the binomial distribution. Compare with the
�rst few harmonic oscillator wavefunctions.

Although the fractional Fourier–Kravchuk matrix elements (40) have an explicit analytic expres-
sion that looks rather arduous to compute, we have calculated this transform easily using the matrix
product form in Eq. (37). First, the Kravchuk transform (39) is performed: f 7→ f K =�Tf , using
the Feinsilver–Schott algorithm [14] as detailed in the Appendix. Second, the components of the
vector f K are multiplied by the elements of the diagonal matrix D� in (37). And third, the trans-
pose Kravchuk transform � is applied to yield the fractional Fourier–Kravchuk transform vector
f (�) =K �f . The matrix K � thus generates the evolution of the �eld along a multimodal waveguide,
sensed at 2‘ + 1 points across the optical axis, at a distance which is 1

4� of the guide period.
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Fig. 6. Kravchuk coherent states on the sphere of normalized SU(2) algebra elements (cf. Fig. 4). The caps illustrate
schematically the coherent states associated with extreme eigenvectors. The south cap is the �nite oscillator ground state
Z−‘, and the north cap the highest-energy state Z‘. The caps on the J1 direction are the two extreme localized states
X±‘. By means of rotations one can bring the ground and highest coherent states to any other coherent or anti-coherent
state on the same hemisphere (see the following �gure). Evolution along the axis of the waveguide is their fractional
Fourier–Kravchuk transform K �.

4. Coherent states

From Eq. (32), the ground state of the (2‘ + 1)-point �nite oscillator is

�0(m) = d‘
m; ‘(

1
2�) =

1
2‘

√(
2‘

‘ + m

)
: (41)

It is a coherent state because it is the extreme normalized state among the eigenstates of J3 (i.e.,
it is annihilated by the lowering operator J1 − i J2 [4,5]). In the ‘ → ∞ limit (35), this binomial
distribution converges to the well-known Gaussian oscillator ground state. In Fig. 6 we draw the
ground state as a di�use cap on the south pole of the sphere of Fig. 4, to indicate that it is a mode
eigenstate (on the vertical axis of J3) and a spread of values on the sensor basis (the horizontal
axis J1 = Q). From Eqs. (27) and (28), and as is clear from Fig. 6, the ground state (41) will be
invariant under fractional Fourier–Kravchuk transforms, because these rotate the sphere around the
3-axis. Below we show the actual Kravchuk coherent state vectors.
Extreme states can be found for operators J (
) =

∑
k u

(
)
k Jk , for every point 
 = (�; �) on the

unit sphere. They can be obtained by means of rotations of the sphere of normalized operators
in Fig. 4, and are shown in Fig. 6 as caps under di�erent axes. The fact that these caps indeed
represent coherent states can be understood through the Wigner function of the signal (in localized
eigenstates of J1), as shown in Ref. [3]. Rotations parametrized in Euler angles are generated by
R(�; �;  ) = ei�J3ei� J2ei J3 ; the rightmost factor [a fractional Fourier–Kravchuk transform (28) for
 = 1

2��] acting on the ground state (41), will only multiply it by the constant phase e
−i‘ ; the

middle factor [a fractional Kravchuk transform – cf. Eqs. (30)] will be represented by the Wigner
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little-d matrix,

(ei�J2 f )m =
‘∑

m′=−‘

d‘
m; m′(�)fm′ ; (42)

�nally, the leftmost factor [a fractional Fourier–Kravchuk transform for �= 1
2��] yields the coherent

state �(
)
0 (m) labelled by 
= (�; �). The ground state is given by (41); therefore, disregarding the

phase e−i‘ , we can write coherent states in terms of the Wigner little d’s in (31)–(32) as

�(�; �)
0 (m) = K 2�=�

‘∑
m′=−‘

d‘
m; m′(�)�(0; 0)

0 (m′): (43)

But the remaining fractional Fourier–Kravchuk transform only corresponds to the phase � of the co-
herent state oscillation along the waveguide. If we choose coherent states at their maximal amplitude
(that start from rest at �=0), using (41) and the sum properties of the Wigner little-d’s, we can label
the general coherent states (43) by the single colatitude angle � of the operator J3 cos �+ J1 sin �,

�(�)
0 (m) = d‘

m; ‘(�+
1
2�): (44)

For 06�6 1
2�, the cap that represents the coherent state in Fig. 6 will have its center in the lower

hemisphere.
Anti-coherent states are represented by caps in the upper hemisphere. Indeed, the highest mode

n= 2‘ in (32) is

�2‘(m) = (−1)‘Z−‘(m) = (−1)‘d‘
m; −‘(

1
2�) = (−1)‘−m�0(m); (45)

where we have used identities for the Wigner little-d functions [9, Eqs. (3:80)]; this state is repre-
sented by the cap on the north pole of Fig. 6. The anti-coherent signal states have the same envelope
as the ground state, but neighboring points have opposite sign. For this state (45) we can repeat
the rotations (42) to obtain the generic anti-coherent states

�(�)
2‘ (m) = d‘

m; −‘(�+
1
2�); (46)

also for 06�6 1
2�. The caps that represent anti-coherent states have their center in the upper hemi-

sphere. Where both hemispheres meet (say, along the J1=Q axis at �=1
2�), the coherent=anticoherent

states are (0; : : : ; 0; 1) or (1; 0; : : : ; 0). The Kravchuk coherent-state vectors for the caps of Fig. 6 are
shown in Fig. 7. Rotation around the momentum axis by � displaces the center of the ground-state
bell, which unitarily narrows until it becomes an extreme localized state at � = 1

2�. We can reach
this same through displacing the highest-energy (anti-coherent) state by −�.
Fractional Fourier–Kravchuk transforms of �nite-oscillator Kravchuk coherent states are shown in

Figs. 8 and 9 for ‘= 3 and ‘= 32 respectively, i.e., for 7 and 65 points, and over a quarter-cycle.
The latter are indistinguishable to the eye from that of the fractional Fourier integral transform
of a Gaussian with the same center and width (by second moment), as that shown in Fig. 2.
We believe that the correct description of coherent state evolution is a sine qua non condition
for any discrete fractional Fourier transform. The Fourier–Kravchuk transform appears to have other
interesting properties, which can be explored graphically. For example, the propagation of a localized
state (a light pulse at a single point in the array) Xm(m′)=(0; : : : ; 0; 1; 0; : : : ; 0), both along and across
the shallow waveguide is given by K�

m; m′ in (40) and shown �rst in Fig. 10. The fractional Fourier–
Kravchuk transform of this pulse broadens showing a steep leading edge, as if it were a �nite
propagation velocity.
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Fig. 7. Kravchuk coherent states �(�)2‘ (m) for ‘ = 32 (65 points). At the bottom is the coherent ground state (� = 0),
following up are the � = 1

4� and � = 1
2� coherent states. On top is the anti-coherent highest-energy state (� = 0), and

following down its −�-displaced states down to the extreme-localized (and coherent) state in the middle.

5. Discretization and fractionalization

Signal analysis is increasingly performed by miniaturized optical means. It is therefore relevant to
study the discrete, �nite versions of certain well-known mathematical operations, such as the Fourier
and other ‘continuous’ integral transforms. The Fast Fourier Transform algorithm [10] is an excellent
example of a computationally e�cient tool for time-series analysis of signals in a homogeneous (or
time-invariant) medium.
The optical counterpart of the Fourier transformation occurs between the two focal points of a

lens, or at the end of a length of multimode graded-index waveguide. In particular, the refractive
index of the waveguide must have a pro�le of negative curvature, like an (inverted) harmonic
oscillator. But, because doped-chip waveguides are shallow, we should recognize that no more than
a small number of transverse modes can be carried, and hence place not more than that number of
�eld sensors across the guide. Such an optical model (Fig. 1) we consider discrete and �nite. The
�nite Fourier (-exponential) transform counts its indices modulo M , as if sensors 1 and M were
�rst neighbors. For Fourier–Kravchuk transforms on the other hand, sensor numbers 0 and N are
literally poles apart. Waveforms moving (i.e., oscillating) toward an edge of the waveguide should
pile up and re
ect, as the state of Fig. 10, and not at all as Fig. 3, nor simply move through the
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Fig. 8. Finite-oscillator Kravchuk coherent state of ‘ = 3 (7 points), under fractional Fourier–Kravchuk transfomation by
powers (from bottom to top) � = 0; 0:2; : : : ; 1. The real and imaginary parts of the vector components are marked •, and
joined by lines: – – – and · · · · · respectively; the continuous line is the modulus.

boundary reappearing on the opposite side, as time-series Fourier analysis could assume. For these
reasons, we believe that propagation phenomena in multimodal waveguides are discretized best as
Fourier–Kravchuk transforms.
Fractionalization of integral transforms is the second venue where optical applications have

spurred interest. With optical arrangements, fractional Fourier transforms are performed as eas-
ily as the whole ones. They are naturally embedded as canonical transforms [22,23], within the
Weyl-symplectic group WSp(2;R) [33, Chapter 10]. This group contains the linear symplectic trans-
formations Sp(2;R), and also the Heisenberg–Weyl translations of phase space, and a multiplicative
phase; the last three and the oscillator Hamiltonian generate the Osc group. Instead of Osc, however,
the �nite optics model adopts them with the deformed structure of the Lie algebra U (2); one of
the ‘ → ∞ contractions of U (2) brings us back to Osc [30].
The subgroup of U (2) generated by J3+‘ is the Fourier transform cycle and, as we noted, rotates

the sphere of Figs. 4 and 6 around the 3-axis. Similarly, the subgroup generated by J1 = Q rotates
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Fig. 9. Finite-oscillator Kravchuk coherent state of ‘ = 32 (65 points) under fractional Fourier–Kravchuk transfomation.
All marks are as in the previous �gure. Compare with the fractional Fourier integral transform of a true Gaussian in
Fig. 2.

that sphere around the 1-axis, while multiplying the signal components by phases: fm 7→ eim�fm.
Optically, this is realized by thin prisms of angle ∼ � within the waveguide that (in geometric
optics and for small �) shift ray directions. These prisms produce unitary ‘translations’ of �nite
momentum space. Two prisms with opposite apices, i.e. an inclined slab within the guide, will
translate positions, and realize the subgroup exp(i
J2). In Fig. 11 we show schematically the most
general discrete optical system embedded in a waveguide that is ‘linear’ in U (2), in the sense that
its generators belong to the Lie algebra. Embedded lenses would multiply the signal components by
quadratic phases eim

2� that are generated by the operators in the enveloping algebra of U (2).
It is a recognized fact that di�erence equations have a richer solution set than their ‘continuous

limit’ di�erential equations. As the number of points increases (with the intervals decreasing ap-
propriately), both Fourier–Kravchuk and Fourier-exponential �nite transforms become the Fourier
integral transform in the limit [6,10]; but their fractionalizations (as studied here) are inequivalent.
We have found it advantageous to embed the operation to be fractionalized within a multiparameter
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Fig. 10. A pulse X0(m) = (0; : : : ; 0; 1; 0; : : : ; 0) at the center of a waveguide propagates along � according to the fractional
Fourier–Kravchuk transform K � for 65 points (|m|632). The modulus of the wave�eld is shown within a quarter-cycle
length of waveguide, 06�61.

Fig. 11. The most general SU(2) discrete optical system is composed of waveguide lengths (fractional Fourier–Kravchuk
transform), prisms (multiplication of �eld values by a linear set of phases), and inclined slabs (unitary translation of
discrete positions).

Lie group of transformations. Finally, we have seen that numerical simulations are useful for
understanding the computational e�ciency of the Feinsilver–Schott algorithm given in the
Appendix.
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Appendix. The Feinsilver–Schott algorithm

In Ref. [14], Feinsilver and Schott discovered an algorithm which, by sums and di�erences, trans-
forms an input (N+1)-component set of values C={vn}N

n=0 into a set C̃
K={ṽKn }N

n=0, of their expansion
coe�cients in Kravchuk polynomials. Since we use the Kravchuk functions (33) in expansion (38),
normalization factors will have to be applied to both sets at the end.
The Feinsilver–Schott algorithm starts at step 0 by writing out a 1× (N +1) array with the input

data:

v0 v1 v2 · · · vN
0
:

The �rst step creates a 2× N array of elements indicated by

v�n
1

;

whose �rst row �=0 sums contiguous entries, and whose second row �=1 contains their di�erences:

v00 v01 v02 · · · v0N−1
v10 v11 v12 · · · v1N−1

1

=
v0 + v1 v1 + v2 v2 + v3 · · · vN−1 + vN
v0 − v1 v1 − v2 v2 − v3 · · · vN−1 − vN

0

:

Repeating the process of summing contiguous row entries and adding a last row with di�erence, the
mth step (indicated by the m on the array) creates, from the elements of the previous m×(N−m+2)
array, the (m+ 1)× (N − m+ 1) array

v00 v01 v02 · · · v0N−m

v10 v11 v12 · · · v1N−m
...

...
...

...
vm−10 vm−11 vm−12 · · · vm−1N−m

vm0 vm1 vm2 · · · vmN−m

m

=

v00 + v01 v01 + v02 v02 + v03 · · · v0N−m−1 + v0N−m

v10 + v11 v11 + v12 v12 + v13 · · · v1N−m−1 + v1N−m
...

...
...

...
vm−10 + vm−11 vm−11 + vm−12 vm−12 + vm−13 · · · vm−1N−m−1 + vm−1N−m

vm−10 − vm−11 vm−11 − vm−12 vm−12 − vm−13 · · · vm−1N−m−1 − vm−1N−m

m−1

:
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After N steps, one obtains the (N + 1)× 1 array

vN0
vN1
vN2
...
vNN

N

=

ṽK0
ṽK1
ṽK2
...
ṽKN

;

where in particular

ṽK0 =
N∑

n=0

(
N
n

)
vn; ṽKN =

N∑
n=0

(−1)n
(
N
n

)
vn;

are the binomial and alternating binomial distributions. If the resulting column array is transposed
to a row and the above algorithm is repeated, it reproduces the previous steps backwards, but for a
factor of 2 at each step. The Feinsilver–Schott algorithm applied twice thus reproduces the original
data set with a factor of 2N .
Because the Kravchuk functions in our expansion (38) and the Kravchuk polynomials are related

by (33) with a ratio of binomial coe�cients, the Kravchuk transform of f = {fm}‘
m=−‘ can be

obtained in three steps. First we renumber the components according to n = ‘ + m∈{0; 1; : : : ; 2‘},
multiplying the components by a diagonal matrix,

C= diag(
√
(2‘ − n)! n!) f : (47)

Second, using the Feinsilver–Schott algorithm on C we produce C̃K as described above. And third,
we multiply the result by a second diagonal matrix,

f K = 2−‘ diag
(

(−1)n√
(2‘ − n)! n!

)
C̃K : (48)

This yields f K in (39).
It is a sobering fact that the Feinsilver–Schott algorithm for the Kravchuk transform is not a fast

algorithm, as the FFT is [10]. Provided the Kravchuk transform matrix of given dimension N +1 is
known and stored, we recall that its application on the data vector requires (N + 1)2 products and
N 2 sums – a total of ∼ 2N 2 operations. The Feinsilver–Schott algorithm performs, at step m, one
sum or di�erence for each of the entries of the resulting (m+ 1)× (N −m+ 1) array. The number
of operations is thus

N∑
m=1

(m+ 1)(N − m+ 1) = 1
6N (N + 1)(N + 5) ∼ 1

6N
3:

Yet not all advantage is lost: for small N , the algorithm is faster than matrix multiplication up to
7, i.e., for 8 data points; besides, the simplicity of the algorithm allows the design of a microchip
circuit to perform Kravchuk transforms.
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