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We study fractional Fourier transformation in the metaxial regime of geometric optics. Two commonly used
optical arrangements that perform fractional Fourier transformation are a symmetric thick lens and a length
of graded-index waveguide. By means of Lie methods in phase space, we can correct some of their aberra-
tions: for the first, through deforming the lens surfaces to a polynomial shape, and for the second, by warping
the output screen at the end of the waveguide. We correct the planar cases to third, fifth, and seventh aber-
ration orders; checks are provided on the convergence of aberration series in phase space. We add some com-
ments on the usefulness of these corrected devices for fractional transformers in scalar wave optics. © 1999
Optical Society of America [S0740-3232(99)00904-7]

OCIS codes: 070.2590, 080.1010, 080.2720.
1. INTRODUCTION: FRACTIONAL
FOURIER TRANSFORM
Fourier transformation is a rotation of phase space be-
tween the canonical coordinates of position and momen-
tum. In mechanics this occurs when the system evolves
in a harmonic-oscillator potential; there the phase-space
plane rotates rigidly about the origin, so its coordinates
mix linearly. In optics, however, this transformation is
possible only in the small neighborhood of the design ray
where the paraxial regime applies, because optical phase
space constrains the momentum coordinates (i.e., ray di-
rection) to a sphere. The optical Fourier transformation
must be nonlinear. In Ref. 1 one of the authors proposed
a proper, canonical Fourier transformation of optical
phase space by means of a similarity map from the phase
space of geometric and wave optics onto that of classical
and quantum mechanics,2 but no concrete arrangement
was proposed.

Fourier transformations in optics also meet the impedi-
ment that no true harmonic-oscillator potential exists.
Of course, in the paraxial regime, Fourier transformers
are easily built between the input and output screens at
the focal points of a lens, or by an appropriate length of an
axisymmetric graded-index waveguide, with radial index
profiles of any negative curvature. In this paper we ana-
lyze lens- and waveguide-based Fourier transformers be-
yond the paraxial regime by using Lie–Hamilton phase-
space techniques, which are reviewed in Section 2. Our
purpose is to correct such transformers to map phase
space as linearly as possible in a neighborhood of the de-
sign ray as large as possible. Two correction tactics are
explored: in Section 3 we consider the symmetric lens
arrangement with polynomial refracting lines, and in Sec-
tion 4 we propose waveguides with a warped output
screen. Such systems will perform better for larger
screens and angles. Finally, Section 5 adds some com-
ments on the relevance of these conclusions to the design
of wave-optical fractional Fourier transformers.
0740-3232/99/040821-10$15.00 ©
In spite of their conceptual terseness, Lie aberration
expansions do not seem to have actually been used for
nonimaging optical systems. The paraxial part is the
first-order approximation by an unperturbed quadratic
Hamiltonian that can be easily factored off; this places
the analysis of aberrations in the interaction picture of
quantum mechanics. We confirm the convergence of the
Lie aberration expansion to seventh order of the two sys-
tems under consideration in a usefully large region of
phase space. Through the symbolic computation pro-
gram MEXLIE developed by the authors,3 the aberration
coefficients are found as a function of all the parameters
of the system; recursive algorithms are found here that
correct the lens and waveguide arrangements with one
parameter each. We do not attempt in this paper to de-
sign a ‘‘best’’ Fourier transformer, presumably obtained
by multiparameter optimization algorithms with several
correction tactics, because such a solution would surely
turn out to be numerical. By correcting a single param-
eter at each aberration order, we can follow the process
analytically and detect the possibilities and the limita-
tions of each minimization tactic. We study flat, two-
dimensional (2-D) optical arrangements, where the opti-
cal and screen axes (z, q) provide Cartesian-space
coordinates. The phase space ( p, q) of 2-D systems is
also 2-D and can be plotted conveniently on a plane.

2. LIE–HAMILTON ABERRATIONS OF
PHASE SPACE
Geometric optical phase space in a 2-D world is a 2-D
symplectic manifold whose points are rays with a canoni-
cal coordinate of position q P R, its intersection with the
screen, and its conjugate momentum p 5 n sin u
P (2n, n), where n is the refractive index and u is the
angle between the ray and the optical axis.4 Optical
phase space is composed of two coordinate charts that are
strips upu , n in ( p, q) P R2, corresponding to rays that
1999 Optical Society of America



822 J. Opt. Soc. Am. A/Vol. 16, No. 4 /April 1999 K. B. Wolf and G. Krötzsch
cross the screen in the forward (uuu , 1
2 p) and backward

directions. The two strips are identified at their edges
u 5 6

1
2 p. Optical phase space is thus globally distinct

from the phase space R2 of one-dimensional mechanics,
where the momentum coordinate is mass times velocity
and unbounded (locally, the two coincide within each strip
upu , n as any two symplectic manifolds). The metaxial
model of geometric optics replaces the forward strip of
phase space by the R2 symplectic plane and represents op-
tical elements by transformations of this plane.

Functions on symplectic manifolds are endowed with
the Poisson bracket composition

$F~ p, q !, G~ p, q !% 5
]F~ p, q !

]q
]G~ p, q !

]p

2
]F~ p, q !

]p
]G~ p, q !

]q
, (2.1a)

which is bilinear and antisymmetric, satisfies the Jacobi
identity (i.e., fulfills the properties of a Lie bracket), and
obeys the Leibniz rule of derivation. By the latter the
Poisson bracket of any two functions can be determined
from

$q, p% 5 1, $q, 1% 5 0, $ p, 1% 5 0. (2.1b)

Transformations of a symplectic manifold
G $A; M%: ( p, q) → ( p8( p, q), q8( p, q)) that preserve
Eqs. (2.1) (the Heisenberg–Weyl Lie algebra, i.e.,
$q8, p8% 5 1, etc.) are called canonical. Canonicity im-
plies that phase-space volume elements are preserved:
d q8d p8 5 d qd p. Thus rays are neither created nor de-
stroyed but only transformed. (In two dimensions the
volume-preservation property conversely implies canonic-
ity.) Transformations of optical phase space produced by
passive optical elements are necessarily canonical.

Transformations that leave the design ray invariant
[i.e., ( p8(0, 0), q8(0, 0)) 5 (0, 0)] are amenable to Taylor
expansion in powers of p and q.5 Then, because the Pois-
son bracket (2.1a) between two polynomials in ( p, q) of de-
grees n and m is a polynomial of degree n 1 m 2 2, we
can consistently truncate all Taylor-expanded functions
to some integer polynomial degree a > 1. This polyno-
mial ring in phase space with the Poisson bracket opera-
tion constitutes the ath-order aberration model of geo-
metric optics. The metaxial model is the nested sequence
of ath-order aberration models whose kernel is the a
5 1 paraxial model. The latter allows only linear trans-
formations of unit determinant, represented by 2 3 2
real matrices.

Paraxial fractional Fourier transformers G$0; F(a)%
are characterized by the rotation matrices

F~a! 5 F cos a 2sin a

sin a cos a
G . (2.2)

Their action on R2 phase space is through the inverse of
the matrix:

G $0; F~a!%S p
q D 5 @F~a!#21S p

q D
5 S pa

qa
D 5 S p cos a 1 q sin a

2p sin a 1 q cos a D . (2.3)
For a . 0 this is a clockwise rotation of the phase plane
around the origin, as shown in Fig. 1. The origin repre-
sents the design ray through the optical axis of the sys-
tem. Fractional Fourier transformations evidently form
a group with composition rule F(a1)F(a2) 5 F(a1
1 a2). The identity element is F(0) 5 1, and
@F(a)#21 5 F(2a). The (original, well-known) Fourier
transformation corresponds to a 5

1
2 p 5 90°, which out-

puts images of the incoming ray directions. The element
a 5 6p is a perfect (inverted) imager.

The previous equations raise the issue of the physical
units of phase space. In quantum mechanics there is a
fundamental unit of action (momentum3length), the re-
duced Planck constant \ 5 h/2p, which measures the
area of phase space and provides the relative scale of the
position and momentum uncertainty from the well-known

Lie commutator @Q̂, P̂# 5 i\1. In natural units \ is as-
signed the value 1. Paraxial wave optics uses the same
commutator, but with a third, living operator on the

right-hand side, L̂ (times i), whose eigenvalues are the re-
duced wavelengths l/2p P R 2 $0% different from zero;
the momentum, as the refractive index, is dimensionless,
and positions have units of length l/2p. Although geo-
metric optics is commonly regarded as the l → 0 limit of
wave optics, its fundamental definitions (2.1) and deriva-
tive relations such as Eqs. (2.2) and (2.3) are dimension-
less. Following the lead of wave optics, we can write q
5 q* /l, where l is a fundamental length of the system,
15 cm say, and q* is in centimeters. On replacing q by
q* , we obtain $q* , p% 5 l in Eq. (2.1b), and in Eq. (2.2)
we obtain a factor of l in the lower left corner of the ma-
trix and a factor of l21 in the upper right corner, which
render the appropriate units for pa (dimensionless) and
qa* (of l) in Eq. (2.3).

We now recall the Lie–Hamilton aberration expansion
of nonlinear canonical transformations. A metaxial frac-
tional Fourier transform is a canonical map of phase
space whose generic form is

F ~a! 5 G $A; F~a!% 5 G $A ; 1%G $0 ; F~a!%, (2.4)

where the paraxial part is the fractional Fourier transfor-
mation (2.2) and (2.3) and A characterizes the nonlinear
aberration part. This is an ordered product of Lie–
Poisson operators obtained from Eq. (2.1) as4–6

G $A; 1% 5 ¯ 3 exp $A3 , +%exp$A5/2 , +%exp$A2 , +%

3 exp$A3/2 , +%, (2.5a)

exp$Ak , +% 5 1 1 $Ak , +% 1
1
2! $Ak , $Ak , +%% 1 ¯ ,

(2.5b)

Fig. 1. Paraxial fractional Fourier transformations are rigid ro-
tations of the phase plane around its origin, the optical center
corresponding to the design ray, shown here for a 5 0, 1

4p, 1
2p

(the Fourier transform), and p (a perfect, inverted imager).
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$Ak , +% 5
]Ak~ p, q !

]q
]

]p
2

]Ak~ p, q !

]p
]

]q
, (2.5c)

where the Ak(p, q) are aberration polynomials of integer
homogeneous degree 2k in the coordinates of phase space,
given as

Ak~ p, q ! 5 (
m52k

k

Am
k pk1mqk2m. (2.6)

The coefficients $Am
k %m52k

k are (for two dimensions) the
2k 1 1 Lie–Hamilton aberration coefficients of rank k
(integer or half-integer); the corresponding aberration or-
der is a 5 2k 2 1. Note that these coefficients are dis-
tinct from the Seidel aberration coefficients used in clas-
sical works such as that of Buchdahl.7 [The paraxial
part (2.3) can also be written in this manner for k 5 1
with G $0 ; F(a)% 5 exp(a1

2$ p2 1 q2, +%).] As the 2-vector
(2.3) of phase-space coordinates transforms with (the
transpose of) a matrix M, the column (2k 1 1)-vector of
aberration coefficients $Am

k %m52k
k transforms with the

(2k 1 1)-dimensional representation matrix D(k)(M).
The composition between two generic transformations

(2.4) has the form

G $A ; M%G $B ; N% 5 G $A ] D~M!B ; MN%, (2.7a)

where ] is a Baker–Campbell–Hausdorff gato product
and D(M) is a block-diagonal representation of the
paraxial matrix M,5,6 with blocks of size (2k 1 1) 3 (2k
1 1). This product formula has appeared several times
in the literature, so we need not repeat it in detail but
only note that, for rank k,

@A ] D~M!B#k 5 A k 1 D k~M!Bk

1 multilinear terms of higher ranks.

(2.7b)

When operators (2.5) (and functions) on phase space are
Taylor expanded and truncated to degree amax 5 2kmax
2 1, we have the ath-order aberration group. This has
three matrix parameters and the aberration coefficients
$Am

k % for umu < k < kmax . Canonicity is also redefined
for the truncated Taylor series modulo terms of degree
greater than 2k.

A 2-D system whose optical axis is a line of reflection
symmetry (q, u) ↔ (2q, 2u) can contain only those aber-
rations whose polynomials are symmetric (invariant) un-
der phase-space inversion ( p, q) ↔ (2p, 2q). Since
polynomials of half-integer rank k are odd under inver-
sion, this symmetry entails the selection rule allowing
only integer ranks k and odd aberration orders (third,
fifth, seventh, etc.).

The generic third-order aberration polynomial (of rank
k 5 2) is

A2~ p, q ! 5 A2
2 p4 1 A1

2 p3q 1 A0
2p2q2 1 A21

2 pq3

1 A22
2 q4. (2.8)

The action on phase space of the pure aberration factor
G$ A;1% of Eq. (2.5a), truncated to the same order, is then
G $A ; 1%S p
q D . ~1 1 $A2 , +%!S p

q D
5 S p 1 A1

2 p3 1 2A0
2 p2q 1 3A21

2 pq2 1 4A22
2 q3

q 2 4A2
2 p3 2 3A1

2 p2q 2 2A0
2 pq2 2 A21

2 q3 D
5 S pA

@3#~ p, q !

qA
@3#~ p, q ! D , (2.9)

which is canonical to third degree, i.e., disregarding terms
of fifth degree and higher. There are five independent
third-order aberrations Am

2 , m 5 2, 1, 0, 21, 22, identi-
fied as (Lie–Hamilton) spherical aberration, coma, curva-
ture of field/astigmatism, distortion, and pocus (defocus;
cf. Ref. 6), respectively. The fractional Fourier trans-
former (2.4) first acts with the paraxial part (2.3), replac-
ing ( p, q) by ( pa , qa), and then with the aberration part
that is present. To use relation (2.9) alone therefore cor-
responds (in the familiar setting of perturbation mechan-
ics) to working in the interaction frame of the Hamil-
tonian system, i.e., in the frame that rotates with Fig. 1.
All subsequent figures will be referred to this interaction
frame for simpler inspection.

To third aberration order (in the interaction frame), the
fractional Fourier transform maps of the (straight) coor-
dinate axes ( p, 0) and (0, q) are the cubic curves

pA
@3#~ p, 0 ! 5 p 1 A1

2 p3, pA
@3#~0, q ! 5 4A22

2 q3,

qA
@3#~ p, 0 ! 5 24A2

2 p3, qA
@3#~0, q ! 5 q 2 A21

2 q3.
(2.10)

An ideal correction would straighten these lines. It may
prove impossible, however, with the physically adjustable
parameters available, to set all coefficients to zero. This
is the case for the arrangements of Sections 3 and 4,
where the system has a single adjustable parameter for
each aberration order, so we must propose more flexible
criteria for a phase-space map to approximate the
paraxial fractional Fourier transform.

One criterion that we propose considers the two
2-vectors at ( p, q) that are tangent to the image of the
Cartesian grid, namely, Dv 5 (Dp, 0) and Dw
5 (0, Dq), and demands that they remain orthogonal.
Thus we forbid slanting of the grid in phase space. By
Eqs. (2.10) an uncorrected, aberrating Fourier trans-
former (in the interaction frame) will map these tangent
vectors on

DvA~p ! 5 S 1 1 3A1
2 p2

212A2
2 p2 DDp,

DwA~q ! 5 S 12A22
2 q2

1 2 3A21
2 q2DDq. (2.11)

These vectors subtend an angle v Þ 1/2p given by their
scalar product

DvA • DwA 5 uDvAuuDwAucos v

5 @12~A22
2 q2 2 A2

2 p2!

1 36~A1
2A22

2 1 A2
2 A21

2 !p2q2#DpDq.

(2.12)
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The first summand is linear in the Am
2 (and presumably

small), whereas the second is quadratic (and much
smaller). The image phase space will have no slanting
(to third aberration order) when the transformer is cor-
rected to have aberration coefficients such that A2

2 5 0
5 A22

2 . But it proves impossible to satisfy this require-
ment for the lens transformer of Section 3, because zero is
outside the physical range of values of the aberration co-
efficients. The best that we can do is an approximate cor-
rection through

A2
2 5 A22

2 , (2.13)

so that the image grid is orthogonal on at least the quad-
rant bisectors p 5 6q.

Once the system has been corrected to third aberration
order, the fifth-order aberrations are subjected to a simi-
lar treatment. The polynomial A3( p, q) now contains
seven independent coefficients $Am

3 %m523
3 , and the phase-

space map is now

pA
@5#~ p, q ! 5 ~1 1 $A3 , +%!S 1 1 $A2 , +%

1
1
2! $A2 , $A2 , +%% Dp, (2.14)

and correspondingly for qA
@5#( p, q). We assume that the

system is corrected to third order and hence has Am
2 fixed,

but the coordinate grid will be mapped now on quintic
curves that osculate the previous cubics and whose depar-
ture from orthogonality is dominated by the fifth-order
spherical aberration and pocus coefficients, A3

3 and A23
3 .

Again the criterion to correct as much as possible for
slanting leads to the condition A3

3 5 A23
3 . The system

thus corrected to fifth order is then introduced into the
seventh-order computation, where

pA
@7#~ p, q ! 5 ~1 1 $A4 , +%!~1 1 $A3 , +%!S 1 1 $A2 , +%

1
1
2! $A2 , $A2 , +%%

1
1
3! $A2 , $A2 , $A2 , +%%% Dp, (2.15)

and similarly for qA
@7#( p, q).

3. LENS ARRANGEMENT
A fractional Fourier transformer can be built by placing a
lens between the object screen (a line in 2-D optics) and
the image (or sensor) screen, as shown in Fig. 2. This ar-
rangement contains three free-propagation intervals,
separated by two refracting lines between distinct homo-
geneous media. We first recall the necessary results for
these two basic optical elements, so as to combine them
below into a quasi-corrected transformer.

Free propagation by a distance z along the optical axis
in a homogeneous medium n is, by elementary geometry,
the phase-space transformation

~ p 5 n sin u, q ! → ~ p, q 1 z tan u!

5 ~ p, q 1 zp/An2 2 p2!. (3.1a)
This is the evolution produced by exp(2z$h, +%) generated
by the free optical Hamiltonian function h
5 2An2 2 p2 5 2n cos u :

Z~z, n ! 5 exp~z$An2 2 p2, +%!

5 ¯expS 2z

16n5 $ p6, +% D expS 2z

8n3 $ p4, +% D
3 expS 2z

2n
$ p2, +% D (3.1b)

5 G $¯ , Z3 , Z2 ; Z% (3.1c)

where

Z~z ! 5 F 1 0

2z/n 1G (3.1d)

and the Zk( p, q) are the Taylor expansion terms of the
Hamiltonian in p2k. Only the Lie–Hamilton spherical
aberration coefficients Zk

k are nonzero in free propagation
(and they have a negative sign). In the paraxial regime,
free propagation is approximated by the linear transfor-
mation ( p, q 1 zp/n 1 ¯) that is generated by
exp@21/2(z/n)$ p2, +%#. To third, fifth, and seventh aber-
ration orders, we keep terms up to Z2 , Z3 , and Z4 , re-
spectively. Above, the free-propagation parameter z is
dimensionless; units can be made explicit in terms of a
unit of length l replacing z 5 z* /l.

A refracting line z 5 z(q) between two homogeneous
media of refractive indices n1 and n2 that is a polynomial

z~q ! 5 z2q2 1 z4q4 1 z6q6 1 z8q8 1 ¯ , (3.2)

is tangent to the z 5 0 screen at its optical center q
5 0, and produces the phase-space map8

S ~n1 , n2 ; z! 5 G $¯ , S4 , S3 , S2 ; S%, (3.3a)

where

S 5 F1 g

0 1G (3.3b)

characterizes the paraxial part as of Gaussian power g
5 2(n2 2 n1)z2 . Gaussian power is the inverse of the
focal length of the refracting line; when the latter is mea-
sured in units of length l, the former can be rewritten as
g 5 g* l, with g* in units of inverse length. The dimen-
sionless refracting surface (3.2) acquires units of the fun-
damental length as z* (q* ) 5 z2* q* 2 1 z4* q* 4 1 ¯

5 lz(q), where z2* 5 z2 /l, z4* 5 z4 /l3, etc.
The third-order aberration polynomial is

Fig. 2. Fractional Fourier transformer built as a symmetric op-
tical arrangement with a thick lens (optical length t) between the
object and screen planes (at distances z). The (circular) surfaces
of the lens will be corrected to a polynomial shape z(q).



K. B. Wolf and G. Krötzsch Vol. 16, No. 4 /April 1999 /J. Opt. Soc. Am. A 825
S2~ p, q ! 5 0p4 1 0p3q 1
1
2 S 1

n2
2

1
n1

D z2 p2q2

2 2
n2 2 n1

n2
z2

2 pq3 1 ~n2 2 n1!

3 S 2
n2 2 n1

n2
z2

3 2 z4Dq4. (3.4)

We shall not write out the fifth- and seventh-order aber-
ration polynomials (these can be found in Ref. 4) but note
only that Sk( p, q) contains the summand (n1
2 n2)z2kq2k. (The results in Refs. 4 and 8 are for three-
dimensional optics; the 2-D case here applies for meridi-
onal rays, where p • q 5 pq.)

We now concatenate the five elements of the lens ar-
rangement: in air (n1 5 1) a lens of thickness t with re-
fractive index n2 5 n and hence optical length t 5 t/n,
bounded by two symmetric refracting lines (3.2) of Gauss-
ian power g 5 2(n 2 1)z2 5 2(1 2 n)(2z2), placed at
distances z from the object and image lines, is

A~z, n; a! 5 Z~z, 1 !S~1, n; z!Z~t, n !S~n, 1; 2z!Z~z, 1 !.

(3.5a)
The paraxial part
zr~q ! 5 r 2 Ar2 2 q2 .
q2

2r
1

q4

8r3 1
q6

16r5 1
5q8

128r7

1 ¯ , (3.7)

whose Gaussian power is g 5 (n 2 1)/r, whereas the
physical radius is r* 5 rl. We now define units by
choosing r 5 1, so that z2 5 1/2. In the computations
that follow, we also choose the value n 5 1.5 for the re-
fractive index of the lens, so the Gaussian power of each
of its lines is fixed to g 5 1/2.

The correction condition (2.13) to third aberration or-
der, when written in terms of all symbolic parameters in
Eqs. (3.5), is quite long [but can be handled conveniently
with symbolic computation algorithms of MEXLIE (Ref.
3)]. Once numerical values are inserted, the condition
(2.13) becomes a simple linear equation that determines
the value of the quartic coefficient z4 of the polynomial re-
fracting line (3.2). This is inserted into Eq. (3.5a), and
the process is repeated for the fifth and seventh aberra-
tion orders. To check that this program yields cogent re-
sults as we increase the aberration order, in Fig. 3 we
show the a 5 1/2p uncorrected Fourier transform map of
phase space (produced by a lens of circular refracting
lines), computed to third, fifth, and seventh aberration or-
A~z, n; a! 5 F 1 0

2z 1GF1 g

0 1GF 1 0

2t 1GF1 g

0 1GF 1 0

2z 1G
5 F 1 2 gt 2 2gz 1 g2zt g~2 2 gt !

22z 2 t 1 2z2g 1 2gzt 2 g2z2t 1 2 gt 2 2gz 1 g2ztG , (3.5b)
is the fractional Fourier transform matrix (2.2a) provided
that certain relations hold among a, g, z, and t: the (1, 1)
and (2, 2) matrix elements of Eq. (3.5b) must be cos a, and
the (1, 2) element yields the relation g(2 2 gt)
5 2sin a. When we specify the desired Fourier trans-
form angle 0 , a , p and the Gaussian power g of each
refracting line, the other two parameters are determined
by

z 5
1

g
1 cot

a

2
,

t

n
5 t 5

sin a 1 2g

g2 . (3.6)

For the quantities with units z* 5 lz, t* 5 lt, and
g* 5 l21g marked by asterisks, the above relations will
be written with the unit l in front of cot 1/2a and l21 in
front of sin a. This optical arrangement provides
a-fractional Fourier transforms where the points of phase
space ( pa , qa) trace out circles; it contains the limitation,
however, that the free-propagation parameters (3.6) be
positive and finite (0 , z, t , `). For positive powers
g . 0, the lower limit of a is zero (the cotangent becomes
infinite, and z → `), and the upper limit is that amax
which leads either to z → 01 by amax 5 2p 2 2 arctan g
. p or to t → 01 by amax 5 p 1 arcsin 2g . p; the latter
is not a limitation for g . 1/2.

We consider first an uncorrected transformer built with
symmetric circular refracting lines z 5 6zr(q) of
radius r,
ders, and their corresponding corrected systems (with
lenses of polynomial shape) for these orders. This shows
first that the aberration expansion converges appropri-
ately in a phase-space patch and second that the lens cor-
rection tactic indeed enlarges this patch sensibly, guaran-
teeing that the image grid is unslanted for p 5 q.

Figures 4 and 5 show, respectively, the phase-space
transformations that are due to a family of thick-lens ar-

Fig. 3. Phase-space maps (in the interaction picture) of Fourier
transformers (a 5

1
2 p) built with a symmetric lens. Top row:

uncorrected system with circular refracting line (r 5 1) com-
puted to third, fifth, and seventh aberration orders; bottom row:
corrected systems with polynomial-line lenses to the same aber-
ration orders.
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Fig. 4. Phase-space maps of an uncorrected lens fractional Fou-
rier transformer (with circular refracting lines) for a
5 15°, 30°, 45°,...,180°, computed to seventh aberration order.

Fig. 5. Corrected fractional Fourier transform map of phase
space (with the polynomial lens coefficients of Table 1) for a
5 15°, 30°, 45°,..., 180°, to seventh aberration order.
rangements, uncorrected (with circular lines) and cor-
rected (with eighth-degree polynomial lines), computed to
seventh aberration order. The polynomial coefficients for
circular refracting lines are z2 5 1/2 (paraxial standard),
z4 5 1/8 5 0.125, z6 5 1/16 5 0.0625, and z8 5 5/128
5 0.039062. Table 1 gives the lens polynomial coeffi-
cients z4 , z6 , and z8 for the corrected lens fractional Fou-
rier transformer.

Comparing Figs. 4 and 5, the parameters z and t in
Eqs. (3.6) of the physical arrangement, and the polyno-
mial parameters in Table 1, we can conclude that lens
correction is appropriate for angles a equal to or greater
than 60°, including the Fourier transform (a 5 90°), the
inverted imager (a 5 180°), and beyond, to the inverse
Fourier transformer (a 5 270°) (not shown here) in a
sensibly larger patch of phase space. For smaller trans-
form angles a, the free flight distance z becomes very
large [cf. Eqs. (3.6)], and the aberration expansion itself
appears to be unreliable. From Table 1 we note that the
polynomial coefficients vary smoothly with a and peak at
a 5 165°. Note that for the Fourier transformer (a
5 90°), the corrected refracting lines are very close to
the parabolas z2q2.

4. WAVEGUIDE ARRANGEMENT
A 2-D inhomogeneous optical medium characterized by
the z-independent refractive index

ne~q ! 5 ~n2 2 m2q2!1/2

5 n 2
m2

2n
q2 2

m4

8n 3 q4 2
m6

16n 5 q6 2 ¯ (4.1)

is what we call an elliptic-index-profile waveguide. In
the paraxial regime, the index profile is approximated by
the quadratic term and is commonly known as parabolic.
A length of such a medium, as shown in Fig. 6, performs

Table 1. Coefficients of the Polynomial Refracting
Line That Correct the Lens Arrangement for

Fractional Fourier Transformation of Angle a
in Steps of 15° to Third, Fifth, and Seventh

Aberration Orders

Fourier
Angle a

(deg)

Polynomial Line Parameters

z4 z6 z8

15 20.0159 0.0213 20.0211
30 20.0303 0.0179 20.0152
45 20.0350 0.0087 20.0022
60 20.0310 20.0010 20.0025
75 20.0183 20.0044 20.0070
90 0.0000 0.0000 20.0062

105 0.0194 0.0115 0.0063
120 0.0428 0.0153 0.0701
135 0.0782 0.0515 0.2703
150 0.1264 20.3021 1.3753
165 0.1786 20.6600 5.3782
180 0.0816 0.0250 0.0098
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an (aberrated) fractional Fourier transform; below we will
correct this arrangement, as much as possible, by warp-
ing the screen.

Propagation along the optical z axis is generated as in
Eq. (3.1b) but by the q-dependent Hamiltonian of the pro-
file (4.1). The evolution of phase space along this axis
through a distance z is given by the exponentiated Lie–
Poisson operator

E~n, m; z ! 5 exp@z$~n2 2 p2 2 m2q2!1/2, +%#

5 ¯ 3 expF 2z

8n3 $~ p2 1 m2q2!2, +%G
3 expS 2z

2n
$ p2 1 m2q2, +% D (4.2a)

5 G $¯ , E2 ; E~z !%, (4.2b)

where

E~z ! 5 F cos
mz
n

m sin
mz
n

2
1
m

sin
mz
n

cos
mz
n

G (4.2c)

is the paraxial part. The third-order aberration polyno-
mial is

E2~ p, q; z ! 5 2~z/8n3!p4 2 ~zm2/4n3!p2q2

2 ~zm4/8n3!q4, (4.2d)

and generally Ek( p, q; z) ; 2zn2k21( p2 1 m2q2)k. We
define units of length so that m 5 1, to have the circular
motion of phase space shown in the figures.

The action of Eqs. (4.2) on phase space can be ex-
pressed in closed form, moreover, by noting that the
Hamiltonian flow lines are the nested ellipses p2 1 m2q2

5 constant. For m 5 1 they are the circles

E~n; z !S p
q D 5 F cos kz 2sin kz

sin kz cos kz G S p
q D 5 S P~ p, q; z !

Q~ p, q; z ! D ,

(4.3a)
where the oscillation frequency k 5 k(p, q) depends on
their radius:

k~ p, q ! 5
1

@n2 2 ~ p2 1 q2!#1/2 5
1

n
1

1

2n3 ~ p2 1 q2!

1
3

8n5 ~ p2 1 q2!2 1 ¯ . (4.3b)

The paraxial oscillation frequency is k0 5 k(0, 0) 5 m/n
at the center of phase space [cf. Eqs. (4.2b), (4.2c), and

Fig. 6. A length of a graded-index medium (a waveguide) acts as
an (aberrating) fractional Fourier transformer. The correction
tactic is applied to warp the output screen to a polynomial shape
z(q).
(4.3b)]. In the metaxial regime, this system becomes dis-
persive, since phase space rotates differentially, with
larger circles moving faster; the represented rays in the
waveguide go through larger angles and elongations, up
to where the refractive index ne(qmax) drops to zero. The
oscillation frequency (4.3b) is real inside the boundary
circle p2 1 q2 5 n2, but physically realizable rays must
lie inside the smaller circle p2 1 q2 5 n2 2 1 because n
5 1 corresponds to vacuum.

Paraxially, a length z of the waveguide is a fractional
Fourier transformer by the negative angle a 5 2z/n, as
can be seen by comparing the matrix elements of Eqs.
(2.2) and (4.2). Graded-index elements are therefore in-
verse Fourier transformers. Figure 7 is the waveguide
analog of Fig. 3; it shows the maps of phase space pro-
duced by an uncorrected a 5 2

1
2 p (inverse) Fourier

transformer, computed to third, fifth, and seventh aberra-
tion orders,3 and the maps produced with the corrected
optical arrangement proposed below. Note that the
phase-space patch shown is much larger than that in the
lens arrangement. As in the previous figures, the rigid
paraxial rotation has been factored out from expression
(4.2b). Figure 8 shows the fractional Fourier transform
maps obtained from the simple (uncorrected) elliptic-
index-profile waveguide, computed with MEXLIE to sev-
enth aberration order. This phase-space map is unsatis-
factory principally because of the inclination of the
mapped grid at the q axis, which indicates that there will
be strong unfocusing of the images away from the optical
center.

To correct the waveguide arrangement, we propose to
warp the output face of the waveguide, so that the photo-
graphic paper or the line of sensors that define the image
screen is no longer straight but a polynomial line (3.2),
where we can adjust the polynomial coefficients
z2 , z4 ,... . To formulate and compute this correction, we
use the canonical phase-space transformation from a flat
to a warped reference screen, called the root map, as stud-
ied in Ref. 9. (This was introduced earlier for waveguides
in Ref. 10 and is implemented in MEXLIE). Under the
root map R(ne ; z), the position coordinate q is mapped to
the impact point q̄ of the ray ( p, q) on the line z 5 z(q̄) in
the inhomogeneous optical medium (4.1). This is

Fig. 7. Phase-space maps (in the interaction picture) of a (an in-
verse) Fourier transformer (a 5 2

1
2 p) built with an elliptic-

index-profile waveguide. Top row: computation to third, fifth,
and seventh aberration orders; Bottom row: corrected map to
the same aberration orders.
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q̄ 5 R~ne ; z!, q 5 Q( p, q; z~ q̄ !), (4.4a)

and the canonically conjugate momentum is of the form10

p̄ 5 R~ne ; z!, p 5 P( p, q; z~ q̄ !)

1 @n2 2 ~ p2 1 q2!#1/2
dz~ q̄ !

dq̄
. (4.4b)

Note that Eq. (4.4a) is an implicit equation that yields q̄
by polynomial expansion in a Taylor series; once q̄(p, q)
has been found, its replacement in Eq. (4.4b) yields
p̄( p, q) explicitly. The root transformation can be writ-
ten as

R~ne ; z! 5 G $¯ , R3 , R2 ; R%, (4.5a)

where

R 5 F1 22nz2

0 1 G (4.5b)

is the paraxial part, the third-order aberration polyno-
mial is

R2~ p, q ! 5 2~z2/2n!p2q2 1 ~nz4 2 z2/2n!q4, (4.5c)

and the fifth- and seventh-order polynomials can be found
in Ref. 10. It is called the root map because it factors the
transformation that is due to a refracting line between
two media n1 and n2 into S(n1 , n2 ; z) 5 R(n1 ; z)
3 @R(n2 ; z)#21.

Now we can compute the corrected fractional Fourier
transformer built out of a waveguide that is capped on the
output side with a warped face:

Fig. 8. Uncorrected waveguide arrangement for fractional Fou-
rier transformation (in the interaction picture) for a
5 15°, 30°, 45°,..., 180°, to seventh aberration order.
A~z, ne ; a! 5 E~ne ; z !R~ne ; z!. (4.6)

Multiplying the paraxial parts, we see that A(z, ne ; a)
maintains its paraxial rotation form (2.2) only when z2
5 0 in Eq. (3.2), i.e., when the exit surface (line) is

Fig. 9. Waveguide arrangement for fractional Fourier transfor-
mation corrected by warping the exit sensor line so that there is
spherical aberration (in the interaction picture) to seventh aber-
ration order for transform angles of a 5 15°, 30°, 45°,..., 180°.

Table 2. Coefficients of the Polynomial Exit
Sensor Line That Correct the Waveguide

Arrangements for Fractional Fourier
Transformation of Angle a in Steps of 15° to Third,

Fifth, and Seventh Aberration Ordersa

Fourier
Angle 2a

(deg)

Polynomial Line Parameters

2z4 2z6 2z8

15 0.0097 0.0043 0.0018
30 0.0194 0.0086 0.0038
45 0.0291 0.0129 0.0060
60 0.0388 0.0172 0.0086
75 0.0485 0.0215 0.0117
90 0.0582 0.0259 0.0155

105 0.0679 0.0302 0.0201
120 0.0776 0.0345 0.0256
135 0.0873 0.0388 0.0321
150 0.0970 0.0431 0.0398
165 0.1067 0.0474 0.0489
180 0.1164 0.0517 0.0594

a The values of a and z2k are negative: the transforms are inverse, and
the exit face of the waveguide is convex.
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paraxially straight. We can therefore use only quartic-
and higher-degree polynomial lines to correct the wave-
guide fractional Fourier transformer. When z2 5 0, the
third-order aberration polynomial (4.5c) reduces to
R2( p, q) 5 nz4q4, and the 5-vector of third-order aberra-
tion coefficients of the waveguide to be corrected is

A2 5 E2 1 D~2 !(F~a!)R2 , (4.7)

where E2 is the vector of uncorrected third-order aberra-
tion coefficients of the waveguide [Eq. (4.2d)], D(2)(F(a))
is the 5 3 5 matrix representation of the rotation [Eq.
(2.2)], and the column vector R2 contains the aberration
coefficients in the polynomial (4.5c) that is due to the
warped screen line with z2 5 0, namely, (0, 0, 0, 0, nz4).
We recall that z 5 2na > 0 and note the D-matrix ele-
ments D2,2

(2)(a) 5 cos4 a 5 D22,22
(2) (a) and D2,22

(2) (a)
5 sin4 a 5 D22,2

(2) (a). From Eq. (4.7) we thus find the
third-order aberration coefficients of A(z, ne ; a) in the
interaction frame:

A2
2 5 2~a/8n2! 1 nz4 sin4 a, (4.8a)

A0
2 5 2~a/4n2! 1 6nz4 sin2 a cos2 a, (4.8b)

A22
2 5 2~a/8n2! 1 nz4 cos4 a, (4.8c)

and A1
2 5 0 5 A21

2 .
To correct the waveguide arrangement for fractional

Fourier transformation, we now enter the coefficients
(4.8) into Eqs. (2.10). If we were to demand orthogonal-
ity on a line of the map through Eq. (2.13) as in Section 3,
we would obtain z4 5 0, etc., and no correction. Our tac-
tic instead will be to set spherical aberration to zero [A2

2

5 0 (in the interaction frame)], because then the image
of the q axis will be on the q axis to third aberration order
by Eqs. (2.10). Thus, for fixed transform angle a , 0
and refractive index n at the center of the waveguide, Eq.
(4.8a) determines the quartic warp coefficient z4 , 0 by a
linear equation. Once z4 is found, the computation is
performed to fifth aberration order with the sextic warp
coefficient z6 , which appears only in the R23

3 coefficient of
the root transformation (4.4) and does so linearly; z6 is
thus determined by A3

3 5 0, a linear equation. Similarly,
seventh-order spherical aberration is eliminated, and this
determines z8 . These coefficients are given in Table 2;
they are negative, so the exit face of the corrected wave-
guide is convex. Both z4 and z6 grow linearly with a. In
Fig. 9 we show the phase-space map of the waveguide cor-
rected to have no spherical aberration, to seventh aberra-
tion order.

On the basis of Figs. 8 and 9, we conclude that wave-
guide arrangements to produce (inverse) fractional Fou-
rier transforms are adequate in a much larger coordinate
patch and while the waveguide is short, i.e., for values of
uau up to 60°. Correction by a warped exit face extends
this range well beyond 90°.

5. FRACTIONAL TRANSFORMS IN WAVE
OPTICS; CONCLUSIONS
The embedding of the Fourier transform into a continu-
ous group of integral transforms has been of wide interest
in mechanics and in optics. The first explicit and rather
complete treatment of this group of transformations ap-
pears to have been written by Condon in Ref. 11 (in 1937)
and thereafter apparently forgotten by most researchers.
As a problem in quantum mechanics, the phase-space
evolution of systems with quadratic Hamiltonians is lin-
ear and was determined by Moshinsky and Quesne in
1970.12 These canonical transforms form the group
SL(2, R) 5 Sp(2, R) and can be extended to a subsemi-
group of 2 3 2 matrices that include the Bargmann
transform to creation and annihilation operators.13 In
1980 Namias14 found the same integral kernel as a gen-
erating function of Hermite polynomials. The relevance
of this group for first-order optics was realized in 1980 by
Nazarathy and Shamir.15 For nonaxisymmetric linear
systems in N dimensions, the relevant group is the sym-
plectic Sp(2N, R).16

Fractional Fourier transformation was specifically ad-
dressed and used for information processing by Mend-
lovic, Ozaktas, and many of their collaborators from
1993.17 It is currently used in various contexts for
asymptotic expansion of wave propagators18 and the prob-
lem of phase retrieval of the signal and diffractive phase
elements.19

Geometric wave optics and scalar wave optics are ho-
momorphic theories in the paraxial regime;
N-dimensional axisymmetric optical systems are repre-
sented by 2 3 2 matrices of unit determinant. In wave
optics these systems act through unitary integral kernels
on the Hilbert space L2(R) of input wave functions of po-
sition q. The kernels represent the exponentials of self-
adjoint operators of the form ap̂2 1 b$ p̂q̂%1 1 cq̂2, where
p̂ 5 2i(l/2p)]/]q and q̂ 5 q• are the usual wave-optical
operators of momentum and position for wavelength l
and $+%1 is the anticommutator. Geometric and wave
theories also maintain their correspondence under the
nonlinear Lie–Hamilton transformations (2.5) generated
exclusively by the functions f( p) and qg( p) (generic
spherical aberration and coma) or by the functions f(q)
and pg(q) (pocus and distortion)—but not under the com-
position of these two algebras.20 When generic aberra-
tions occur, the correspondence between geometric and
wave theories becomes complicated. One result that
brings some order into the problem is that the correspon-
dence is maintained, under linear transformations, be-
tween Ak( p, q) [the aberration polynomial (2.6) of rank
k . 1] and the Weyl-ordered operator $Ak( p̂, q̂)%W only.21

(The Weyl order of the operator factors of a monomial is
the sum of all their possible permutations as individual
objects divided by the factorial of their number.)

The strategy in this paper has been to separate the lin-
ear and aberration (interaction) parts in Eq. (2.4) and pro-
pose two tactics to minimize the latter for lens and wave-
guide fractional Fourier transformers. Through
enlarging the region of phase space where the geometric
map is close to linearity, we may expect that the corre-
sponding wave-optical systems will follow relation (2.9)
and Eqs. (2.14) and (2.15) to third, fifth, and seventh or-
ders when the same geometric aberration polynomials are
replaced by their corresponding Weyl-ordered operators.
In a future paper, we hope to show that this is indeed the
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case by means of the Wigner distributions of the input
and output waveforms.22
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9. E. J. Atzema, G. Krötzsch, and K. B. Wolf, ‘‘Canonical
transformations to warped surfaces: correction of aber-
rated optical images,’’ J. Phys. A 30, 5793–5803 (1997).

10. K. B. Wolf, ‘‘Refracting surfaces between fibers,’’ J. Opt.
Soc. Am. A 8, 1389–1398 (1991).
11. E. U. Condon, ‘‘Immersion of the Fourier transform in a
continuous group of functional transforms,’’ Proc. Natl.
Acad. Sci. USA 23, 158–164 (1937).

12. M. Moshinsky and C. Quesne, ‘‘Oscillator systems,’’ in Pro-
ceedings of the XVth Solvay Conference in Physics, E.
Progogine, ed. (Gordon & Breach, New York, 1974); C.
Quesne and M. Moshinsky, ‘‘Linear canonical transforma-
tions and their unitary representations,’’ J. Math. Phys.
(N.Y.) 12, 1772–1780 (1971); M. Moshinsky and C. Quesne,
‘‘Canonical transformations and matrix elements,’’ J. Math.
Phys. (N.Y.) 12, 1780–1783 (1971).

13. K. B. Wolf, ‘‘Canonical transforms. I. Complex linear
transforms,’’ J. Math. Phys. (N.Y.) 15, 1295–1301 (1974); K.
B. Wolf, Integral Transforms in Science and Engineering
(Plenum, New York, 1979), Chap. 9.

14. V. Namias, ‘‘The fractional Fourier transform and its appli-
cation in quantum mechanics,’’ J. Inst. Math. Appl. 25,
241–265 (1980).

15. M. Nazarathy and J. Shamir, ‘‘Fourier optics described by
operator algebra,’’ J. Opt. Soc. Am. 70, 150–158 (1980).
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