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Wigner functions for Helmholtz wave fields
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We investigate a general form of the Wigner function for wave fields that satisfy the Helmholtz equation in
two-dimensional free space. The momentum moment of this Wigner function is shown to correspond to the
flux of the wave field. For a forward-propagating wave field, the negative regions of the Wigner function are
seen to be associated with small regions of backward flux in the field. We also study different projections of
the Wigner function, each corresponding to a distribution in a reduced phase space that fully characterizes the
wave field. One of these projections is the standard Wigner function of the field at a screen. Another pro-
jection introduced by us has the added property of being conserved along rays and is better suited to the de-
scription of nonparaxial wave fields. © 1999 Optical Society of America [S0740-3232(99)02009-8]

OCIS codes: 000.3860, 030.5630, 070.2590, 350.6980, 350.7420.
1. INTRODUCTION
The Wigner function1 has been used most successfully in
quantum mechanics and signal analysis to interpret arbi-
trary square-integrable functions through quasi-
probability distributions on phase space. The coordi-
nates of phase space are generally taken to be as position
and its canonically conjugate momentum (or spatial fre-
quency) under Fourier transformation. Within optics,
the Wigner function of a scalar wave field at a screen was
considered by Walther2 as a possible analog of the radi-
ance or brightness from classical radiometry. However,
neither the Wigner function at a screen nor other
alternatives3,4 that have been defined possess all the
properties required in the definition of the radiance, ex-
cept in the case of a fully incoherent field. In particular,
other than in the paraxial limit, the Wigner function at a
screen of a coherent or partially coherent field is not ex-
actly conserved along straight trajectories in free space.

Just as solutions of the Helmholtz equation are not ar-
bitrary functions of position, their dependence on momen-
tum (which characterizes the direction of propagation),
and indeed on their initial-condition characterization on a
screen, is also constrained. The Wigner function of these
wave fields can be expected to exhibit the restrictions im-
posed by the Helmholtz equation, reducing the number of
essential coordinates of its phase space. In this paper we
study the Wigner function of oscillatory wave fields con-
strained by the two-dimensional Helmholtz equation for
free space. This Wigner function is derived from the field
over all space and not just over a screen (i.e., a line for
two-dimensional optics), as in the conventional approach.
Although in the concluding section we sketch the gener-
alization of these ideas to three-dimensional problems, for
clarity the analysis is completed here by using two-
dimensional (i.e., cylindrical) waves.

In Section 2 we recall some results on Helmholtz wave
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fields, and in Section 3 we construct their Wigner func-
tion, checking its properties of covariance. The relation
between the energy-flux density5 of the wave field and the
Wigner function is given in Section 4. In Section 5 we
show that for the characterization of wave fields, it is suf-
ficient to have a marginal distribution over a reduced
phase space, and a first option is considered: the stan-
dard Wigner function mentioned above of the field at a
screen. Finally, in Section 6 we propose some new alter-
natives and show their advantages for the study of non-
paraxial wave fields.

2. HELMHOLTZ WAVE FIELDS
Solutions to the two-dimensional wave equation with a
fixed, real wave number k P R1 are solutions C(q), q
5 (qx , qz) P R2 of the Helmholtz equation

S ]2

]qx
2 1

]2

]qz
2DC~q! 5 2k2C~q!. (1)

In particular, a plane wave that travels in the direction of
the wave vector k 5 (kx , kz) 5 (k sin u, k cos u) 5 @k, u#
(where we use square brackets to flag a polar representa-
tion), has the form

Ck~q! } exp i~kxqx 1 kzqz!. (2)

The restriction imposed by the Helmholtz equation on
wave fields C(q) is seen clearly in the canonically conju-
gate momentum space p 5 ( px , pz) 5 ( p sin u, p cos u)
5 @ p,u# P R2, with the Fourier transform

C̃~p! 5
k

2p
E

R2
d2qC~q!exp~2ikp • q!, (3)

where d2q 5 dqxdqz . With this, Eq. (1) becomes
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~ p2 2 1 !C̃~p! 5 0 ⇒ C̃@p# 5 A2p

k
d ~ p 2 1 !c~u!, (4)

so the Helmholtz equation constrains p to be unity. The
function c (u) on the circle u P S is called the spectral
function of the wave field. Note that, since the wave-
fields of interest are nonsingular and we consider only
propagation in free space, there can be no evanescent
components.6

Free-space Helmholtz wave fields C(q) are thus deter-
mined by their spectral functions through Helmholtz
wave synthesis:

C~qx , qz! 5 A k

2p
E

S
duc~u!exp ik~qx sin u 1 qz cos u!.

(5)

As shown in Ref. 7, this equation can be inverted for c (u)
in terms of the values and normal derivatives of the wave
field at the reference screen qz 5 0, denoted CS(qx)
5 C(qx , 0) and Cz

S(qx) 5 ]C(qx , qz)/]qzuqz50
, through

Helmholtz wave analysis:

c ~u! 5
sz~u!

2
A k

2p
E

R

dqx@CS~qx!cos u

2 ik21Cz
S~qx!#exp~2ikqx sin u!. (6)

Here sz(u) 5 sign(cos u) distinguishes between forward
( sz 5 11) and backward ( sz 5 21) wave components.
When u 5 6

1
2 p, Eq. (6) holds in the sense of the average

limit.7

3. WIGNER FUNCTION
The Wigner function of C(q) is defined as1

W~Cup, q! 5 S k

2p
D 2E

R2
d2rC~q 2

1
2 r!*

3 exp~2ikp • r!C~q 1
1
2 r! (7)

5 S k

2p
D 2E

R2
d2sC̃~p 2

1
2 s!*

3 exp~1ikq • s!C̃~p 1
1
2 s!. (8)

Notice that the integral of the Wigner function over all its
arguments yields

E
R2

d2pE
R2

d2qW~Cup, q! 5 ~C, C!L2~R2!

5 E
R2

d2qC~q!* C~q!

5 E
R2

d2pC̃~p!* C̃~p!, (9)

where (C, C)L2(R2) is the norm of C(q) in L2(R2) i.e., Le-
besgue square-integrable functions over the plane. If
C(q) were a quantum mechanical wave function, L2(R2)
would be its appropriate Hilbert space. However, since
C(q) is a Helmholtz wave field, (C, C)L2(R2) is infinite
[see Eq. (4)], and therefore L2(R2) is not an appropriate
Hilbert space for Helmholtz wave fields.

We now proceed to reduce the form of the Wigner func-
tion for Helmholtz wave fields, taking into account the re-
sults given in Section 2. From Eq. (4) we see that, as il-
lustrated in Fig. 1, the support of the integrand of Eq. (8)
consists of two points when p , 1 and none when p
. 1. In the second case the Wigner function is therefore
zero. In the first case there will be contributions from
the points where the argument vectors p 2

1
2 s and p

1
1
2 s simultaneously intersect the unit circle. On the

integration plane s this occurs at the angles u 7
1
2 Ã,

where u is the angular coordinate of p 5 @ p,u#, and
cos 1

2Ã 5 p. This shows qualitatively that the Wigner
function of Helmholtz wave fields can be found in closed
form in terms of their spectral functions on the circle.
Further, it is singular at both p 5 0 and p 5 1.

By using Eq. (5), we introduce the spectral functions on
the circle, exchange integrals, and use the Dirac d’s that
appear, to find

W~Cup, q! 5
k

2p
E

S
duE

S
du8c~u!* c~u8!

3 d @ px 2
1
2 ~sin u 1 sin u8!#

3 d @ pz 2
1
2 ~cos u 1 cos u8!#

3 exp$2ik@qx~sin u 2 sin u8!

1 qz~cos u 2 cos u8!#%

5
k

2p
E

S
daE

2p

p

dbc~a 2
1
2 b!* c~a 1

1
2 b!

3 d ~ px 2 cos 1
2 b sin a!

3 d ~ pz 2 cos 1
2 b cos a!

3 exp@2ik~qx cos a 2 qz sin a!sin 1
2 b#.

(10)

The last expression suggests a convenient change of vari-
ables to the vector t 5 @cos 1

2b, a#, so the product of deltas
simply becomes d (p 2 t), and the measure is dbda
5 2d2t /tA1 2 t2 for t inside the unit circle. Thus we
write the Wigner function expressed in polar coordinates
p 5 @ p,u# of the momentum plane, for 0 , p , 1,

Fig. 1. Support of the integrand of Eq. (8) consists of two points,
where the momentum arguments of the two functions, the vec-
tors p 2 (1/2)s and p 1 (1/2)s, meet the unit circle.
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W~Cup, q! 5
k

ppA1 2 p2
$c ~u 2

1
2 Ã!* c ~u 1

1
2 Ã!

3 exp@2ikA1 2 p2~qx cos u 2 qz sin u!#

1 c ~u 1
1
2 Ã!* c ~u 2

1
2 Ã!

3 exp@22ikA1 2 p2

3 ~qx cos u 2 qz sin u!#%, (11)

where

Ã 5 2 arccos p P ~0, p!. (12)

Recall that W(Cup, q) is zero for p . 1. Equation (11)
gives the closed form spoken of above.

As expected, the real-valued expression given in Eq.
(11) exhibits singularities at p 5 0 and p 5 1. Also, the
combination qx cos u 2 qz sin u that appears in the expo-
nents is the cross product between the position vector q
and a unit vector in the direction of the momentum vector
p. In fact, since W depends on qx and qz only through
this combination, it satisfies

W~Cup, qx , qz! 5 W~Cup, qx 2 qz tan u, 0 !. (13)

That is, for each value of p,W(Cup, q) is constant for all
values of q that fall along any line parallel to p. There-
fore a displacement along the z axis corresponds to a non-
linear shear of the remaining three-dimensional space.
Finally, we note that under Euclidean transformations of
the plane, that is, under translations

Tu : C~q! 5 C~q 1 u!,

Tu : c ~u! 5 exp@ik~ux sin u 1 uz cos u!#c ~u!, (14)

and rotations represented by 2 3 2 matrices R(b ),

Rb : C~q! 5 C@R~b!q#, Rb : c~u! 5 c~u 1 b!, (15)

the Wigner function is covariant, i.e.,

W~TuCup, q! 5 W~Cup, q 1 u!, (16)

W~RbCup, q! 5 W~CuR~b!p, R~b!q!. (17)

Notice that, as opposed to quantum mechanical wave
functions, Helmholtz wave fields cannot be translated in
momentum because their support circle must remain in
place. [That is, the product of a Helmholtz wave field
and a phase factor exp(iks • q) is not a Helmholtz wave
field.]

4. PROJECTIONS AND MOMENTS OF THE
WIGNER FUNCTION: INTENSITY
AND FLUX OF WAVE FIELDS
In this section we examine quantities derived from the
Wigner function that have a more direct physical mean-
ing. By integrating the Wigner function [Eq. (7)] over
momentum space p P R2, after an exchange of integrals,
one recovers the squared amplitude of the field, loosely
called the intensity:

I~Cuq! 5 E
R2

d2pW~Cup, q! 5 uC~q!u2. (18)
Equivalently, one can show from Eq. (8) that the integral
of the Wigner function over position space q P R2 gives
the squared amplitude of the momentum representation
of the field, defined in Eq. (3). However, as can be seen
from Eq. (4), this quantity is not well defined: It is zero
over all p except for p 5 1, where it is infinite. The first
moment of the position vector of the Wigner function,
given by the integral over all q P R2 of qW is also ill-
defined. On the other hand, the first moment of the mo-
mentum vector of the Wigner function yields the local
flux5 of the wave field:

J~Cuq! 5 E
R2

d2ppW~Cup, q!

5
i

k S k

2p
D 2E

R4
d2pd2rC~q 2

1
2 r!*

3 @¹r exp~2ikp • r!#C~q 1
1
2 r!

5
i

2k S k

2p
D 2E

R4
d2pd2r@2C~q 1

1
2 r!

3 ¹qC~q 2
1
2 r!*

1 C~q 2
1
2 r!* ¹qC~q 1

1
2 r!#exp~2ikp • r!

5
1

2ik
@C~q!¹qC~q!* 2 C~q!* ¹qC~q!#

5
1

k
Im@C~q!¹qC~q!* #. (19)

This quantity explicitly satisfies ¹ • J 5 0, and Eq. (19)
clearly reinforces the intuitive connection to classical ra-
diometry. Notice from Eq. (19) that for stationary Helm-
holtz fields (which have constant phase), the flux is zero.

In Fig. 2 we show the flux-vector field for a forward-
rectangle beam given by the spectral function c(u)
5 r(u; p/2), where

r~u; v! 5 ~2v!21 Rectv~u! 5 H 1/2v uuu , v,

0 otherwise
. (20)

As expected, the flux-vector field is maximal in the for-
ward z direction at the center of the beam, spreading out
as it advances in the z axis. At the waist of the beam, on
the qz 5 0 line, notice the appearance of vortices8 and
saddle points of the flux vectors. Although the magni-
tude of the flux itself is then small, there are intervals
along this axis where it flows backward, despite the fact
that the beam is composed solely of forward-propagating
plane waves. One can study the behavior of the flux at
the x axis analytically by computing the field and its de-
rivatives:
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Fig. 2. (a) Intensity and flux-vector field of a forward rectangle beam with spectral function c(u) 5 Rectp/2(u). Note that beyond the
field waist there are flux vortices, and saddle points along the x axis. The flux-vector field for the region inside the dotted box is shown
in detail in (b).
C~qx , 0 ! 5 A k

2p
E

2p/2

p/2

du exp~ikqx sin u!

5 A k

2p
J0~kqx!, (21)

Cqx
~qx , 0 ! 5 ikA k

2p
E

2p/2

p/2

du sin u exp~ikqx sin u!

5 2kpA k

2p
J1~kqx!, (22)

Cqz
~qx , 0 ! 5 ikA k

2p
E

2p/2

p/2

du cos u exp~ikqx sin u!

5 2ikA k

2p

sin kqx

qx
, (23)

where J0 and J1 are Bessel functions. Because the qx
derivative is real, the x component of the flux is zero at
the waist line. We thus find the flux to be purely along
the z axis, with values

Jz~Cuqx , 0 ! 5
k

p
J0~kqx!

sin kqx

qx
. (24)

The flux will be backward where the two functions on the
right-hand side of Eq. (24) have opposite signs, i.e., be-
tween kqx 5 2.4048... and 3.1416..., etc., as can be seen in
Fig. 2.

It turns out that these regions of backward flux are re-
lated to the negative regions of the Wigner function: It
was mentioned above that the Wigner function is differ-
ent from zero only for upu < 1. For a forward-
propagating wave field, the support in momentum of the
Wigner function is even more restricted: We can see that
in this case, the Wigner function defined in Eqs. (11) and
(12) vanishes outside the region shown in Fig. 3 and de-
fined by uuu < p/2 2 arccos p, 0 < p < 1. Since pz > 0
at all points in this region, the moment given in Eq. (19)
can have a negative z component only if W takes predomi-
nantly negative values. This is verified in Fig. 4, where,
for the wave field considered above, we show
pA1 2 p2W(Cup, q) evaluated at the center of the beam
kq 5 (0, 0) and at kq 5 (2.7, 0), which corresponds to a
point of backward flux in Fig. 2 and where we see pre-
dominantly negative values.

Fig. 3. Gray area represents support in momentum for the
Wigner function of a forward-propagating field.
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5. SCREEN MARGINAL
In Section 3 the Wigner function of two-dimensional
Helmholtz wave fields was found as a function of four
variables, p 5 ( px , pz) and q 5 (qx , qz), with the re-
striction that it be zero for upu . 1. Four-dimensional
distributions are of course inconvenient for visualizing
the properties of two-dimensional wave fields. To reduce
the number of dimensions, it is convenient to find sub-
spaces and/or projections of W (referred to here as mar-
ginals) that give a useful description of the wave field.
One such marginal is the intensity given in Eq. (18),
which depends on position variables only. However,
other options are better suited for certain applications.
A standard alternative, referred to here as the screen
marginal, follows from integrating W over pz P R. From
Eq. (7),

K~Cupx , qx ; qz! 5 E
R

dpzW~Cup, q!

5
k

2p
E

R

drxC~qx 2
1
2 rx , qz!*

3 exp~2ikpxrx!C~qx 1
1
2 rx , qz!.

(25)

At a screen of fixed qz , K is a function of the conjugate
variables px and qx , and it has the same form as W itself.
The screen marginal is the form of the Wigner function
that has been widely used in wave optics.9 Wolf and
Rivera10 considered the holographic information con-
tained in the interference component of the screen mar-
ginal of two superimposed beams. Bastiaans11 used the
screen marginal as a connection between ray and wave
optics in the paraxial domain. As mentioned in Section
1, K has been proposed as a possible wave analog of the
radiance from classical radiometry. The radiance has
the property of being constant at all the points that form
a straight line in a specified direction. Remember from
Eq. (13) that W satisfies a similar property. However, for
coherent fields (and even for partially coherent fields), the
screen marginal presents this property only in the
paraxial limit. That is, it is not constant for all sets of
values of px 5 sin u, qx , and qz that correspond to the
same straight line in q space, referred to here as a ray.
[Notice that these quantities identify a ray uniquely only
under the assumption that the field propagates exclu-
sively in the forward (or backward) z direction.] Only for
wave fields propagating paraxially in the positive z direc-
tion [i.e., when c (u) takes significant values only for uuu
! p/2], can it be shown from Eq. (25) that the screen
marginal satisfies

K~Cupx , qx ; qz! ' K~Cupx , qx 2 pxqz , 0 !. (26)

Approximation (26) implies that the only effect of a dis-
placement in the z axis is a linear shear in the (qx , px)
plane, so K is ‘‘conserved’’ along paraxial rays. Beyond
the paraxial approximation, however, this property does
not hold, and the effect of a displacement in z is not just a
deformation of K in the (qx , px) plane but a more compli-
cated redistribution in which ripples are typically intro-
duced in the vicinity of any concavity of the domain in
which K takes nonnegligible values.

To visualize these effects, let us consider the rectangle
beam defined in Eq. (20). Notice that the limit v → 01

represents a Dirac d in angle and a plane wave in optical
q space, while the widest case v → p2 corresponds to a
monopole field ;J0(kuqu) that has maximal localization in
q space. In Figs. 5 and 6 we present the cases v
5 p/16 and v 5 p/4, respectively, and show (a) the spec-
Fig. 4. pA1 2 p2W(Cup, q) for a forward-rectangle beam, evaluated at (a) kq 5 (0, 0) and (b) kq 5 (2.7, 0). The shade of gray in the
background of both figures corresponds to zero, and lighter (darker) shades of gray correspond to higher (lower) values.
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tral function c(u) 5 r(u; v) in Eq. (20), (b) the intensity
I(Cuq) in Eq. (18), and (c) the screen marginal
K(Cupx , qx ; 0) in Eq. (25). To show that the screen mar-
ginal is conserved along rays only in the paraxial limit,
we also show (d) K(Cupx , qx 2 pxqz /A1 2 px

2; qz) for

Fig. 5. For a rectangle beam of width w 5 p/16, as defined by
Eq. (20): (a) spectral function on the circle, (b) intensity and
wave fronts of the wave field on the q plane, (c) screen marginal
at qz 5 0, and (d) screen marginal at kqz 5 50, where qx8 5 qx

1 pxqz /A1 2 px
2.
kqz 5 50. Notice that the discrepancies between (c) and
(d) are much more noticeable in Fig. 6 than in Fig. 5.

The screen marginal has other, more significant prob-
lems: It presents singularities for some nonparaxial
fields. From Eqs. (10) and (25), we can write the screen

Fig. 6. For a rectangle beam of width w 5 p/4, as defined by
Eq. (20): (a) spectral function on the circle, (b) intensity and
wave fronts of the wave field on the q plane, (c) screen marginal
at qz 5 0, and (d) screen marginal at kqz 5 50, where qx8 5 qx

1 pxqz /A1 2 px
2.
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marginal at qz 5 0 in terms of the spectral functions:

K~Cupx , qx ; 0 !

5
k

2p
E

S
daE

2p

p

dÃc~a 2
1
2 Ã!*

3 c ~a 1
1
2 Ã!d ~ px 2 cos 1

2 Ã sin a!

3 exp@2ik~qx cos a 2 qz sin a!sin 1
2 Ã#, (27)

which, evaluated at px 5 0, gives

K~Cu0, qx ; 0 ! 5
k

2p
E

2p

p dÃ

cos 1
2 Ã

@c ~2
1
2 Ã!* c ~

1
2 Ã!

3 exp~2ikqx sin 1
2 Ã!

1 c ~p 2
1
2 Ã!* c ~p 1

1
2 Ã!

3 exp~22ikqx sin 1
2 Ã!#. (28)

When c (u) is nonzero near uuu 5 p/2, the integral in Eq.
(28) diverges. To understand this problem, consider the
integral of the screen marginal over its conjugate argu-
ments px P R and qx P R. From Eqs. (25) and (27) re-
spectively, these integrals lead to

E
R

dpxE
R

dqxK~Cupx , qx ; qz!

5 E
R

dqxC~qx , qz!* C~qx , qz! (29)

5 E
S
du

uc~u!u2

ucos uu
. (30)

Equation (29) tells us that for fixed qz , the integral of the
screen marginal over px and qx corresponds to the norm
for the Hilbert space L2(R) of wave fields at that screen.
However, from Eq. (30) we can see that this norm is not
necessarily finite: We need uc (u)u → 0 as uuu → p/2.
Furthermore, for this Hilbert space, the norm of a field
changes after a rotation. For example, the norm of a
rectangle beam c (u) 5 r(u 1 b; v), for v , p/2, is mini-
mal at b 5 0 and diverges for p/2 2 v < ubu < p/2
2 v. A rectangle beam with v > p/2 (like the one con-
sidered in Section 4), always has an infinite norm in the
Hilbert space L2(R), and therefore its screen marginal is
singular.

6. ANGLE-POSITION AND ANGLE-IMPACT
MARGINALS
We now define a new marginal distribution that is fully
covariant and for which qz is truly redundant because of
Eq. (13). Notice that K has neither of these properties
because it was constructed by the projection of W over one
component of momentum. Instead, we now integrate W
over p. Integration of Eq. (10) with the natural radial
measure p yields the angle-position marginal
L~Cuu, qx ; qz! 5 E
0

1

pdpW~Cup, q!

5
k

2p
E

2p

p

dac ~u 2
1
2 a!* c ~u 1

1
2 a!

3 exp@2ik~qx cos u 2 qz sin u!sin 1
2 a#.

(31)

This function carries the essential characterization of
Helmholtz wave fields. It inherits the reality condition
from W (as did K), as well as covariance under Euclidean
transformations of the plane (14)–(17). Notice from Eq.
(31) that L satisfies a property that follows from Eq. (13):

L~Cuu, qx ; qz! 5 L~Cuu, qx 2 qz tan u; 0 !. (32)

That is, L is exactly conserved along rays (even for coher-
ent wave fields composed of plane waves that propagate
in all directions), and the evolution of a wave field along
the z axis corresponds precisely to a nonlinear shear of
the original distribution in the (qx , u) plane—which may
be thought of as a cylinder. In the paraxial case, one can
show that

K~Cusin u, qx ; qz! ' L~Cuu, qx ; qz!. (33)

Notice that the quantity q 3 p 5 qx cos u 2 qz sin u is
conserved along a ray, and in fact it corresponds to the
ray’s angular momentum l (since the magnitude of the
linear momentum of a ray is equal to the refractive index,
which is unity here). Geometrically, the magnitude of l
corresponds to the impact parameter, which is the closest
approach of the ray to the origin, and its sign indicates
the sense of rotation. Since the conjugate variables u and
l uniquely identify a ray, it is natural to define the angle-
impact marginal as

M~Cuu, l ! 5
k

2p
E

2p

p

dac ~u 2
1
2 a!* c ~u 1

1
2 a!

3 exp~2ikl sin 1
2 a! (34)

such that

L~Cuu, qx ; qz! 5 M~Cuu, qx cos u 2 qz sin u!.

The phase-space picture afforded by the angle-position
and angle-impact marginals is also complete, because—
up to an overall phase—we can recover the spectral func-
tions of Helmholtz wave fields through integration of Eq.
(31) over its position variable qx P R, with a phase factor
included:

E
R

dqxL~Cuu, qx , 0 !exp~22ikqx cos u sin 1
2 a8!

5
c ~u 2

1
2 a8!* c ~u 1

1
2 a8!

ucos u cos1
2 a8u

. (35)

Through a simple change of variables, Eq. (35) can be
written as
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c ~u!* c ~u8! 5
ucos u 1 cos u8u

2

3 E
R

dqxL@Cu 1
2 ~u 1 u8!, qx ; 0#

3 exp@ikqx~sin u 2 sin u8!#

5
ucos u 1 cos u8u

2
E

R

dqx

3 M@Cu 1
2 ~u 1 u8!, qx cos 1

2 ~u 1 u8!#

3 exp@ikqx~sin u 2 sin u8!#. (36)

Now by fixing either u or u8, this result can be used to ex-
tract the wave field to within a global constant phase fac-
tor. It also follows from Eq. (18) and Eq. (31) that

E
S
duL~Cuu, qx ; qz! 5 E

S
duM~Cuu, qx cos u 2 qz sin u!

5 uC~q!u2, (37)

so the intensity of the field at any point can be obtained
from the integral of either L or M over all the rays that go
through that point. Equivalently, the integral of M over
all the rays that travel in a given direction yields the
spectrum of the field:

E
R

dlM~Cuu, l ! 5 uc ~u!u2. (38)

Notice from Eq. (38) that the integral of the angle-
impact marginal over all u and l yields

E
S
duE

R

dlM~Cuu, l ! 5 E
S
duc ~u!* c ~u! 5 ~C, C!L2~S! ,

(39)

where (C, C)L2(S) is the norm in the Helmholtz Hilbert
space L2(S) over the circle.7 This norm is invariant un-
der translations and rotations.12 The Helmholtz Hilbert
space L2(S) over the circle is discussed in Appendix A.

To illustrate the different aspects of the angle-position
and angle-impact marginals, we finish this section with
some examples. Figure 7 shows (a) the spectral function,
(b) the intensity, (c) the angle-position marginal, and (d)
the angle-impact marginal for a stationary-monopole field
(or Mexican hat function) given by

c ~u! 5 1, i.e., C~q! } J0~kuqu!. (40)

Remember that the angle-position and angle-impact mar-
ginals are related through the simple mapping given after
Eq. (34), and this can be appreciated in Figs. 7(c) and (d).
We will therefore show only the angle-impact marginal
for the remaining examples. Figure 8 shows the angle-
impact marginal for the rectangle beams c(u)
5 r(u, p/16) and c (u) 5 r(u, p/4). A comparison of
Figs. 5(c), 6(c), and 8 shows the similarity between the
screen marginal at qz 5 0 and the angle-impact mar-
ginal, particularly for paraxial wave fields. Figure 9
shows (a) the spectral function, (b) the intensity, and (c)
the angle-impact marginal for a stationary-dipole wave-
field as defined by
c ~u! 5 cos u, i.e., C~q! } J1~kuqu!qz /uqu. (41)

Figure 10 shows the corresponding plots for the
periodic-Gaussian wave field of waist w, defined by the
spectral function

c ~u! 5 g~u; w ! 5 Sm exp~2m2w2 1 imu!. (42)

Fig. 7. (a) Spectral function on the circle, (b) intensity, (c) angle-
position marginal at qz 5 0, and (d) angle-impact marginal, for
the Bessel monopole field defined by Eq. (40).
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Fig. 8. Angle-impact marginal for rectangle beams of width w 5 p/16 and w 5 p/4, as defined by Eq. (20).

Fig. 9. (a) Spectral function on the circle, (b) intensity, and (c) angle-impact marginal, for the Bessel dipole field defined by Eq. (41).
Figure 11 shows the superposition of two Gaussian beams
displaced in position, namely, c (u) 5 exp(2ix0 sin u)
3 g (u, v) 1 exp(ix0 sin u)g (u, v). This type of superposi-
tion is analogous to what is known in quantum mechanics
as a ‘‘Schrödinger-cat state.’’ Note the interference pat-
tern that develops between the two beams. Figure 12
shows a similar ‘‘cat state’’ composed of two such beams
displaced in angle, c (u) 5 g (u 2 u0 , v0) 1 g (u 1 u0 ,
v0). In this case, two interference patterns develop.
The more intense one is centered on the bisectrix of the
smaller angle.

7. CONCLUDING REMARKS
Although the Wigner function of a Helmholtz wave field
is not integrable over all its arguments, its zeroth- and
first-order moments of momentum are physically
meaningful—they give, respectively, the intensity and
energy-flux density of the wave field. Negative regions of
the Wigner function have been shown to be associated
with the phenomenon of a locally backward-pointing flux
for a purely forward-propagating wave field. Of course,
no measurement process can yield the local value of the
flux at a point; only a weighted average over a small re-
gion with extent of the order of a wavelength is accessible.
One can then expect any measurement to yield only for-
ward values for energy flux. (This is analogous to the
well-known measurement process in quantum mechanics
through overlap of two Wigner functions, which always
yields strictly nonnegative results, even though the
Wigner functions generally take negative values.)

A complete and more useful description of a Helmholtz
wave field is given by certain marginals of the Wigner
function. We have concentrated here on the marginals
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Fig. 10. (a) Spectral function on the circle, (b) intensity and wave fronts of the wave field on the q plane, and (c) angle-impact marginal,
for the Gaussian wave field defined by Eq. (42) of waist w2 5 0.1.

Fig. 11. (a) Spectral function on the circle, (b) intensity and wave fronts of the wave field on the q plane, and (c) angle-impact marginal,
for the superposition of two Gaussian beams displaced in position along the qz 5 0 line.

Fig. 12. (a) Spectral function on the circle, (b) intensity and wave fronts of the wave field on the q plane, and (c) angle-impact marginal,
for the superposition of two Gaussian beams displaced in angle, centered at u 5 (1/2)p.
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that result from projections along either pz or upu. The
first one, referred to here as the screen marginal, has
been used frequently in optics and is a function of three
parameters, one of which becomes redundant only when
the field propagates paraxially in either the forward or
the backward z direction. The second one, the angle-
position marginal, is proposed here we believe for the first
time and is also a function of three parameters, although
one of them is truly redundant. This marginal can there-
fore be written in terms of a function (the angle-impact
marginal) of only two variables. These variables turn
out to be the direction and the impact parameter (or an-
gular momentum) of a straight trajectory, so the value of
this distribution is manifestly conserved along a ray.
Unlike the screen marginal, these new marginals are
fully covariant. Further, by integrating the angle-impact
marginal over all the rays that go through any given
point, it is possible to compute the intensity of the wave
field at that point; see Eq. (37). Similarly, integration
over the impact parameter yields the modulus of the spec-
tral function as shown in Eq. (38). It follows that the
angle-impact marginal extends all the valuable properties
of the conventional screen marginal for nonparaxial
fields. (It is convenient that in the paraxial limit the
angle-impact marginal converges on the conventional
screen marginal.) Throughout this work, we have as-
sumed that the wave field is coherent. Nevertheless, the
results are also valid for partially coherent fields when
ensemble averages are used in the definitions of the dif-
ferent marginals.

Three-dimensional Helmholtz wave fields, where the
phase space now has one more pair of Cartesian coordi-
nates, can be treated in a similar manner. Under Fou-
rier transformation, plane waves map to Dirac d ’s in mo-
mentum that are constrained to lie on a sphere of unit
radius, as in Eq. (4). The angle-position marginal is then
found by integrating over p the product of p2 and the
Wigner function. Although the derivation is directly
analogous to that for the two-dimensional case, it is con-
siderably more complicated owing to the awkwardness of
expressing rotations in spherical coordinates. Littlejohn
and Winston4 also proposed an expression for a phase-
space distribution function (at a screen) for the three-
dimensional case that is conserved along rays. This
function, like the angle-position marginal, reduces to the
screen marginal in the paraxial case. However, as op-
posed to the angle-position and angle-impact marginals,
this function is tailored to purely forward-propagating
fields. As a result, it cannot be covariant under rota-
tions. The angle-impact marginal therefore brings a new
intuitive option with extended generality.

APPENDIX A: HILBERT SPACE L2(S) OVER
THE CIRCLE
As discussed in Section 3, two-dimensional Helmholtz
wave fields are not vectors of an L2(R2) Hilbert space.
Here we give the briefest review of the Helmholtz Hilbert
space L2(S) over the circle,7,13 built on the realization of
the wave fields C(q) by their spectral functions c (u),
namely,
~F, C!L2~S! 5 E
S
duf~u!* c ~u!. (A1)

By using Helmholtz wave analysis (6) to substitute for
c (u) the values of the field and its normal derivative at
the qz 5 0 standard screen F(qx) and Cz(qx) in Eq. (A1),
one obtains a two-fold nonlocal form for the inner product,
which we write in convenient 2 3 2 vector-cum-matrix
notation,

~F, C!L2~S! 5 E
R

dqxE
R

dqx8S F~qx!

Fz~qx! D †

3 Mk~qx 2 qx8!S C~qx8!

Cz~qx8! D , (A2)

Mk~q ! 5
1

8p
E

S
duFk cos2 u 2i cos u

i cos u 1/k G
3 exp~ikq sin u!. (A3)

This Hilbert space was built in Ref. 12 out of the require-
ment of full Euclidean invariance and allowing for nonlo-
cal measures; it is the only inner product with this prop-
erty.

From parity considerations, it is easy to see that the
off-diagonal matrix elements integrate to zero, whereas
the diagonal ones give the nonlocal weight functions to
express inner product (A2) through

Mk~q ! 5
1
4 diag@J1~kq !/q, J0~kq !/k#. (A4)

Now we define a z-reflection operator, Iz such that
Izc (u) 5 sz(u)c (u), where sz(u) was introduced in Eq.
(6) as a sign to distinguish between forward and back-
ward wave fields. Its expectation value between the
fields in Eq. (A3) is then

~F, IzC!L2~S! 5 E
R

dqxE
R

dqx8S F~qx!

Fz~qx! D †

3 Ik~qx 2 qx8!S C~qx8!

Cz~qx8! D , (A5)

where the integral kernel (in 2 3 2 matrix notation) is
Eq. (A3), only with the extra factor of sz(u) inside the in-
tegral. Again, simple parity considerations show that
now the diagonal matrix elements are zero, while the
antidiagonal ones give

Ik~q ! 5
i

2k

1

p

sin kq

q
F0 21

1 0 G . (A6)

The quantity in parentheses is the reproducing kernel for
functions on R whose Fourier transform has support on
[21, 1]. Therefore Eq. (A6) replaced in Eq. (A5) yields
the local integral

~F, IzC!L2~S! 5
1

2ik
E

R

dqx@Fz~qx!*

3 C~qx! 2 F~qx!* Cz~qx!#. (A7)

When F 5 C, this is the flux, defined in Eq. (19), inte-
grated over the x axis. The inner product [Eq. (A1)] is in-
variant under Euclidean transformations, and the inte-
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gration axis can be rotated and translated as fit to
accommodate for reflections across the z or any other axis,
defining thus a vector flux integral associated with any
given line.

The introduction of a proper Hilbert space on the oscil-
latory solutions of the Helmholtz equation allows for the
observability of a system in a given state C by a probe
state F to be formulated as in quantum mechanics. The
expectation value of a quantity that changes sign under
reflection can be understood similarly as the flux over the
reflection line. It does not give operational meaning to
the value of a field at a point, because any probe function
must also be a Helmholtz wave field and cannot be nar-
rower than the Mexican-hat function ;J0(kq). We ob-
serve that the width of the backward-flux regions in Figs.
8 and 9 is smaller than the width of this state.
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