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Abstract. Euclidean systems include poly- and monochromatic wide-angle optics, acoustics,
and also infinite discrete data sets. We use a recently defined Wigner operator and
(quasiprobability) distribution function to set up and study the phase-space evolution of these
models, subject to differential and difference equations, respectively. Infinite data sets and two-
dimensional monochromatic (Helmholtz) fields are thus shown by their Wigner function on a
cylinder of (2r) direction and location; the Wigner function for polychromatic wavefields has
R3 ‘c-number’ coordinates of (two-dimensional) wavenumber and position.

1. Introduction

This section reviews the Wigner operator and function that we introduced [1] to generalize
the commonly used Wigner function on phase space. We examine the Newton equation as a
starting point for embedding physical models into Lie algebras and present the organization
of this paper.

1.1. Definition of the Wigner operator and Wigner function

Consider a Lie groug; with N generatorX,,, n =1, 2, ..., N, in which its elementg[y]
are parametrized ipolar coordinates

N
el] = expiy 70 = exp(i’Y- X, (L.1)
n=1

with y in a regionRs c RY. The group identity isc[0] and we regardy as a column
vector. Polar parameter arguments will be indicated by brackets.
The Wigner operator'v° (x), of a column vector € RY, is given [2] by

Wo = [ delyless—iy gl = [ dg[y]exp[izynm—xn)] (1.2)

wherepr dg[- - -]y is the Haar integral with respect to the invariant measure Gver

A physical model is introduced by providing a Hilbert spac® C L£2(G) of
wavefunctionse, v, with inner product(¢, ). HereH is a homogeneous space for
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G under unitary right group actiogwy (h) = v (hg), and where the real spectra of the self-
adjoint generator¥,, is endowed with a physical intepretation. We thus build the following
sesquilinear functional a, ¥ € H, which is also a function over € R",

WO (g, ¥lx) = (¢, W (x)y¥)n (1.39)

that we have called th@/igner functionover G. When¢ = , as is often used, we shall
simply write WS (¥ |x).

In the caseH = L%(G), writing g’ = g[y’], the Wigner function can be expressed
generically as

WO (. ¥lx) = f f dely]dgly 16 (s's )" exp(—iy 1) (g's ™) (1.3)

where in polar coordinateg®[y] = g[ay]. Most models will use homogeneous spaces
which are coset spaces of the group,ysthg) = ¥ (g) is a function of fewer than the/
coordinates (1.1) of the group. Equations (1.3) may be used to find the reduced form of the
Wigner function in those cases.

1.2. Covariance

The Wigner operator and function acevariant since the column vector of generators of
G in (1.1) transforms as a row vector under thiex N adjoint representation of the group,
i.e. by the matrixD2(g) ", the polar coordinates transform as

80 "glv1go = expliy T (g5 X g0)) = exp(iy "'D*(go) T X)
= exp(i(D*(g0)y) " X) = g[D*¥go)y]. (1.9

We regard thug as a column vector.
Due to the invariance of the Haar integrgl dgf(g) = [, dg f(ggo), the Wigner
operator (1.2) has the property

20 WY (x)go = WY (D¥(g0)x). (1.5)

If 7(go) is the group representation in the Hilbert sp&tethen the property of covariance
of their Wigner function is

WY (T (g0)¢, T (g0)¥|x) = WO (@, ¥|D*(go)x). (1.6)

This argument also holds true when the group of automorphisms of the Lie algelsra of
is larger thanG itself. Such are the cases of the Heisenberg—Wey!l algebra under linear
symplectic transformations, and the Euclidean algebra under SO(2,1) relativistic ones.

1.3. Irreducible representations and Wigner functions

When the function)s over the homogeneous spateconsidered in (Ba) is decomposed

into unitary irreducible representations (unirrepsy G (whereG is the space of unirreps
with Plancherel measureudy)), as ¥ (h) = f& du(M) ;. (h), then the Wigner function

will decompose accordingly. This is so because the Casimir operator commutes with all
g[y] € G, and will thus also commute with the Wigner operator (1.2). Finally, since the
inner product ovef{ in (1.3a) is zero unless both functions belong to the same unikrep

it holds that

Wc(d%l/flx):fadu«()\)(diVGI/fA)H =/adu(?»)Wf(¢x,l/fAIX). .7



Wigner distribution function for Euclidean systems 3877

GenerallyWe (¢, ¥|x) assumes an analytic and more manageable form because the group
action indicated involves well known unirrep matrix elements given in terms of special
functions.

1.4. Heisenberg—Weyl and SU(2) systems

In [2] it was shown that wherG is the Heisenberg—Weyl group of quantum mechanics
(QM), the above construction leads to the commonly known Wigner distribution function

(1]

WM, ylg, p.7) = 5 [ dve (q - 3x> ey (q + 5x> (1.8)
27h Jg 2 2

usually written for¢p = . In [2] the three generators of the Heisenberg—\Weyl group

were used in the model of polychromatic paraxial optics. There, the reduaeelength

1/27 € R — {0} is the spectrum of the central generator (multiplicationiby In the QM

model, nature is constrained to the fixed irreducible representatdthe Heisenberg—\Weyl

group.

In [3, 4], we examined the group SU(2), whose representatigomrevided the(2¢ + 1)-
dimensional homogeneous spaces of finite data{gefs.,__, in afinite waveguide model
The physical realization of this model is a multimodal optical waveguide which is capable of
carrying only a finite number of modes (a finite oscillator), and whose wavefield is sampled
at most at the same number of sensors across the guide.

In the two groups studied, the Wigner function (1.3) depends on three group parameters.
Indeed, whereas the common QM Wigner function (1.4) is usually seen as a phase-space
construction, our formulation of Wigner functions is endowed withumber arguments
equal in number to the parameters of the group.

1.5. Euclidean systems

The purpose of this paper is to build and examine the Wigner function (1.3) for several
physical models for which the Euclidean group of rigid motions of the 2-plane serves as a
dynamical symmetry group. These systems obeyfrde=Newtonequation. In this classical
equation we replace time derivatives by a Lie bracket witkaaniltonian evolution operator

H,

§=0=[H,[H, 0] =0. (1.9)

Themomentunoperator is, by definition, the Lie bracket &f with the position operator
0, times—i, that is,

[H, Q] =—iP. (1.10)

This is the first Hamilton equation, whose content is purely geometrical. Equation (1.9)
thus becomes the second Hamilton equation,

[H,P]=0 (1.11)

which contains the dynamics of the system. Nothing has been said so far about the Lie
bracket |0, P]. If we require thatQ, P and H close into a Lie algebra (thus assuring that
the system is integrable), the Jacobi identity implies that

[H,[Q, P]] =0. (1.12)
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Newton’s free equation (1.9) is satisfied whep,[P] commutes withH. QM takes
this to bex1 and leads to the familiar free-particle model with~ %PZ. Our choice here
is to propose {, P] to be alinear function of H, and the Lie algebra

[0,Pl=—iH [Q0.H]=iP  [P,H]=0. (1.13)

This is the Euclidean algebrg = iso(2) of the Lie groupE, = ISO(2). We thus call
the system&uclidean Note that the Wigner function ofi; can also be used to describe
systems whose Hamiltonian belongs to #revelopingalgebra ofE».

1.6. Outline

It will serve the scope of this paper to start section 2 with a study of the ‘trivial’ Lie groups

of a single generator. In this case the Wigner function (1.3) is a function of a single variable
and the formalism reveals some basic features of our construction. Section 3 collects several
elementary results on the three-parameter Euclidean group ISO(2) that will be needed in
the rest of the paper.

Two distinct Euclidean optical models are studied: the discrete model in section 4, and
the related 2 wave and Helmholtz models in section 5. Discrete two-dimensional optics
refers to homogeneous medium where a linear array of sensors samples a monochromatic
field; in effect, the Lie algebra includes difference operators and the construction is
applicable to general infinite, discrete data sets. ‘Gaussian’ beams in particular, are examined
and plotted for both optical models. We plot the Wigner function ef\Wavefields on
the surface of a cylinder, which plays the role of the natural phase space for Euclidean
systems. This allows us to recognize wide-waist or wide-angle Gaussian beams, as well
as the interference phenomenon (Mojrattern) for two such beams in Setinger-cat-like
wavefields. Finally, section 6 offers some conclusions and directions of research for Wigner
functions on other Lie groups.

2. Wigner function on one-parameter groups

We first examine the Wigner operator and Wigner function on one-parameter Lie groups:
the group of translations (I) of the real lineR, and the group of rotations SO(2) of the
circle S;. Although apparently trivial, this will evince some basic properties of Wigner
functions on the groups whose semidirect product is the Euclidean giup,|SO(2).

2.1. One-dimensional translations

The T(1) group elementg[y] = expliy Q), ¥y € R, have product lawg[yi]g[y2] =
g[y1 + v2], unit elementg(0), and inverseg[y] ! = g[—y]. The Haar measure is simply
dy. The Wigner operator (2.2) on(T) is

WD (1) = / dye 7 gly] (2.1)
R

with x € R. In the Hilbert spaceC?(R), the position realization is characterized by the
single diagonal generat@, i.e.

glylv(@) ="y (q)  qeR. (2.2)
In this case, the Wigner function (2.3) is of a single variable,

WO (@, ¥lx) = /R dg¢*(q) A; dye€" @y (q) = 21" ()Y (x).  (2.3)



Wigner distribution function for Euclidean systems 3879

In T(1) thus, we have simplyv™® (y|x) = 27|y (x)|?; a real, positive function.

2.2. One-dimensional rotations

In the case of SO(2), whergly] = g[y + 2], andy € (—m, =], the Wigner operator
is as (2.1) but with the range of integration ou&, and the position realization of the
group is over the set dhtegersm € Z, so the Hilbert space of wavefunctions 4¥Z):
square-summable sequences on the integers,

LY 1¥m = €Y me L. (2.4)
The Wigner function (2.3) is thus given by
WSO, yix) = "¢ / dye” "y, (2.5)
meZ 81

For x not integer, the integrand in (2.5) is multivalued on the circle; if the integral is taken
overc — < y < ¢+ m, there will appear a phase factdf® . To have a real Wigner
function for¢ = ¢ (below), we should integrate efgl = ffﬂ. Thus (2.5) becomes

WSOP (¢, yr|x) = 2w " ¢ sinal (m — x)) v (2.6)
meZ

where singp = p~!sinp is the sinus cardinalisfunction. We thus see that although the
wavefunctions are defined over a discrete set, the Wigner function interpolates its values by
the sinc-smoothing common in Fourier wave optics [5]. In figure 1 we show the Wigner
function WSO (y|x) of a simple ‘signal’ {/,,}mcz. Note that there are small intervals
(that do not include the integers) where the Wigner functiomégative that is why it
is called aquasiprobability distribution function. In this simple SO(2) case, the origin
of negativity is simply the behaviour of the interpolating sinc function. At integer points
sincm (m — x) = §,,« IS @ Kronecker delta. The only signal for which the SO(2) Wigner
function is everywhere positive i%,, = constant.

2.3. Functions on the circle

The only realization of SO(2) with the diagonal generagois (2.2), for functionsy,, on the
integers. These are the Fourier series coefficients of functions on the circle. To represent
(2.4) in a form involving square-integrable functions on the cigfey° e £3(S;), we

write

1 . 1 )
= d9 o 0 —im6 o 9 — me|n19 27
) _\/E . ¢°(0)€ ¢°(0) _\/Z mgezd) (2.7)
obtaining
WSOR(p y|x) = /S dye 7 (% x yO)ly] (2.8)

wherex is the convolution ovetS;. (Again we note that the exponential function in (2.8)
is not periodic, i.e. single-valued, a#.)

Thus in £2(Sy), the generato) has the (non-diagonal) formid/dd, and generates
properrotations. g[y]¥°(©) = ¥°(0 + y). By covariance (1.6), we see that

W39 (g(a)p, g(@)¥|x) = W°(, ¥|x). (2.9)

The Wigner function does not, therefore, distinguish between neither wavefunctions on the
circle that are rotated by, nor functions on the integef multiplied by phases"&. We
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*-0-90-0-0000 : o o000000 >

~10 -5 5 10

(172m) W ™ (yix)

-10 -5 5 10

Figure 1. (a) A function v,, on the integersn € Z. (b) Its Wigner functionw SO (yr|x) of
the continuous variable (marked at the integer points, where it|i%,|2). Note that there are
small intervals where the Wigner function is negative.

conclude that any dynamical process generated by a self-adjoint Hamiltbaian(such
as+Q itself for wave propagation in a one-dimensional medium) leaves the SO(2) Wigner
function invariant.

On the other hand, there are dynamical processes, such as heat diffusion in a conducting
ring, generated by the non-unitary operator @xpQ?), which do change the shape of the
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Wigner function. In¢?(Z) this multiplies eachy,,, m € Z by a factor
O, (1) = exp(—m?1) (2.108)

to producey,,(t) = wme"”zf. The corresponding functions on the circle convolve with the
diffusion kernel ([6, pp 170, 198t seq], see figure 4.13)

1 2 1 1
OO:;7)=—) emTtimt — —y (—9, e‘f) 2.1
VD 5935 @10)
where¥3(-, -) is the third Jacobi theta function [7]. These expression will be used below
for Gaussians beams in optical wavefields.

3. The Euclidean algebra and group

In this section we review some useful properties of the two-dimensional Euclidean algebra
e, and groupkEs,, in order to fix notation and gather some formulae that will be necessary
to find the Wigner function on the Euclidean group.

3.1. Realizations of the Euclidean algebra

On the Hilbert space of square-summable sequetf¢&y, the Euclidean algebra (1.14) has
a representation by self-adjoint difference operators with diagonaliven by

0" Y = miy, PPy = —i3k[Ymi1 — Y-l HY = 3k[ Vi1 + Vi1
(3.1)

for anyk > 0. Through the synthesis of Fourier series (cf section 2.3), we have the following
self-adjoint (multiplier) realization on differentiable functioggd) dense in£3(Sy),
S .d
" ="1%

These are two realizations of the unitary irreducible representatafrihe Euclidean group,
characterized by the valu€ of the quadratic invariant operat@? + H?2, which plays the
role of the Casimir operator faE,. The Plancherel integral and measure over the harmonic
conjugate unirrep space y§° kdk....

The prototypical realization of the Euclidean algebra, acting on differentiable functions
f(x) over the two-dimensional plane = (x1, x»), dense in£?(R?) and containing all
unirreps, is given by the well known self-adjoint operators

PS = ksind H® = kcosf. (3.2)

R 3 d .9 .9
=—ilxp— —x1— PY = —i— H® =—-i—. 3.3
Q (Xz 8x1 1 8)62) 3X1 3)(2 ( )

The connection between the realizations (3.1)—(3.3) will be given below.

3.2. Group manifold in coset coordinates

Rigid motions of the plane can be parametrized by one rotatienS; and two orthogonal
translationss = (s1, s0) € R?, that we conveniently treat as a two-dimensional row vector.
We shall use the following presentation:

g{p; s} = g{p; 0} g {0; s} = explip Q) expli[s1 P + s2H]) —> D¥(g {p; s})

1 S1 S2
= (0 cosp —sin,o). (3.4)

0 sinp cosp
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We call thesecosetcoordinates and indicate function arguments of therbiages The
product of two Euclidean group elements in coset coordinates is simplest:

. /N2 /. ’ ’ _ Cosp —sinp
gloisiglo: s’} =g{o+r':sR()+s} R(p)—<sinp c03p>' (3.5)

The unit element ise = g{0; 0}, associativity holds, and the inverse ¢f{p; s} is
g Hp; s} =g{—p; —sR(—p)}.

The Euclidean group is the semidirect product of two subgroups: the SO(2) subgroup
of rotations, g {p; 0}, p € S1, and the T} translation groupg {0; s}, s = (s1,52) € R2
Figure 2 shows the realization of the Euclidean group of motions of the plane in the coset
decomposition (3.4), (3.5): givensdandard framgeach group element maps it to a distinct
frame with origin ats and rotated by the angle. We can picture the three-dimensional
manifold of g {p; s} as the set of all such rotated frames in 2-spaceight cosetby the
first of these groups is the (equivalence) gefp; s}},es, Of frames with the same origin
s. The space of cosetss thuss € R?, i.e. the set of origin points in the plane. In these
coordinates, the invariatiaar integral is

def () = / dp / dsy dsa f (2 51. 52) (3.6)
E; S1 R2

3.3. Group manifold in polar coordinates
The groupkE; also has the following presentation fiolar coordinates:

glp&]l = expi(pQ + &P +&H) —

1 &sincp +&(=5%)  —£1(F5™) + & sincp
D¥p; €] =0 cosp —sinp (3.7)
0 sinp cosp

where we indicate polar coordinates by the brackets. From (3.4) and (3.7), we find
that & = 2p(sicotip — s2) = ssin(o — 1p)/sincip and& = p(s1 + s2cotip) =

s coSo — %p)/sinc%p, where we define the polar coordinates of the vestoy (s1, s2) =

(s sino, s coso) = s[s, ol.

52

Figure 2. The group elemeng {p; s} € E> in the coset parametefse Si, s € R?, is pictured
as the standard frame at the origin (boldface), translatesidnd rotated by.

From (3.6) and (3.7) follows the invariant Haar measure and integral in polar coordinates,

dgf(g) = ./5 (sinc3p)®dp /Rz dé1 d&2 f[pé1, &2 (3.8)

E>

This integral is needed to build the Wigner operator (1.2).



Wigner distribution function for Euclidean systems 3883

3.4. Wigner operator OIE;

Let us call(q, p, h) € R® the real numbers that we make correspond to the generators
P and H of the Euclidean algebra. Then, the Wigner operator (1.2) is written in polar
coordinates as follows

WF(q, p,h) = /S (sinc3p)?dp /RZ d’€ exp[—i(gp + p&1 + h&2)]glp€]. (3.9)

In this paper we find it more convenient to use coset coordinates. The Wigner operator
(3.9) is re-expressed by rewriting the exponent in coset coordinates. Using radii and angles,
defined by(p, h) = (r sina, r cosa) = r[r, a], the Wigner operator is

WEZ(q,'r[r, a)) =/ dpfoosds/ do
S1 0 S1
_ 1
xexp[—ip (q +rscos(a_—01+2p)ﬂ 2 {0; ss, o). (3.10)

This operator can be applied to functions over the group, or over any homogeneous space
under the group, and integrated with a second such function, to produce their mutual Wigner
function (1.3).

4. Euclidean discrete optics

Euclidean optics contain at least two models: the realization (3.1) of the Euclidean algebra
by difference operators on the Hilbert spa¢Z) leads naturally to theiscretemodel of

this section; the realizations (3.2) and (3.3) £f(S1) correspond to the ‘continuous’ wave
optics model, including Helmholtz optics for a definite unirrep, that will be examined in the
next section.

4.1. The discrete model

The operatorQ is associated to the position variable of Euclidean systems that satisfy
Newton’s equatiorj = 0 in (1.10). The corresponding Lie—Newton equation involves the
double commutator of operators, acting 6#(Z) wavefunctions that are infinite column
vectorsy = {V,}nez (Where we omit theZ superscript). This equation in the discrete
optics model is
[H,[H,QllY) = (HHQ —2HQH + QHH)®} = =0 (4.13)
8. Y = Gk [(mYmy2 + 2m + m_2) — ((n + Diny2 + 2mi,

+0n — 1)1[/171—2 + (m+ 2)w171+2 + 2"1% + (m — 2)¢m—2)] =0. (4]b)

This is satisfied identically by the generators (3.1), namely

OV = My, me7 (4.29)

Py, = —i3k(E" — EYy, Hy, = 3k(E" + EYy, (4.20)
where

EN =Y H+iP) EN 4, = Yt (4.3)

Therefore the operators of the algebra are self-adjoint under the usual inner product

(1/"7 ¢)[2 = ZmeZ w:td)m'
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Notice very carefully that the discrete Lie—Newton equation (4.1) for @pyinvolves
only its secondneighbour points},,+», and not at all the first-neighbour onés,+;. We
conclude that the subvectofg,,},, even @and {¥,,},» odq are two independent solutions for
discrete homogeneous optical media. The quadratic invariant operator in the realization (3.1)
is a fixed multiple byk € R* of the unit operator it?(Z),

K?= P2+ H?> = k1. (4.4)

Its eigenvaluesk? > 0 classify the unirreps of,. The Plancherel direct integral and
measure isfy" kdk---. The k = O representation (limit of geometric optics) has zero
measure by this decomposition.

The ¢?(Z)-normalized eigenfunctions of the position operaiin this model are the
localized statesy™ = {ym0)},,cz, wherey " = §, ... corresponding to the integer
eigenvaluesig € Z. In the discrete model, the physical position valuesgatem/k = ma,
wherei = A/2r = 1/k is thereduced wavelengtiof the wavefield; we understand these
as the ‘sensor’ points of the field amenable to observation.

4.2. Evolution of the discrete wavefield

Consider the evolution of wavefunctions under the operato(iekf),, (wherez has units

of 1/k =X so the exponent be dimensionless). We idenifyith the translation parameter
along an ‘optical axis’ which is perpendicular to the axis of positions in a two-dimensional
physical medium. We compute

& A A K
(H" ) = E Z (7) (ET] Ei(n_])w)m =5 (n) wm+2jﬂl (45)

=0 2= \J
to find thepropagator of discrete Euclidean optical systems,
Y (2) = (@XPAZHNY)m = Y 1" Ty (kD) P in- (4.6)

nez

4.3. Wavefield values and normal derivatives

Recall that at even and odd points, the v,,’s satisfy independent second-order wave
equations. Note that since ,(kz) = (—1)"J,(kz) = J,(—kz), the factor ofy,, ., in (4.6)

with n even, is even underreflection, and odd for odd. This symmetry corresponds to the
evolution of initial values and of initial normal derivatives in a wave medium, respectively
{Ym}m even@nd{v,,}m oda- Consider the initiaGaussianwavefunction in¢?(Z) given by

ro = To . @yt T = exp(—m?/2w) (4.7)
centred aing = 0, of anglea = 0, and of widthw. Herey"™ are the basis vectors, which

in the realization (2.7) aré”®. In figure 3@) we interpolated graphically between integer,
evenm’s, while figure 3p) shows the waveforms obtained from interpolation between the
companion odd values of.

The interpretation of initial values and normal derivatives on alternating even and
odd points in discrete system appears novel; it is further supported by the following
consideration: the-derivative of the exponential series reproduces the series, acted upon
by iH. At z = 0, the normal derivative of is

0 . .
Iﬂ,/,, = a_ZWm(Z)lz:O =i(HY), = |%k(Wm+l + Ym-1). (48)
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Figure 3. Discrete waveforms in thg— plane obtained from the initial conditiopp© (a
single 1 atm = 0) underz-evolution generated by the discrete optical Hamiltonian (4.6). (
Interpolating linearly between even-points; and lf) between odds points. The former are
intepreted as field values and the latter astmormal derivatives.
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The dichotomy of alternating points reminds us of thé @assical position and momentum
variables of finite mechanical vibrating lattices 8f masses [6] on one hand, and of the
determination of Helmholtz wavefields by two functions: values and normal derivatives, on
a (continuous) line, on the other hand. This dichotomy is preserved under translations of
the plane, sincg {0, s} commutes with ex@zH) (see (3.4)—(3.7)), but not under rotations

of the planeg {p; 0}. These observations apply for other discrete systems governed by
second-order differential-difference Newton equations.

4.4. Wigner matrix in discrete optics

In this E; model of discrete optics, the sensors read the field valyesTo find the analytic
form of the Wigner function we need the action B on the basigy™},,cz.

Under rotations of the plane generated Igy vectorsy < ¢?(Z) transform as
g {p: 0} ¥, = €™ y,,. Under translations along theaxis by H, the action was found in
terms of the Bessel functions in equation (4.8). Translations &#lgng any line with angle
o (anticlockwise from the-axis) are thereby produced through the similarity transformation
g{—0;0}g{0;0,5}g{o; 0} = ¢g{0; ssing, scoss}. In coset coordinates (3.4) we write

g {p; s sino, s coso} ¥, = Z E} , {p: ssino, s cosa} (4.9)
nez
where
EX  {p: sSiNG, 5 COSo) = I""d" J, _, (ks)d =7 (4.9%)

are the unirrep matrix elements. In [9], sections 4.1.2, 4.1.3 and 4.4.1, we denote them by
E instead ofD and use a different phase convention. Note that equation (4.6) is a particular
case of equation (4.9) when= 0= p.

The orthonormal basis of localized wavefunctiong™},,.z, allows us to write vectors
asep =Y, ., onb"™. The Wigner function can then be written as

W, Xlg, p. 1) =Y 65 Wun(q, p, h)xn (4.108)
m,ne€l

where thewigner matrixW,, ,,(¢, p, h) is obtained by inner product of the Wigner operator
between the basis statesandn,

Wm,n(q» p, h) = (1/1(’”)7 W(qv P, h)lb(n))ﬂ(Z)' (41a))
In (3.10), the abstract group elemento; s[s, o]} is replaced by the unirrep matrix elements
(4.9), EX {p; s[s, o]}; the rightmost integral is

m,n

1
> do exp

. coda—o +1p)
—lr§ ——
T S1

— glnmme = jmongtmm@te/2 g (rs/ sincp).
sincip

(4.118)

Next, the radial integral is performed overits integrand has two Bessel functions: one
Jn—n(ks) and another from (4.10. We recall the formula

/ s ds J, (k1) J, (kas) = kg 18 (ks — ko) (4.11b)
0

to reduce the Wigner matrix elements to

Wa(a. 7l a]) = do-me 2T / dp6<.’"l —k)exp(ip[%<n+m>—q]>. (4.12)
5 sinc3p
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(Again the integrand is not/2periodic inp.) The Diracs picks out the symmetric roots
sinc(+po) = r/k. (4.13)

Since the maximum value of the sinc function is at sine01, whenr > k there is
no root and the Wigner function is zero. For0 r > k the sinc function in (4.13)
provides one or more pairs of rootispg, since sin(%r, 7 > 0 has maxima at,"® =
0,5m, 7n,...,(2n+Dm,...(n =1,2,3,...) with values 12/57, 2/7x,...,2/2n+1)m.

If r/k < 2/(2n + Dm, (4.13) will provide a couple of rootgy due to thenth maximum,
and also a couple around all othef®*, 1 < m < n, plus one root in the central positive
lobe of the sinc function, i.e. the interval®t < 2.

Since the angle corresponds to the rotation angle of the standard frame in figure 2,
we see that its extension beyond the basic interval < p < 7 of the circleS; presents
features similar to the SO(2) case studied in section 2.2. The interpretation we follow here
is that we can choose thgouble covergroup of E», denotedEf) and characterized by
—2n < p < 2, to accomodate for the main lobe of the sinc function with a single pair
of roots of (4.13) for O< r < k at pg in that interval. Finally, when/k = 1, the two
symmetric rootstpg coalesce to a double root at 0. The Wigner matrix eIementE@n
are thus found in closed form:

i(n—m)a 4 rpo sin %PO COS,OO(%(” +m)—q)

r<k
Winn(q. 7l e]) = k2 r — kcosi po (4.14%9)
0 r > k.

Whenr approacheg from below, thenoy ~ /24(1 — r/k), and the Wigner function has
the singularity

24m gme
V6k32 Jk —r
which is integrable in- and ink overfok rdr and [;° k dk. Indeed, below we shall integrate
(4.12) overr first, so the Diracs will set r = ksinc%p with p in the same interval.

|ir?7 Win(q, rlr, a]) = (4.1%)

4.5. Marginal distribution of the Wigner function on the cylinder

The Wigner function (4.10)—(4.14) of this discrete wavefunction should be plotted in three-
dimensional space; as shown in figure 4, it is zero outside the cylinder of(@x@ 0)

and radiusk = /p2 + h2, which is determined by the unirrep label= x~! € R, the
wavenumber of the field. The Wigner function oscillates strongly with the radiegcept

for a stationary poing = mq/k at the centre of the wavefunction, and has an inverse-square-
root singularity at the surface of the cylinder. For the model at hand, this indicates that three
dimensions is more than needed—and convenient—for plotting the Wigner functidp- In
dimensional quantum mechanidd@ & 2), two common resorts are to slice or to project the
Wigner functions onto lower-dimensional spaces; the latter arenidaginal distributions

In [3, 4] we used the former for SU(2), having found that the largest values of the Wigner
function are in a spherical shell between ragdiand ¢ + 1, with an absolute maximum at
V(€ + 1); so we chose there to present the plots of the Wigner function on that spherical
section. Now, theEf) group is the contraction — 0 of SU(2) with? = k/c — oo and
anglesd = s/¢ becoming the translation parameterThe result of this contraction is that
the SU(2) Wigner function will concentrate on the boundary of the limit cylinder, producing
the (r — k)~ sigularity. (Further study of this and the Heisenberg—Wey! limits will be
considered elsewhere.)
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Figure 4. The Wigner functionW (¥»|q, p, h) on three-dimensional space, p, k) is different
from zero inside a cylinder whose axis (g, 0, 0) and whose squared radius pd + h2 = k?,
determined by the unirrep labél = 171 € R*. On the surface of the cylinder there is an
inverse-square-root singularity.

To visualize the information contained in the Wigner function(gnp, k), our strategy
here will be to project it onto anarginal distributionon lower-dimensional subspace. We
have found particularly attractive the radial projection of the plgpgh) = r[r, o], i.e.
integrating over- and using d = dp (k cos%,oo —r)/po

M(¢, xlq, @) = /O rdrW(e, xlq, rlr,e]) =4 Y " ZG[n +m] — q)x

m,ne”z

(4.15)

where (cf equation (2.6))

2
Z(p) = do(sincp)® cosup. (4.1%)
0

In figure 5 we show the marginal distribution (4.15) of the ‘Gaussian’ vector (4.7) as a
function ofg € R anda € S;. The functionZ () in (4.15b) is shown in figure 6; it has

a role very similar to the sinc interpolant of the Wigner function on SO(2). Note that it
is even andf, duZ(u) = 7. The Z(n) function is, however, broader than the sinc, less
negative, and is very small—but not strictly zero—at the non-zero integers. The first seven
zeros of the functiorZ (u), for u > 0 are:

1.1719 1.6066 2.0781, 2.5619 3.0513 3.5438 4.0384

They can be compared with the zeros of the function sine,2vhich occur for integer and
half-integer values of.

Because of its sesquilinearity, the marginal distribution (4.15) of @thger cat states
® + x contains three terms:

M(¢p+ xlg, ) = M(plg, ) + M(xlq, ) + 2ReM (¢, xlq, ). (4.16)

The first two terms are the Wigner function of the constituent states of the cat, while
the third, termed themile of the cat state, bears their Méipattern, a highly oscillating
region between the two due to their mutual inteference. In figure 7 we show the Wigner
functions of cat states composed of two Gaussian wavefields. In figaydh#& cat state is
g (m=—mo)*/20 4 g=(mtmo)*/20 j e two parallel Gaussians centreddatg; the smile exhibits



Wigner distribution function for Euclidean systems 3889

(a)

(b)

(c)

Figure 5. Marginal distribution on the cylinder of the Wigner function of Gaussian vectors (4.7),
centred atng = 0 and directione = 0, of width w. (@): w = 0.1 (a very broad Gaussian—
almost a plane wave of definite directian= 0). (b) » = 1 (the Gaussian wavefield composed
of the initial values in figure &) and normal derivatives in figure I3)). (c) » = 10 (a very
narrow-waisted Gaussian—almost a localized statepat 0).

groves (‘teeth’) along the axis of the cylinder, with the highest oscillations @round
the midpointg = 0. In figure 7p) the cat state consists of two Gaussians with the same
centre and waist, but differing by their angle®™* + g imaz)g=m’/20: the smile now has
its teeth across the cylinder axis, with highest oscillationg imt the angle bisecting the
two Gaussian beams.

Integration of the cylinder marginal distribution (4.15) over angleg S; produces
a marginal distribution in positioy alone. Further integrating the marginal distribution

(4.1%) overfé‘ rdr..., we obtain

M(6.X10) = [ dpdhW (. xIq. p.) = 87 Y 4120 = @) (417

meZ

This may be compared with the SO(2) Wigner function in equation (2.5): they are different,



3890 L M Nieto et al

Figure 6. The function Z(u) in (4.15)) (full curve) compared with the function sine2
(broken curve), normalized to the same value at the maximumO.

indicating that the latter is not simply a restriction of the former. Finally, integrating (4.17)
over (% dg..., gives

M(p, x) = /R3 dg dp dhW (¢, xlq, p. h) = 873(¢, X)e2(z)- (4.18)

4.6. Euclidean covariance of the Wigner function

When discrete wavefields, such as those of figures 3, are subject to Euclidean
transformations, their Wigner function will transform covariantly according to equation (1.6).
Meta-phase spadg, p, 1) will follow the adjoint representation (3.4)—(3.7) @ék.

Rotations generated bg will multiply the components of the staig,, by phases'&?:
they will rotate its Wigner function (4.14) by — « + 8 around theg-axis, and similarly
for the marginal distribution (4.15). On the other hand, movement of;tliee of sensors
along thez-axis generated byl and given in (4.6), corresponds to

W((2), x(2)lg. p. h) = W(@(0). x(0)lg + zh. p. h) (4.19)

i.e. a linear slant in thg—4 plane. UnderP-evolution, the slant is in thg—p plane. These
transformations map 1:1 the surface of each cylingér4 72 = constant) onto itself.

The marginal distributionM (¢]q, @) in (4.15), is geometrically covariant under
rotations, but translations alongwill smear the function ing, maximally in thea = 0
direction. In figures 5 and 7, it will broaden the Gaussian peaks of the Wigner marginal
distribution; their waist will be now off the = 0 line.
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(a)

(b)

Figure 7. Marginal distribution on the cylinder of the Wigner of Soldinger cat states composed
of two Gaussian vectors (4.7)a) Two parallel narrow Gaussian beams separated in position.
(b) Two overlapping wide Gaussian beams at different angles.

5. Wigner function for Helmholtz and polychromatic wavefields

In this section we shall use the realization of the Euclidean group (3.2) on the circle in
momentum space and (3.3) in the plane. The first corresponds to the Helmholtz model of
27 monochromatic optics of wavenumberand the latter to the continuum of wavenumbers

k € R* for colour wave optics. Although both of these closely related models have been
subject to group-theoretical analysis as wave theories Svdimensional Euclidean groups

[8, 10], the Wigner function is introduced here for the first time.

5.1. The Helmholtz model of Euclidean optics

The E, quadratic invariant operator (4.4) for functions in the unirkep R*, is
92 92
(_2 + _2> WO (x1, x2) = kAW P (x1, xp). (5.1)
oxi 0x5

As is well known, square-integrable solutions of the Helmholtz equation (5.1) and their
L£2(R?) limit points, have a two-dimensional Fourier transform with support on the circle
of radiusk, namely

WX (rsing, r cosd) = Fopry WX = k7 18(k — )i (k, 6). (5.2)
Thus, the Helmholtz wavefields are described by complex functions on the circle,
Vv (k,0) € L2(Sy), for fixed k. Given a functiony (k, 8) on the circle, itsvave synthesiss

WO (1, x0) = | dOY(k, 0) explik[x1SiNG + xp cosH]). (5.3)
S1
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Such solutions to (5.1) are said to beasfcillatory type (exponential solutions cannot be
represented in this way). The inverse transforng3@®), its wave analysiscan be given in
terms of values and normal derivatives of the field at a line sckgen O [8, 10], by

k 19w®
w(k,e)zf,/_/ der (WO (x1, 0 cosp 4 2P OLXD) N o ik sing).
A ik

axZ
(5.4

The action of an element of the Euclidean group on a Helmholtz wavefi¢ild, x,)
consists of rigid translations and rotations of the opticalx,-plane. Correspondingly, on
the representative functions on the ciraf&€0), the realization (3.2) holds and its action
consists of geometric and ray (phase) transformations,

g{p; s}k, 0) = explik[s1 Sin( + p) + s2€0S(0 + p)D VY (k, 0 + p). (5.5)
As long as we have a definite value /ofve are in the Helmholtz model, and will omit this

unirrep label from the notation. It will be recovered in section 5.5.
5.2. Wigner operator and function on Helmholtz fields

The action of the Wigner operator (3.9) on functions on the circle (5.4) can be written as
follows

W(q, p, W)y (k,0) = f do [ d?se™7 x explisi[k Sin(@ + p) — 2p(p cotip + M)])

S1 R2
x explisz[k cos(6 + p) — 3p(hcotzp — PIDY (k. 6 + p)
452 . i .
==, do sin@ 2pe *15(r — ksinc3p)8(0 — o + 3p)¥ (k.0 + p).  (5.6)

In the last expression we use again the parametrizdiion) = (r Sina, r cosa) = r[r, «]
and we encounter again the two rodtpy = 2arcsingr/ k) of (4.13), and employ the same
arguments to use the main part of the sinc function.

Now the Wigner function can be built from (LB (5.6), and theC?(S;) inner product.
The §’s eliminate all integrals and the Wigner function reduces to

W (. xlq, rlr. @]) = Vi(r)[e™™ ¢k, a—3p0)* x (k, a+3 po)

+e17 (k, a+3 po)* x (k, o—3 po)] (5.7)
872 sin%po 452 Por
72 ainel 1= 72 1 r<k
Vi(r) § k“ sinc3po — €0OS3 00 k% r — k cos; po (5.7)
0 r>k
and whernr approache from below,
1 2472
im V,(r) = ———. 5.7c
Jim w(r) NN (5.7

We observe that this Wigner function has the same general form as the common QM Wigner
function—but with no integral.

The Helmholtz and discrete optics models are related by expansion (2.7) of the functions
on the circle in Fourier series. The basis of localized wavefunctions of the discrete model
™ (eigenfunctions ofQ with eigenvaluesng € Z) are represented by a Kronecksgy,,,
in the discrete model; on the circle they are periodic functi@us —/2€"’  corresponding
to multipolar solutions in the Helmholtz optical plane (involving Bessel functions of index
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mg in kr [6]). Plane waves in the Helmholtz model, of directién (eigenfunctions ofP
and H with eigenvalues sind andk cosd respectively), aré (6 — 6p) on the circle; in the
discrete model they are vectors with componeftté elndeed, through Fourier series, from
(5.7) we find the Wigner function for the discrete optics model (4.10)—(4.14).

5.3. Marginal distribution on the cylinder

The projection (marginal distribution) of the Wigner function on the cylinder in the
Helmholtz model is amenable to an analysis, parallel to that of the discrete optics model (in
particular, the analysis we made following equation (4.13)). It is of a simpler form because
it uses complex functions on the circle.

We integrate over the radius in the (p, h)-plane to obtain the Wigner marginal
distribution on the cylindetq, «). Itis

27'[ .
M(, X|q, @) = 4r° / do(sinc3p)?¢ (k, o — 1p) ey (k, o + 1p) (5.8)
—2r

and can be compared with (4.15). The form of the arguments is familiar from QM (cf (1.8)).
Observe the extra factc(sinc%p)z, which is 1 at the centre of the interval and decreases
to zero at the edges.

Rotation and translation of Helmholtz wavefields are geometric and phase
transformations of the functions on the circle (5.5). Under Euclidean transformations, the
Wigner function obeys covariance, as in section 4.5: the cylinder will rotate and slant.
However, thedynamicsof the discrete optics and Helmholtz models are different: in
the former, the evolution Hamiltonian is thetranslation generatoH; in the latter,time
evolution of a Helmholtz field multiplies the wavefunctions by the phaséiekp, wherec
is the speed of the wave in the medium. The Helmholtz Wigner function (5.7) and marginal
distribution (5.8) are insensitive to such phases, so they will be constant in time.

In particular, corresponding to the Gaussian vectors (4.7), we have the Jacobi theta
functions over the circle [7],

1 1 1
re®) = —vs(=0,e¥% )= — —m?/2w + im0). 5.9
0= (3 %) = g Dot 69

By (5.2) and (5.3), the Helmholtz Gaussian wavefields are, in polar coordinates,
1 & 2
IO (xsing, xcost) = — Y e 72, (kx) cosm (& + 7). 5.10
w(é%)@; (kx)cogm(& + 37)).  (5.10)

The Wigner functions shown in figures 5 and 7 correspond to such waveforms.

5.4. Polychromatic wave optics

Solutions to the two-dimensional wave equation include all wavenuniber®* and the
wavefunctions are generalized sums of solutions to Helmholtz equations with this range of
k with measurek dk. They arepolychromaticand can be written as (5.3), integrated over

k, i.e.

W(xq, x25 1) = /
0

Here \Tl(k[k, 0]) = ¥ (k,0) is the same as in (5.2) and transforms as (5.5), but with
‘living’ colour parameter.

kdkw® (xq, xp)e ket = /R 2 Pk (k)e@k—ken — (511)
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As we remarked before, thE, Wigner operatodVz(g, p, k) in (3.9) commutes with
the quadratic invariant operator of the Euclidean algebra (4.5). When we forg? {ie)-
inner product between twpolychromatic wavefields (5.11), their Wigner function will
decompose into the integral over Helmholtz Wigner functibns

WE@. Wi, p.h) = [ kW (@O, ¥V, p. ), (5.12)
0
The integral can be performed most easily ok@mn the last expression of (5.6), thus fixing
the unirrep tok = r/ sinc%p; this cancels the measure (5.8), and we obtain the Euclidean
Wigner function of the polychromatic model in the form

2
WE(®, Wlg, r[r, a]) = 4n? doo(r/sincip, o — 2p)*e 'y (r/sincip, a + 3p).
—2r

(5.13)

The value of the Wigner function at the poinllr, «] is thus expressed as a line integral in
the wavenumber plane, on which it takes the prototypical form of the QM Wigner function
(1.8).

6. Concluding remarks

The QM Wigner function (1.8) has been very useful to visualize processes in position-
momentum phase space. Paraxial optics and acoustics are also served well by this Wigner
function formalism: a linear beam can be processed by purely optical means to produce
an image whose intensity is the overlap between the Wigner functions of the signal
(in R) and that of the window [11]; the Wigner function (1.8) also carries holographic
information of the object beant with respect to the reference beani12] in its marginal
distribution on position. The Wigner function formalism presented here describes wide-
angle, Zr wavefields in two-dimensional elastic media by a Euclidean Wigner function that
satisfies the desirable properties of Wigner quasiprobability distribution functions. These are:
covariance, the overlap formula, and the basic sesquilinearity that provides ttieli@ger

cat states with a smile function.

The Wigner operator and function [3, 4], separate clearly between the geometry given
by the group, and the dynamics implicit in the model. Among the groups studied so far,
the Euclidean group is of special interest: it is a contraction of the (SU(2) cover of the)
rotation group, and it contracts to the Heisenberg—Weyl group in the paraxial limit; it has
two non-equivalent subgroups associated with continuous and discrete models, governed
by differential and difference equations, respectively. For discrete signals, in particular,
the Wigner function formalism provides a new understanding of classical observables of
position and momentum. For wave phenomena it yields a picture incorporating both the
wavenumber (Fourier transform of the field) and the wavefield localization on the screen.
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