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Nacional Autónoma de México, victor@icf.unam.mx
Ademir Aleman, Department of Physics, University of Gothenburg,
ademir.aleman@physics.gu.se
Examiner: Dag Hanstorp, Department of Physics, University of Gothenburg,
dag.hanstorp@physics.gu.se





Abstract

This work presents an implementation of a fast method for simulating
acoustic pressure in conventional and novel acoustic levitation devices.
The implementation is coded in python, using numpy for matrix opera-
tions, matplotlib for the visualization and tkinter is used to develop
a graphical user interface. This implementation provides a fast and re-
liable way to simulate acoustic forces with a user-friendly graphical user
interface, broadening the accessibility to this kind of simulation to those
in lower levels of education. The software is published as open source to
promote independent development. The results of the implementation are
validated qualitatively with schlieren imaging and 4 different acoustic lev-
itation devices are evaluated. Three of these devices are derivative of the
TinyLev system, a novel device which uses inexpensive components and
a chassi which can be 3D printed to create an avenue for democratization
of acoustic levivation. The fourth device is a combination of conventional
techniques of acoustic levitation, utilizing both a static reflector and a
small array of transducer. It is concluded that the matrix method pro-
vides a reliable and cost-effective way to simulate the acoustic potential
in these kinds of devices.
Keywords: acoustic levitation, the matrix method, TinyLev, schlieren ef-
fect, python
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1 Introduction

Free and easily accessible software (freeware) enables students, researchers and
startups to be productive without committing to any financial risk. Open source
projects play and important role in the development and maintenance of free-
ware by enabling any developer to copy and branch off from the original project
in order to find novel solutions. Open source projects can also provide great
learning opportunities for students by showing concrete real-world examples
of how solutions in a particular programming language can look. Python is
a suitable entry-level language because it is very high-level but can accomplish
complex tasks with very easy-to-read code, relative to for example Java. Python
has also become very popular in recent years because of accessibility and high
usability when it comes to developing prototype applications.

In recent years, due to the high availability of inexpensive electronics a new
device has been invented which can be easily build with the help of a 3-D printer
- the TinyLev system is a multi-emitter device which can trap various objects
along a single axis in multiple focii [1]. The TinyLev system was developed with
the motivation to democratize acoustic levitation. This thesis will follow this
motivation to democratize simulation software for systems like the TinyLev.

Following the release of the TinyLev system the Ultraino project was launched
by Marzo, Crockett and Drinkwater[2]. It is an open platform for phased-array
acoustic levitators with the aim to make available to researchers a tool to simu-
late phased array systems for ultrasonic applications such as levitation. Phased
arrays are collections of multiple elements (transducers) which emit sonic signals
at different delay times (phase). The software which they developed is intended
for integration with an Arduino board to control the amplitude and phases for
an ultrasonic device.

The Ultraino software has a few designs which have been integrated into the
program and any other designs has to be imported in the form of 3-D models.
To improve accessibility in this regard, this work presents software which has
native support to generate some types of geometries which the Ultraino software
cannot. These geometries can be flat or concave arrays of transducers with up
to 8 ”rings” of transducers, with user-specified radius of curvature and flat or
concave reflectors which do not emit any signal.

Andrade et. al have formulated a matrix method for acoustic levitation
simulation [3] which will be used in this thesis to compute acoustic pressure.
The method builds on a work done by Ibáñez and colleagues who formulated
a monochromatic transfer matrix (MTM) to address non-linear effects involved
in the propagation of waves through different media [4]. The MTM method is
formulated from the Rayleigh integral which has been used to accurately model
the acoustic field between a transducer and a reflector by Kozuka et. al [5, 6].
The matrix method has been characterized by comparison with experimental
data from a microphone inside a tube, which was placed inside the cavity of a
vibrating sonotrode and a reflector [7].
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1.1 Brief History and Applications of Acoustic Levitation

Acoustic levitation is the technique of using acoustic radiation forces to coun-
teract gravity to suspend objects in mid-air. Many variations of the technique
exists, and it has many modern applications and recent advances have made it
possible to manipulate the acoustic field to translate and rotate many different
objects in three dimensions [8–12]. One example of stability analysis of an ob-
ject trapped in an acoustic levitation device was carried out by Baer in 2011
[13].

The history of standing wave acoustic levitation dates back to 1866 with
August Kundt [14] who made the observation that fine dust particles accumulate
at the pressure nodes of a standing wave which he created in a transparent tube
with a resonating rod at one end. With this he demonstrated the acoustic
radiation force on small particles due to a standing wave field. Standing wave
acoustic levitation is a technique suitable for objects that are much smaller than
the acoustic wavelength and can be used to levitate liquid drops and solid objects
alike. The first real example of acoustic levitation in a standing wave field
came in 1933 by Bücks and Miller [15], they found that alcohol droplets can be
suspended in the air if placed at the pressure nodes between a vibrating rod and
a reflector. Since its inception, contributions and progress has been plentiful and
many variations of acoustic levitation devices have been demonstrated. Some
conventional, single-axis methods of acoustic levitation are presented in figure
1.

Transducer
a) b) c) d)

Reflector

Transducer Transducer Transducer

Figure 1: a) Standing wave acoustic levitation, b) Single beam acoustic levita-
tion, c) Far-field acoustic levitation, d) Near-field acoustic levitation. The red
dots represents a particle and the red rectangle represents some flat object, real
world examples of these levitation techniques can be found in the review by
Andrade from 2018 [8].
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Array of Transducers

Array of Transducers

Figure 2: Simplified schematic of a multi-emitter single-axis acoustic levitation
device.

Compared to other levitation techniques such as optical, aerodynamic, elec-
tronic and magnetic levitation, acoustic levitation is not very restrictive on
particle size, state of aggregation or physical properties [16]. A setup of single
axis standing wave acoustic levitation device with concave reflector has been
of particular interest as they produce a greater axial and radial forces on the
object in the trap [17]. This type of setup has been thoroughly studied in
terms of particle stability at the nodes [18]. The deformation of droplets in
acoustic levitation devices have also been studied [19, 20]. Further, it has been
demonstrated in some works that acoustic levitation in general can be used for
chemical analysis [21–23]. The TinyLev system specifically has been used for
spectral analysis of water droplets containing Cu, Mn, Pb and Ni [24].

Typical acoustic levitation systems found in literature create a trap using
a resonant cavity. Such systems require very precisely engineered components
and require very high voltages to operate. The TinyLev addresses this problem
because it is made of inexpensive materials without compromising on the stabil-
ity of the levitated object. This is referred to as democratization of technology,
where a technology becomes more accessible to more people. The objective
of this work is to develop a computerized analytical tool in order to further
democratize acoustic levitation.
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2 Theory

This section will cover the theoretical principles that govern the interaction
between a particle or an object and a gaseous medium (air) which enables us to
use an array of sonic emitters to levitate almost any kind of object. The air will
be considered to be inviscid, meaning a fluid with no viscosity. Inviscid fluids
have fewer constraints on deformations.

This section will also cover methods for computer-simulations of this scenario
and how to use an optical effect called the schlieren effect to visualize the acoustic
field.

2.1 Nomenclature

Air is considered to be gaseous fluid, therefore kinematic equations of fluids
will be set up the to describe the motion of an infinitesimally small volume
dV referred to as a fluid element or particle which is large enough to contain
millions of air molecules yet small enough that density, pressure, the speed of
sound etc. are uniform throughout the element. Its position is given in Cartesian
coordinates by the vector r = x̂i + ŷj + zk̂ and its velocity by u ≡ ξ̇ = ∇Φ.
Here ξ is some displacement from the equilibrium, Φ is the velocity potential
of a spherical wave propagating through the medium and ∇ is the gradient
operator. Some quantities that are dealt with will in this section are;
ρ = instantaneous density at (x, y, z)
ρ0 = equilibrium density at (x, y, z)
s = condensation at (x, y, z)
sρ0 = (ρ− ρ0)
p = acoustic pressure at (x, y, z)
c = thermodynamic speed of sound of the fluid
Φ = velocity potential of the wave
TK = temperature in kelvins (K)
TC = temperature in Celsius
T = TC + 273.15
f = frequency of the sound emitted from some source
ω = 2πf : angular frequency
λ = f/c: wavelength of the sound, propagating through

a medium with thermodynamic speed of sound c
j =

√
−1: imaginary number

2.2 Wave Mechanics

Consider a string which is stretched out but at rest. If a portion of the string
with length l is displaced from its equilibrium position and released it is known
that the disturbance will break up and form two separate disturbances which
will propagate in opposite directions, see figure 3.

This type of disturbance is referred to as a transverse traveling wave and is
described by the one-dimensional wave equation
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Figure 3: The creation of a transverse wave by displacing a small segment of
the string.

∂2y

∂x2
=

1

c2
∂2y

∂t2
(1)

with

c2 = T/ρL, (2)

where T is the tension in the string and ρL is the linear density of the string.
The general solution for eq. 1 is given by two arbitrary but twice differentiable
functions

y(x, t) = y1(ct− x) + y2(ct+ x), (3)

where ejω(t±x/c) is an example of such a function. The complex solution for
a monochromatic wave on a string is given by

y(x, t) = Aej(ωt−kx) (4)

where A = |A| is the amplitude of the sinusodial wave. Thus, a solution for
two waves travelling in opposite directions become;

y(x, t) = Aej(ωt−kx) + Bej(ωt+kx). (5)
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2.2.1 Standing Waves

Consider a string which is fixed in one end and driven in the other. A wave
then emanates from the driven part and is reflected at the fixed part. The left
end of the string is considered to be the driven part and the relation between
the driving force and the amplitude of the wave is given by

Fejωt = −T (−jk)Aejωt, (6)

where F is the driving scalar force. The boundary condition at the left side
of the string becomes

Fejωt + T

(
∂y

∂x

)
x=0

= 0. (7)

The substitution of eq. 5 into the boundary condition 7 gives

F + T (−jkA + jkB) = 0. (8)

The string is rigidly supported at x = L where the displacement is always
zero giving

Ae−jkL + BejkL = 0. (9)

Solving eq. 9 for A and B leads to the following observation; the wave
which emanates from the left side is reflected and because the emanating wave
and the reflected wave have the same period but are out of phase and traveling
in opposite directions they coincide in such a way that no single wave can be
seen propagating in a single direction but the entire string is in constant motion.
Such a motion is known as a standing wave and is characterized as having nodes
where the string remains at rest, around which the string oscillates. Nodes come
at the discrete, even spacing xn:

xn = L− nλ/2 n = 0, 1, 2, . . . ,≤ 2L/λ, (10)

where xn is the distance from the driver and L is the length of the string
between the driver and the point where the string is fixed [25].
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Figure 4: Illustration of standing waves on a string.

2.3 Fluid Dynamics

2.3.1 Equation of state

The equation of state for an ideal gas at constant temperature is given by,

P =
n

V
RTK = ρRTK , (11)

where ρ is the density at a location r. P is the total pressure and can be
broken into its constituents P = p + P0 where P0 is the equilibrium pressure
and p is the acoustic pressure. Thus

p = P − P0 (12)

where P − P0 is found from the Taylor expansion of P :

P = P0 +

(
∂P

∂ρ

)
ρ0

(ρ− ρ0) +
1

2

(
∂2P

∂ρ2

)
ρ0

(ρ− ρ0)2 + ... (13)

discarding higher order terms, it is obtained

P − P0 ≈
(
∂P

∂ρ

)
ρ0

(ρ− ρ0) = ρ0

(
∂P

∂ρ

)
ρ0

(ρ− ρ0)

ρ0
(14)

with B = ρ0(∂P/∂ρ)ρ0 the adiabatic bulk modulus and s = (ρ− ρ0)/ρ0 the
condensation, the acoustic pressure [25] is obtained:

p ≈ Bs =

(
∂P

∂ρ

)
ρ0

(ρ− ρ0). (15)

Thus from eq. 15 the acoustic pressure in terms of the fluid density has been
obtained.
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2.3.2 Equation of continuity

The equation of continuity is a device to establish a relationship between the
velocity of our fluid particles in euclidean space and its compression and expan-
sion (momentary density, ρ). Consider a volume element dV = dxdydz which
will be fixed in space and have continuous flow of fluid particles through it. The
equation of continuity is given by,

∂ρ

∂t
+∇ · (ρu) = 0. (16)

By eq. 16 the mass of the fluid is conserved. Furthermore, the gravita-
tional field can be neglected and the fluid is considered to be inviscid so the
conservation of momentum as can be written as follows [8, 25],

ρ

[
∂u

∂t
+ (u · ∇)u

]
= −∇p. (17)

Eq. 17 is also known as Euler’s equation.

2.3.3 The linear wave equation

In order to find a solution to the system of equations 15, 16 and 17, some sim-
plifications will be made. First, expand each term to first order approximations
by perturbation,

p = p0 + p1, (18)

u = u0 + u1 = u1, (19)

ρ = ρ0 + ρ1. (20)

The terms p0, ρ0,u0 refers to an unperturbed system where there is no acous-
tic wave. In the absence of a wave, the medium is unperturbed and thus u0 = 0,
in the case of small amplitude waves can be simplified further by considering
|p1| << p0 and |ρ1| << ρ0 so when the expanded terms are inserted into the
continuity equation the following is obtained;

∂(ρ0 + ρ1)

∂t
+∇ · ((ρ0 + ρ1)u1) =

∂ρ1
∂t

+∇ · (ρ0u1) = 0. (21)

Since the unperturbed field is constant, ∂ρ0/∂t = 0. Because the field is
perturbed everywhere at once the velocity u will change rapidly. Further, the
following assumption can be made |(u · ∇)u| << |∂u/∂t| and by taking the
divergence of eq. 17, eq. 22 is obtained.

∇ρ0
(
∂u1

∂t

)
= −∇2p1 (22)
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The term on the left hand side can be retrieved by taking the time derivative
of eq 16;

∂2ρ1
∂t2

+∇ρ0
(
∂u1

∂t

)
= 0. (23)

At this point, recall that from table 2.1 and equation 20 that ρ1 = ρ− ρ0 =
sρ0, thus eq. 23 becomes

ρ0
∂2s

∂t2
−∇2p1 = 0. (24)

From 15 s = p/B and since p0 is the equilibrium pressure its derivative w.r.t
time can be neglected. At this point the subscript is dropped so that p1 = p.
Then, by introducing isentropic speed of sound in the medium c20 = B/ρ0, eq
25 is obtained.

1

c20

∂2p

∂t2
= ∇2p (25)

Eq. 25 is the acoustic pressure on the form of the linear and lossless wave
equations. Furthermore, since the curl of a gradient must vanish, by eq. 16;

ρ0
∂(∇× u)

∂t
= −∇×∇p = 0 ⇒ ∇× u (26)

which shows that u can be expressed in terms of a scalar function as such;

u = ∇Φ (27)

which was previously identified as the velocity potential. Physically, this
means that the acoustic excitation of an inviscid fluid does not involve any
rotational flow.

Furthermore, the requirement that ∇ρ0 6= 0 can be introduced and when eq.
27 is combined with eq. 17 an expression of the acoustic pressure as a solution
to the wave equation is obtained

∇
(
ρ0
∂Φ

∂t
+ p

)
= 0⇒ p = −ρ0

∂Φ

∂t
. (28)

Eq. 28 shows that Φ satisfies the wave equation under the approximations
were asserted while treating air as an inviscid fluid [8, 25].
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2.4 Wave Solution for the Acoustic Pressure

As was seen in eq. 25 the pressure which comes as a result of acoustic excitation
can be put in terms of a function. A solution to eq. 25 can therefore be on the
complex form, as was shown in section 2.2

p = Aej(ωt−kx) + Bej(ωt−kx) (29)

the particle velocity associated with p is, by extension of 28 is

~u = ux̂ =

[
A

ρ0c
ej(ωt−kx) − B

ρ0c
ej(ωt+kx)

]
(30)

which is parallel to the direction of propagation. p can be split into its
constituent parts, using the subscripts +/− to denote waves traveling in positive
and negative direction along the x-axis respectively,

p+ = Aej(ωt−kx), p− = Bej(ωt+kx) (31)

u± =
p±

ρ0c
. (32)

When dealing with a plane wave traveling in some arbitrary direction, a
solution on the following form is possible

p = Aej(ωt−kxx−kyy−kzz) (33)

for a plane wave with kz = 0 and with ~k = kxx̂+ky ŷ, ~r = xx̂+yŷ+ zẑ gives

~r~k = kxx + kyy. There are surfaces of constant phase parallel to the z-axis,
their equation is given by

y = −(kx/ky)x+ constant. (34)

Because the wavelength λ in the plane can also be broken into λx, λy with

λz = 0, the relationship λ = 2π/k and λ2 = λ2x + λ2y gives following form for ~k

~k = k cosϕx̂+ k sinϕŷ (35)

where ϕ is the angle between the x-axis and the normal to the surface line
by eq. 34. Substitution with eq. 35 yields the form for the acoustic pressure
from plane waves

p = Aej(ωt−kx cosϕ−ky sinϕ). (36)

The form of the acoustic pressure from spherical waves is [25]

p =
A

r
ej(ωt−kr). (37)

10



2.5 Relative Acoustic Potential

In his paper from 1977 [26], Beyer recounts the history of the study of waves and
motivates the existence of acoustic radiation pressure by the similarity between
sound and light. His opening argument is that if there is a radiation pressure
resulting from the wave-nature of photons, there must be an acoustic radiation
pressure as a result of a sound wave. Beyer concludes that the Rayleigh radiation
pressure is entirely non-linear. To obtain a solution which takes non-linearity
into account an expansion of equations 1.8-1.10 is needed:

p = p0 + p1 + p2, (38)

u = u1 + u2, (39)

ρ = ρ0 + ρ1 + ρ2. (40)

From here, Andrade [8] derives the force on an object in an acoustic pressure
field to be

Frad = −
∫
S0

〈p2〉ndS −
∫
S0

ρ0〈(n · u1)u1〉dS, (41)

with n being the normal vector to the surface element dS of a particle in the
acoustic field. Equation 41 can be expressed in terms of a potential according
to Gor’kov theory

Frad = −∇U, (42)

where

U = 2πR3

[
f1

3ρ0c20
〈(pin1 )2〉 − f2ρ0

2
〈uin1 · uin1 〉

]
(43)

which is the same term that is being used in the matrix method for acoustic
levitation [3]. This term is the primary objective of the simulations presented
in this report. From eq. 43 the relative acoustic potential may be obtained as
follows,

Ũ =
U

2πR3
. (44)

2.6 Schlieren Effect

The effect of schliere (german for streaks or striae) is a phenomena whereby light
is deflected in the presence of a non-zero gradient of the refractive index n over
the cross-sectional area through which the light is passing. Air is considered
to have a refractive index of 1 so any medium is either more refractive or less

11



refractive than air, having a refractive index greater or lesser than 1 respectively.
Phenomena of this kind has been studied since the 17th century since its formal
origination by Robert Hooke. Schlieren effects can be an aid in the study of the
flow and heat transfer in gases by visualizing the changes in refractive index. A
fundamental relationship in the schlieren effect is the Gladstone-Dale relation
between the density of a gas and the refractive index [27]:

n− 1 = kρ. (45)

The Gladstone-Dale coefficient k is mostly constant for visible light, with
an approximate value of 2.3 · 10−4 m3/kg for air. Snell’s law determines how
many degrees a beam of light is deflected from it’s original path when crossing
the boundary between two medium with different refractive index:

n2
n1

=
sin θ2
sin θ1

. (46)

Snell’s law is appropriate for situations where light travels through two dis-
tinct media with different density but in the case of an acoustic levitation device
the medium is the same and the density in the cavity changes gradually in some
regions. Consider instead the following relation,

δ = kL
dρ

dx
. (47)

δ is a small deviation from the original pathway of a light-beam, after it has
traversed a region where the gradient dρ/dx is non-zero, k is the Gladstone-
Dale coefficient, L is the span of the of the disturbance on the optical axis and
the x-axis is perpendicular to the optical path. The sensitivity of the schlieren
imaging technique is known in terms of how much of the unrefracted light is
blocked. If more light is blocked the background becomes darker and the schliere
are easier to discern. An approximate relation for the sensitivity is given by:

∆A

A
=

∆I

I
=

3δLf
h

. (48)

In equation 48 Lf is the focal length of the mirror, δ is the deflection angle,
A and ∆A are the areas of the image which is unobstructed and the area of the
image which is being blocked respectively.
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h

c

∆A

A

Figure 5: Geometry of the image that is projected from the spherical mirror.

Figure 5 shows the geometry of the image of the mirror where light is par-
tially obstructed, the red area represents the area of obstructed light. Figure 6
illustrates the full geometry of the schlieren setup. A and ∆A are approximately
A = (2/3)ch and ∆A = cd.

Region of interest

Camera

Light source

Spherical Mirror

Light stop

Figure 6: Schematic over the schlieren setup used in this work.
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2.7 Numerical Methods for Simulating Acoustic Pressure

This section investigates and reviews different techniques that can be used to
compute pressure in an acoustic levitation device.

2.7.1 Matrix Method

The matrix method for acoustic levitation simulation combines Gor’kov theory
[28] with a method of computing transfer matrices to compute the acoustic
potential field by simulating propagation of a sound wave as it is emitted by a
transducer, excites a medium, reflects once from a reflector then reflects again
on the transducer and so on [3].

The pressure matrix P = [p1, p2, ..., pM ]T according to the matrix method
which is schematically displayed in figure 7.

Figure 7: Schematic of the geometry of the matrix method.
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The transfer-matrices are T(TM), T(RM), T(TR) and T(RT ) are given by

T (TM)
mn = sn

exp(−jkrnm)

rnm
, (49)

T
(TR)
in = sn

exp(−jkrin)

rin
, (50)

T
(RT )
ni = si

exp(−jkrin)

rin
, (51)

T
(RT )
mi = si

exp(−jkrim)

rim
. (52)

Where n denotes the discretized elements of the transducer with area sn,
i denotes the elements of the reflector of area si, m denotes the index of each
point in the plane where the acoustic potential will be calculated (measurement
plane). rnm, rim and rin are elements of the matrices which contain the dis-
tances between points in the measurement plane and transducer, measurement
plane and reflector and transducer and reflector respectively. The expression to
calculate P is given by;

P = A ·T(TM)U +A · C ·T(RM)T(TR)U

+A · C2 ·T(TM)T(RT )T(TR)U

+A · C3 ·T(RM)T(TR)T(RT )T(TR)U

+A · C4 ·T(TM)T(RT )T(TR)T(RT )T(TR)U + ...

(53)

with

A =
ωρc

λ
,

C =
j

λ
,

Ui = exp (−jωti)

A term out of the expression for P could look like

A ·T(TM)U =
ωρc

λ


T

(TM)
11 T

(TM)
12 . . . T

(TM)
1N

T
(TM)
21 T

(TM)
22 . . . T

(TM)
2N

...
...

. . .
...

T
(TM)
M1 T

(TM)
M2 . . . T

(TM)
MN



U1

U2

...
UN

 . (54)

When the pressure has been calculated, the real part p = Re (P) is used and
Gor’kov theory is applied to compute the acoustic potential;

15



V = 2πR3

(
p2

3ρc2
− ρu̇2

2

)
(55)

with p = p/M with M being the number of points in the measurement plane
so p is the mean amplitude and p2, u̇2 are the mean squared amplitudes. The
velocity fields are obtained by

φ = − p

jωρ
(56)

u̇ = ∇φ. (57)

The relative acoustic potential becomes

Ṽ =
V

2πR3
.f (58)

This expression enables us to calculate the acoustic potential without the
dependence of an object inside the cavity. Note that eq. 55 is the same as eq.
43 with non-linearity terms, i.e. f1, f2 = 1. Therefore can be concluded that
the method presented in this subsection does not account for non-linear effects.
We can also conclude that p is the same as pin1 which is the incident pressure
on an object in the acoustic field. Finally, the quantity which will be examined
in this work is referred to as the acoustic radiation pressure and was derived by
Wang [29],

prad =
p2

4ρ0c2
. (59)

2.7.2 Lattice Boltzmann Method

The lattice Boltzmann method (LBM) has previously been applied to fluid
streaming [30], forces on a cylinder in a sound field [31] and the dynamics of
an acoustically levitated particle [32]. In a lattice Boltzmann model, particle
motions are simulated by letting them move on a grid. Different grid-models
exists throughout the literature on LBM.

fi(x + ei∆x, t+ ∆t) = fi(x, t) + Ωi(f(x, t)) (60)

Equation 60 is the lattice Boltzmann Equation with the lattice gas automa-
ton (LGA) Ωi, which is the collision operator and represents the rate of change
in the particle velocity, fi from collisions [33]. The LGA is a type of cellular
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automaton which can be used to derive the macroscopic Navier-Stokes equa-
tions [34]. Readers who are unfamiliar with cellular automata are referred to
the following videos for a short introduction [35–37]. In short, cellular automata
are generative algorithms which produce binary sequences according to a cer-
tain rule-set with respect to a neighbourhood of sites, such as the von Neumann
neighbourhood [38]. This type of neighbourhood is also present in the LBM and
the direction to adjacent cells is denoted in eq. 60 by ei.

The collision term in eq. 60 can be approximated as

Ωi ≈ −
1

τ

[
fi(x, t)− f (eq)i (x, t)

]
, (61)

where f
(eq)
i (x, t) is the local equilibrium distribution function and τ is the

relaxation time for each site on the grid. The local equilibrium distribution
function is given by:

f
(eq)
i (x, t) = ωiρ

[
1 + 3ei · u∆x+

9

2
(ei · u∆x)

2 − 3

2
u2
]
, (62)

where ωi is the angular frequency at the site, ρ and u are the density and
velocity defined by

ρ(x, t) =

8∑
i=0

fi(x, t), u(x, t) =
1

ρ

8∑
i=0

fi(x, t)ei∆x. (63)

In the case of an acoustic levitator, the term 3ωiPciy is added to eq. 60 at the
sites of the surface of the transducer. In a report from 2008, Barrios and Recht-
mann use LBM to simulate the dynamics of a particle in two different acoustic
simple levitation devices, one having a flat reflector and the other having a con-
cave reflector [32]. A principal finding of theirs was that a concave reflector is
more efficient than a flat reflector, with the price for this efficiency being that
the particle exhibits more complex dynamics. Furthermore, who conclude that
the LBM can be extended to work with more complicated geometries.

2.7.3 Far-Field Piston Model

A far field piston model is relatively simple and does not account for non-linear
effects and reflections but is an appropriate model for real-time calculations.
The complex acoustic pressure is given by

P (r) = P0A
Df (θ)

d
ej(ϕ+kd), (64)

where r is the distance from the piston-source which is emitting a soundwave
with frequency f . P0 is a constant which defines the transducer amplitude
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power, A is the peak-to-peak amplitude of the excitation signal and d is the
propagation distance in free space where the term 1/d accounts for divergence.

Df =
2J1(ka sin θ)

ka sin θ
(65)

is the far-field directivity function of a cirular piston source. In eq. 65 a
is the radius of the transducer, k is the wave number and J1 is the first-order
Bessel function of the first kind. For configurations with multiple sources, the
complex pressure is simply calculated by summing one term per acoustic source.

The Gor’kov potential is used to compute the acoustic force where the po-
tential for the Gor’kov eq. F = −∇U is given by

U = 2K1(|p|2)− 2K2(|px|2 + |py|2 + |pz|2) (66)

with

K1 =
1

4
V

(
1

c20ρ0
− 1

c2sρs

)
K2 =

3

4
V

(
ρ0 − ρs

ω2ρ0(ρ0 + 2ρs)

)
.

Here, V is the volume of a spherical object which is being levitated, ω is the
particle of the emitted waves, ρ is the density and c0 is the speed of sound in the
medium while cs is the speed of sound through the material of the particle. An
example of the values for these parameters can be found in the Ultraino-report
[2]. p is the complex pressure and px, py, pz are the spatial derivatives of p in
the respective directions.

2.7.4 Finite Elements Method

Finite elements method (FEM) is a numerical method for solving systems of
non-linear partial differential equations that cannot be solved analytically. The
computations are usually carried out by some commercially availiable software
such as COMSOL or ANSYS. Users have to determine what functions they want
the program to solve and which boundary conditions to use so the application
will vary on a case by case basis. The main idea of FEM is that to solve the
system, constituent parts of the system (e.g. surfaces, bodies and interfacing
medium) are discretized into very small, finite parts. FEM has been used to
solve the acoustic radiation force on an arbitrary particle and planar reflector
[39, 40] and the potential inside a Langevin-type acoustic levitation device [41].
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3 Method

3.1 Simulations

3.1.1 Matrix Method

In this work the matrix method has been chosen to simulate the acoustic radi-
ation pressure. It is a convenient choice because it does not simulate a specific
particle in the acoustic trap. The implementation was coded first in MATLAB
and then in Python. The initial implementation in MATLAB was validated by
comparing the results with experimental results found in the literature. The
results of the Python implementation was then compared to those of the MAT-
LAB implementation.

The results of the simulations were validated by using schlieren imaging to
visualize the acoustic potential and then counting the number of nodes present
in the schlieren images and in the simulation of the acoustic radiation pressure
to see if they match.

In this work the matrix method presented in section 2.7 was modified to bet-
ter approximate the geometry of the TinyLev system. The arrays of transducers
are considered to be completely non-reflective as their shape is very un-even,
albeit symmetrical so the wave will scatter and its energy will dissipate rather
than reflect. Therefore in the case of two arrays, only the first terms of eq. 53
will be considered

PT = A ·T(TM)U, (67)

and

PB = A ·T(RM)U. (68)

The superscripts T and B stands for top and bottom, respectively. Thus P
becomes

P = PT + PB . (69)

In the case where the top or bottom component is a reflector and the other
component is an array or a transducer, the expressions for PT and PB are also
different. An example, with T an array and B a reflector PT and PB become

PT = A ·T(TM) · U +A · C ·T(RM)T(TR)U (70)

PB = ∅. (71)

The wave from the array reflects once and then scatters on the array and
the reflector does not actively contribute to the total pressure in the trap.
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3.2 Acoustic Levitation Device

All of the acoustic levitation devices used in this work operate at and excitation
frequency of 40KHz. The acoustic levitation devices used in these experiments
were assembled according to publicly available instructions [42]. The electrical
components were inexpensive and are commercially available.

3.2.1 MicroLev

The MicroLev is very small acoustic levitation device which features an array
of 17 transducer and a concave reflector. The structural parts of the MicroLev
which hold the transducers in place were machined by the on-site CNC-mill at
the ICF-UNAM. Plans for the structural parts were provided by Alan Reyes,
fellow student at UAEM. The reflector was constructed at Gothenburg Univer-
sity.
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Figure 8: Drawing of the MicroLev array, credit to Alan Reyes of UAEM.
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Figure 9: CAD-drawing of the MicroLev reflector, credit to Jan-Åke Wiman of
University of Gothenburg.

3.2.2 MATBig, MATMed and MATSma

The construction of these devices are completely credited to Johan Jellstam
[43] who worked on a similar project in the months prior. The devices were
nicknamed in order of size MATBig, MATMed and MATSma and they were
made with the 3D printer at Chalmers University: A sketch of these devices are
shown in figure 10 and their features such as cavity length, radius of curvature
and number of transducers are given in table 1.

22



Figure 10: Schematic of the MATs, made by Johan Jellstam.

Cavity Length (mm) Radius of curvature (mm) Number of transducers
MATBig 205 102.5 120
MATMed 128 64 70
MATSma 117 58.5 36
MicroLev 66 35 / 33 17

Table 1: Characteristic parameters of each of the acoustic levitation devices
used in this work. For the MicroLev system 35mm radius of curvature refers to
the array of transducers while 33mm refers to the reflector.

3.2.3 Design and Circuitry

The circuitry of the acoustic levitator has three necessary components: an array
of transducers, a power supply to drive the transducers and a controller for the
power supply. In this work an Arduino nano was used as a controller, running
a script which can be found here [42].

The design of structural part of the MicroLev which holds the transducers
was obtained by numerous trials made by prof. Victor Contreras of The National
University of Mexico (UNAM). There are fewer transducers (17) than most other
designs which has been seen in demonstrations of acoustic levitation and features
a reflector on the bottom. This setup has less instability partially because there
are fewer transducers which each provide some degree of instability because they
are imperfect, in other words they are not ideal circuits and they are bound to
have a phase difference between them.
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3.3 Schlieren Imaging

The schlieren setup for imaging consisted of the following items: 1) DSLR-
camera, 2) spherical mirror with a focal length of Lf = 1 (m), 3) a db = 600
(µm) diameter wire used for blocking the incoming light from the mirror, 4) a
fiber-optic cable with a core diameter of dl = 400 (µm). In order to capture
schlieren images of the acoustic potential, the acoustic levitation device was
placed in front of the mirror and the light blocker placed in parallel with the
focal plane of the mirror, at a distance l = 2Lf from the mirror. The light
blocker was attached to a translation-stage which enable micrometer adjustment
of its position in the parallel and perpendicular directions to the focal plane.

The setup was configured by first adjusting the mirror so that the image of
the mirror in the area of the light blocker. The light blocker is then adjusted
so that the image falls directly on it thereby blocking the maximal amount of
light. Figure 11 shows the principal geometry of the setup.

Region of interest

Camera

Light source

Spherical Mirror

Light stop

Figure 11: Schematic over the schlieren setup used in this work.

3.4 Application Development

The development cycle of the simulation script and the graphical user interface
to control the simulation script was broken into several parts, as explained
below.

3.4.1 Rudimentary Implementation

Many researchers have previously examined the acoustic potential inside acous-
tic levitation devices, most commonly using Langevin-type devices. Modelling
of the acoustic potential has been performed both numerically and experimen-
tally by other researchers. After writing a rudimentary script of the matrix
method for simulating acoustic potential the results of the script were com-
pared to previous work by other researchers to verify that the implementation
was correct.

The geometries that were simulated at this stage were of a flat transducer
with a flat reflector and a flat transducer with a concave reflector. This imple-
mentation could handle variations on the radius of the transducer and reflector
separately and the radius of curvature of the reflector alone.
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3.4.2 Replicating the Geometry of TinyLev

A script was coded in MATLAB to generate points which were organized to
replicate the surface of each transducer in a TinyLev-system. This script was
then evaluated and modified according to compatibility with general specifica-
tions. The goal was in principle to produce a script which could take a number
of highly relevant parameters, specified by the user which determine the size
and shape of the acoustic levitation device which they wish to simulate.

The most relevant parameters were deemed to be radius of curvature on
the assembly of transducers, radius of the structural aperture which houses the
array, distance from the the zero position, the number of transducers in the
arrangement by first determining how many rings the array should have and
then how many transducers should be in each ring.

3.4.3 Developing the Graphical User Interface

Beyond the parameters mentioned above the script that runs the simulation
should be able to handle the output-frequency and phase of the transducers.
The design of the graphical user interface should be intuitive to use and of a
”what you see is what you get”-nature.
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4 Results

In this section results are presented which were obtained by running the matrix
method, the schlieren images that were taken to validate the results of the sim-
ulations and the graphical user interface which wraps the simulation algorithm.
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4.1 Generating different geometries

The algorithm for evaluating the matrix method includes a method for gen-
erating specific geometries of different varieties. Some of those geometries are
presented here.

Figure 12: A variety of sample geometries that the program can generate.
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4.2 Simulations

This section presents results which were obtained by running the simulation for
the parameters defined by the MATBig, MATMed, MATSma and the MicroLev
systems as well as the schlieren images that were taken to validate the results
of the simulations. The results of running the matrix method in python were
exported to a text file and subsequently imported in MATLAB to produce the
plots in figures 13 to 18. Section 4.2.2 shows the results that are generated by
the GUI, the graphics in figures to are generated using matplotlib with default
settings, hence the difference in background and aspect ratio from earlier figures.

4.2.1 Comparing MATLAB results with the python implementation

This section presents a comparison between the implementation of the matrix
method using MATLAB and Python respectively to show that the Python li-
braries are able to generate results that are qualitatively identical to MATLAB.

Figure 13: Side by side comparison of the result of simulating the ”MATBig”
with the matrix method implemented in MATLAB and python (left and right
respectively)
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Figure 14: Side by side comparison of the result of simulating the ”MATMed”
with the matrix method implemented in MATLAB and python (left and right
respectively)

Figure 15: Side by side comparison of the result of simulating the ”MATSma”
with the matrix method implemented in MATLAB and python (left and right
respectively)
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Figure 16: The normalized profile curves of the plots show in figure 13 with
MATLAB in red and python in blue.

Figure 17: The normalized profile curves of the plots show in figure 14 with
MATLAB in red and python in blue.
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Figure 18: The normalized profile curves of the plots show in figure 15 with
MATLAB in red and python in blue.

4.2.2 Simulation results (Python)

Figure 19: Acoustic radiation pressure simulated inside a MATBig, using the
python-implementation of the matrix method.
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Figure 20: Acoustic radiation pressure simulated inside a MATMed, using the
python-implementation of the matrix method.
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Figure 21: Acoustic radiation pressure simulated inside a MATSma, using the
python-implementation of the matrix method.
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Figure 22: Result of simulation of a novel device using with an array of trans-
ducers, and a concave reflector, nicknamed ”MicroLev”.
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4.3 Schlieren imaging

In this section the images taken of the acoustic potential using the schlieren
imaging technique, for 4 different systems are presented.

Figure 23: Schliere captured of the MATBig system.
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Figure 24: Schliere captured of the MATMed system.
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Figure 25: Schliere captured of the MATSma system.

Figure 26: Schliere captured of the MicroLev system, a system using 17 trans-
ducers and a concave reflector.
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4.4 Graphical User Interface

This section presents the GUI which wraps the python code that evaluates the
matrix method for a given acoustic levitator system. The parameters of the
system are defined by user input in the GUI and this section will explain how
the system is defined by those parameters. The application has been named
Simulation platform for Acoustic Levitation Traps (SALT) and requires python
3.7 to be installed on a users computer and the code is avaliable to be down-
loaded here. The user interface was built with a package called called tkinter,
which comes pre-packaged with python. All plots are made with the pyplot

module which is included in the matplotlib package and the mathetmatics of
the matrix method are carried out with the numpy package. Both numpy and
matplotlib need to be installed to run the application, if they are not installed
when the program is run the user will be prompted to installed them.
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Figure 27: Upon launching the application, the user needs to select types for
the top and bottom components of the acoustic levitation device from the drop-
down menus indicated by i) and ii). At i) the options are array and transducer.
The options for the bottom component are array and reflector. If none or
only one of the components are selected before clicking either of the buttons
at the bottom of the panel at iii), the script will show an error message in the
console. The acoustic potential can also be simulated in mediums with different
characteristics, that is the user can set by changing the speed of sound and
medium density at iv). Normally the speed of sound is proportional to the
inverse square-root of the density by the Newton-Laplace equation but in the
matrix method density and speed of sound appear independent.
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Figure 28: Here is an example of the application when a user has selected the
option ”array” for both top and bottom components. The significance of each
parameter is listed in table 2.
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Parameter Significance
i) Wether the array, reflector or transducer is flat or concave. Default setting is concave.
ii) The distance from the ”pit” of the array to the origin.

The cavity length of the levitator is the
sum of the vertical position of both components.

iii) Radius of curvature determines the ”steepness” of the bend of the array.
iv) Socket radius is the size of the set of points which

are generated when creating the array.
This parameter is not really relevant for the size
of the array as the radius of each ring is
fixed but it does matter for other reasons which
will be discussed in the next section.

v) Phase shift of the emitted wave.
vi) Frequency of the emitted wave.
vii) Number of layers or rings on the array.
viii) How many transducers should be in each ring or layer.

Table 2: Summary of the parameters marked in figure 28.
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5 Discussion

In this section we provide a discussion on the results of the simulations and the
limitations of the software.

5.1 Matrix Method Implementation in MATLAB and Python

The first implementation of the matrix method for this work was done in MAT-
LAB in novemeber 2019. At that stage we had access to previous simulation
work done on conventional acoustic levitaiton systems. Once we could conclude
that our results were in good agreement with the previous work of Andrade
[3], Stindt [7] and Baer [13], the development of a new implementation of the
matrix method could proceed. The objective of the new implementation was
to simulate the acoustic potential in a TinyLev-system. The biggest challenge
with simulating the TinyLev system was to find a general method to generate
the geometry of an array of transducers with dependence on the radius of cur-
vature. This was eventually achieved by using conditional statements on points
on a flat disk with a separation of 1mm. To add the radius of curvature the
points were subsequently translated in the Z-axis. This method could be im-
proved somewhat because the transducers aren’t all represented by the same
number of points which makes simulating a different phase for each transducer
more difficult than it could be.

Subsequently, when the matrix method implementation for the TinyLev sys-
tem was completed in MATLAB we proceeded to convert the code into python
and build the GUI. The choice to use sliders to set the parameters was taken
initially to make the application user-friendly but they can only take integer
precision input and should be changed to text-based input which would allow
for floating point precision.

5.2 Validation

To confirm that the Python implementation produces the same result as the
one in MATLAB, we compare the acoustic radiation pressure visually side by
side in figures 13-15.

Furthermore, we’ve plotted the normalized profile curves in figures 16-18.
The profiles are taken from the middle column of values plotted in the previous
figures and overlayed. By visual inspection it is obvious that the Python and
MATLAB implementation generate identical results.

To validate the simulations qualitatively schlieren imaging of the MATBig,
MATMed, MATSma and MicroLev systems were taken. The point of com-
parison with the schlieren images is the number of dark streaks in the schlieren
image with the number of dark streaks in the surface-plot of the acoustic radi-
ation pressure.
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Figure 29: Schlieren image of the MATBig system with 36 dark streaks high-
lighted in red (right) and simulation of the MATBig systems with 36 dark streaks
highlighted in blue (left).
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Figure 30: Schlieren image of the MATMed system with 10 dark streaks high-
lighted in red (right) and simulation of the MATMed system with 10 dark streaks
highlighted in blue (left).
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Figure 31: Schlieren image of the MATSma system with 17 dark streaks high-
lighted in red (right) and simulation of the MATSma system with 22 dark streaks
highlighted in blue (left).
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Figure 32: Schlieren image of the MicroLev system with 8 dark streaks high-
lighted in red (right) and simulation of the MicroLev system with 8 dark streaks
highlighted in blue (left).

5.3 Error factors in schlieren imaging

There were some issues when recording the schlieren images, especially with
the MATMed system, where heat radiating from the transducer array led to
an obstructing effect in the images. To increase contrast of the schliere the
voltage was increased from 12V to 20V which gave higher contrast at the central
nodes but also increased the obstructing effect of heat near the surface of the
transducers. In the MATMed system, only the 10 most central streaks have been
marked because they were the strongest. The other lines seem to blend in with
the background and couldn’t be identified with any confidence. Another factor
to consider when inspecting the schlieren images is that there are ineviteably
imperfections in the structural components aswell as transducers used to build
these devices. Such imperfections likely contribute further to breaking down the
complex pattern of weaker nodes close to the arrays. There are especially many
such weak nodes in the MATMed system, shown in figure 33.

Figure 33: Zoom in on the close vicinity of the upper array in the MATMed
system shows a complex pattern of weak nodes.

The effect of heat radiating from the arrays is not as obstructing in the MAT-
Big system which may be caused by the much higher number of transducers,
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where more transducers leads to a lower voltage per transducer and therefore
less energy being converted to heat. A way that this might be mitigated is to
optimise the schlieren photography with respect to levitator size and exciting
voltage.

According to simulations, small changes in the cavity length influences the
acoustic potential greatly. This can be seen by taking the value of the acous-
tic radiation pressure at the central antinode and varying the cavity length for
a fixed radius of curvature. This is shown in figures 34 - 36. These differ-
ences could be present in the devices that have been used in this report due to
(small) undocumented construction errors, affecting the outcome of the schlieren
imaging-process. As for the physical MicroLev system which was used in to take
schliere photography of, the measurement of the cavity length is only precise
within 2-4 mm.

Figure 34: Demonstrating the effect of varying the cavity length of the MATBig
system, according to the matrix method. The dashed red line indicates the
cavity length used in the simulations and in the MATBig system.
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Figure 35: Demonstrating the effect of varying the cavity length of the MATMed
system, according to the matrix method. The dashed red line indicates the
cavity length used in the simulations and in the MATMed system.

48



Figure 36: Demonstrating the effect of varying the cavity length of the MATSma
system, according to the matrix method. The dashed red line indicates the
cavity length used in the simulations and in the MATSma system.

The simulations suggest that the MATSma is in an unstable area where the
acoustic radiation pressure at the node w.r.t cavity length is nearing an inter-
regnum between being in and out of phase. In this interregnum the character
of the acoustic trap changes as the waves coming from the two arrays go out
of phase with each other. Such a shift can lead to increase or decrease in the
number of visible nodes. This effect might be more complex than what the
simulation can accurately depict since the matrix method really only solves for
a first order perturbation term. The unstable area of the acoustic pressure w.r.t
the cavity length may be why we see such a big qualitative difference (in the
number of visible nodes) between the simulation of the MATSma system and
its schlieren image. MATMed and MATBig are closer to the peaks of the curve.

Last, it should also be considered that the schlieren sensitivity to changes in
air density is very sensitive to the relation between the size of the point light
source and the light stop. In this work a very crude wire with a large area was
used but since the wire is cylindrical, still some light can pass around it.

49



5.4 Poor alignment in the MicroLev system

The MicroLev system was poorly aligned due to the ad-hoc solution for mount-
ing the reflector and array. This likely contributed to the ”boxy” shape of the
antinodes seen in the schlieren imaging, compared to the overall oval-shaped ar-
rangement of schliere in the MATMed and MATBig as seen in figures 29 and 30.
An example of schlieren imaging in a MicroLev system with better alignment
was given by Victor Contreras, see figure 37.

Figure 37: An image of the MicroLev system, recorded and provided by Victor
Contreras. The nodes take on an oval shape when the system is optimally
aligned.

5.5 Bad geometry

When using the application to simulate the acoustic radiation pressure in an
acoustic levitation device it is important to note that some settings will give
bad results. The main parameter that users need to be aware of setting to a
”good” value is the radius of curvature, as setting it too steep will create badly
skewed transducer representations. Another critical setting is the disk radius,
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iv) in figure 28. If this setting is too small, it will crop the array to a square and
some layers of transducers will not be included, examples of bad geometries are
shown in figures 38 and 39. Because of these artifacts it is important to use the
”Display Geometry” option before running the simulation.

Figure 38: Example of when the radius of the array is set too low, resulting in
the array being cropped to a square.
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Figure 39: Example when the radius of curvature is set too low, resulting in
cropping and skewing of the array.

6 Conclusion and outlook

It is safe to conclude that the MATLAB and python implementations qualita-
tively produce the same results. The overall quality of schlieren images should
be considered fair but could be improved substantially. In the case of the MAT-
Big and MicroLev systems our simulation produced the same number of dark
streaks as the schlieren images showed which is considered very good agreement.

As the simulation could accurately show the 10 streaks of the MATMed
system with the highest contrast in the central part of the cavity the simulation
appears to be in good agreement with the qualitative validation. Since the
remaining nodes are very weak (see figure 17) it is not surprising that they
could not be detected using the schlieren technique.

As for the MATSma, there is some disagreement between the simulation
and the number of nodes found in the schlieren images - these differences could
be explained by the unstable neighbourhood w.r.t the cavity length which is
predicted by the simulation in 36. It is left to future works to validate figures
34 to 36.

Lastly, it should be noted that the algorithm may scale very badly on com-
puters with low RAM avaliability as large systems, mainly using reflectors
and/or large transducers, generate a large number of points that takes up a
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lot of RAM.

6.1 Future Work

Some suggestions for future work are listed below and will be explained further
on.

1. Improve schlieren set up.

2. Validate figures 34 to 36.

3. Quantitative validation using rainbow schliere or microphone.

4. Fork the simulation application (SALT)

1) The schlieren setup could potentially be improved by using a plane black band
instead of a wire which was used here. Using a plane black band could decrease
the amount of unperturbed light that passes the light stop and therefore increase
contrast of the dark and light streaks.
2) Figures 34 to 36 could be validated using using the schileren effect, as we
have done here but with the purpose of investigating the interregnum between
the peaks in the aforementioned figures.
3) It would be of great value to quantify the acoustic potential of these acoustic
levitation devices and investigate the agreement of experimental data with sim-
ulations using the matrix method. Such experiments could be carried out either
by using an unobtrusive microphone to measure the acoustic frequency inside
the cavity. It could also hypothetically be carried out using rainbow schlieren
which is a version of schlieren imaging where the light stop is replaced by a
transparent film with a fine color gradient printed in a micro-meter sized band.
Since the deflection of light in the schlieren effect is proportional to the density
gradient of the area where the light passes, the pressure can be computed in
each node by measuring the hue in the schlieren pictures.
4) Lastly, as with all software projects, their life can be extended and their
characters altered by forking - students and seasoned programmers alike can
take it upon themselves to make changes to the existing repository or clone it
to make a version of their own. The most pressing improvements to be made
would be to improve the way that the application handles errors and warnings
and make sure that there are no bugs which break the application.
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A Code

A.1 Main file

from gui import masterframe

root = masterframe()

root.setouterproperties()

root.placemainwidgets()

root.mainloop()

A.2 GUI

import tkinter as tk

import time, sys, os

try:

import numpy as np

except:

os.system("pip install numpy")

import numpy as np

try:

from matplotlib import pyplot as plt

except:

os.system("pip install matplotlib")

from matplotlib import pyplot as plt

from MatrixMethod import MatrixMethod, CreateGeometry

from mpl_toolkits.mplot3d import axes3d, Axes3D

def definedicts(page_inst, masterframe_inst):

c = float(masterframe_inst.medium_c.get())

rho = float(masterframe_inst.medium_density.get())

medium_properties = {"Density": rho, "SpeedOfSound": c}

top_properties = {"Orientation":1,

"Type": masterframe_inst.top_selection.get(),

"Concave":page_inst.properties_page1["Concave"].get()}

bot_properties = {"Orientation":-1,

"Type":masterframe_inst.bot_selection.get(),

"Concave":page_inst.properties_page2["Concave"].get()}
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for key in page_inst.properties_page1:

if key != "Depth":

top_properties.update({key : page_inst.properties_page1[key].get()})

if key in ["Displacement", "RadiusCurvature", "Radius"]:

top_properties[key] = float(top_properties[key])*1e-3

if key == "TransFreq":

top_properties[key] = float(top_properties[key])*1e3

if key == "Layers":

top_properties[key] = int(top_properties[key])

if key == "Phase":

top_properties[key] = int(top_properties[key])

else:

v = []

for item in page_inst.properties_page1[key]:

v = np.append(v, int(item.get()))

top_properties.update({key : v})

for key in page_inst.properties_page2:

if key != "Depth":

bot_properties.update({key : page_inst.properties_page2[key].get()})

if key in ["Displacement", "RadiusCurvature", "Radius"]:

try:

bot_properties[key] = float(bot_properties[key])*1e-3

except ValueError:

print("Error with key: ", key)

if key == "TransFreq":

bot_properties[key] = float(bot_properties[key])*1e3

if key == "Layers":

bot_properties[key] = int(bot_properties[key])

if key == "Phase":

bot_properties[key] = int(bot_properties[key])

else:

v = []

for item in page_inst.properties_page2[key]:

v = np.append(v, int(item.get()))

bot_properties.update({key : v})

return bot_properties, top_properties, medium_properties

class types:

def array(self, frame):

""" Method adds widgets relevant to an array of transducers """

labels, scales, entries = [], [], []

properties = {}
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var_checkbox = tk.BooleanVar()

checkbox = tk.Checkbutton(frame, text="Concave", variable=var_checkbox,

onvalue=True, offvalue=False)

checkbox.pack(pady=10)

var_checkbox.set(True)

properties.update({"Concave" : var_checkbox})

labels = np.append(labels, tk.Label(frame, text="Vertical Position (mm)"))

labels[0].pack(pady=0)

scales = np.append(scales, tk.Scale(frame, from_=0, to=250, tickinterval=50,

orient=tk.HORIZONTAL, variable = tk.DoubleVar(), length=250))

scales[0].pack(padx=10, pady=2)

# scales[0].set(68)

entries = np.append(entries, tk.Entry(frame, width = 8,

xscrollcommand = lambda x, y: scales[0].set(float(entries[0].get())) ))

entries[0].pack(padx=2, pady=2)

entries[0].place(x=215, y=77)

entries[0].insert(0, 64)

properties.update({"Displacement" : entries[0]})

labels = np.append(labels, tk.Label(frame, text="Radius of Curvature (mm)"))

labels[1].pack(pady=0)

scales = np.append(scales, tk.Scale(frame, from_=0, to=150, tickinterval=50,

orient=tk.HORIZONTAL, variable = tk.DoubleVar(), length=250))

scales[1].pack(padx=10, pady=2)

scales[1].set(64)

entries = np.append(entries, tk.Entry(frame, width = 8,

xscrollcommand = lambda x, y: scales[1].set(float(entries[1].get())) ))

entries[1].pack(padx=2, pady=2)

entries[1].place(x=215, y=163)

entries[1].insert(0, 64)

properties.update({"RadiusCurvature" : entries[1]})

labels = np.append(labels, tk.Label(frame, text="Socket Radius (mm)"))

labels[2].pack(pady=0)

scales = np.append(scales, tk.Scale(frame, from_=0, to=100, tickinterval=50,

orient=tk.HORIZONTAL, variable = tk.DoubleVar(), length=250))

scales[2].pack(padx=10, pady=2)

scales[2].set(100)

properties.update({"Radius" : scales[2]})
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labels = np.append(labels, tk.Label(frame, text="Phase shift (degrees)"))

labels[3].pack(pady=0)

scales = np.append(scales, tk.Scale(frame, from_=0, to=180, tickinterval=90,

orient=tk.HORIZONTAL, variable = tk.DoubleVar(), length=250))

scales[3].pack(padx=10, pady=2)

properties.update({"Phase" : scales[3]})

labels = np.append(labels, tk.Label(frame, text="Transducer frequency (kHz):"))

labels[4].pack(pady=0)

entries = np.append(entries, tk.Entry(frame, width = 8))

entries[2].pack(padx=10, pady=2)

entries[2].insert(0, 40.0)

properties.update({"TransFreq" : entries[2]})

labels = np.append(labels, tk.Label(frame, text="Number of Layers:"))

labels[5].pack(pady=0)

scales = np.append(scales, tk.Scale(frame, from_=1, to=8, tickinterval=1,

orient=tk.HORIZONTAL, variable = tk.IntVar(), length=250))

scales[4].pack(padx=10, pady=2)

scales[4].set(3)

properties.update({"Layers" : scales[4]})

labels = np.append(labels, tk.Label(frame,

text = "Number of transducer per layer:"))

labels[6].pack(pady=0)

v = [6, 12, 18, 24, 32, 36, 42, 48]

for i in range(0,8):

entries = np.append(entries, tk.Entry(frame, width=2))

entries[3+i].pack(side=tk.LEFT, padx=10, pady=10)

entries[3+i].insert(0,v[i])

properties.update({"Depth" : entries[3:]})

return properties, labels, scales, entries, checkbox

def transducer(self, frame):

""" Method adds widgets relevant to a transducer """

labels, scales, entries = [], [], []

properties = {}

var_checkbox = tk.BooleanVar()

checkbox = tk.Checkbutton(frame, text="Concave", variable=var_checkbox,
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onvalue=True, offvalue=False)

checkbox.pack(pady=10)

properties.update({"Concave" : var_checkbox})

labels = np.append(labels, tk.Label(frame, text="Vertical Position (mm)"))

labels[0].pack(pady=0)

scales = np.append(scales, tk.Scale(frame, from_=0, to=250, tickinterval=50,

orient=tk.HORIZONTAL, variable = tk.DoubleVar(), length=250))

scales[0].pack(padx=10, pady=2)

# scales[0].set(68)

entries = np.append(entries, tk.Entry(frame, width = 8,

xscrollcommand = lambda x, y: scales[0].set(float(entries[0].get())) ))

entries[0].pack(padx=2, pady=2)

entries[0].place(x=215, y=77)

entries[0].insert(0, 68.6)

properties.update({"Displacement" : entries[0]})

labels = np.append(labels, tk.Label(frame, text="Radius of Curvature (mm)"))

labels[1].pack(pady=0)

scales = np.append(scales, tk.Scale(frame, from_=0, to=150, tickinterval=50,

orient=tk.HORIZONTAL, variable = tk.DoubleVar(), length=250))

scales[1].pack(padx=10, pady=2)

scales[1].set(64)

entries = np.append(entries, tk.Entry(frame, width = 8,

xscrollcommand = lambda x, y: scales[1].set(float(entries[1].get())) ))

entries[1].pack(padx=2, pady=2)

entries[1].place(x=215, y=163)

entries[1].insert(0, 64)

properties.update({"RadiusCurvature" : entries[1]})

labels = np.append(labels, tk.Label(frame, text="Socket Radius (mm)"))

labels[2].pack(pady=0)

scales = np.append(scales, tk.Scale(frame, from_=0, to=100, tickinterval=50,

orient=tk.HORIZONTAL, variable = tk.DoubleVar(), length=250))

scales[2].pack(padx=10, pady=2)

scales[2].set(35)

properties.update({"Radius" : scales[2]})

labels = np.append(labels, tk.Label(frame, text="Phase shift (degrees)"))
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labels[3].pack(pady=0)

scales = np.append(scales, tk.Scale(frame, from_=0, to=180, tickinterval=90,

orient=tk.HORIZONTAL, variable = tk.IntVar(), length=250))

scales[3].pack(padx=10, pady=2)

properties.update({"Phase" : scales[3]})

labels = np.append(labels, tk.Label(frame, text="Transducer frequency (kHz):"))

labels[4].pack(pady=0)

entries = np.append(entries, tk.Entry(frame, width = 8))

entries[1].pack(padx=10, pady=2)

entries[1].insert(0,40.0)

properties.update({"TransFreq" : entries[1]})

return properties, labels, scales, entries, checkbox

def reflector(self, frame):

""" Method adds widgets relevant to a reflector """

labels, scales, entries = [], [], []

properties = {}

var_checkbox = tk.BooleanVar()

checkbox = tk.Checkbutton(frame, text="Concave", variable=var_checkbox,

onvalue=True, offvalue=False)

checkbox.pack(pady=10)

var_checkbox.set(True)

properties.update({"Concave" : var_checkbox})

labels = np.append(labels, tk.Label(frame, text="Vertical Position (mm)"))

labels[0].pack(pady=0)

scales = np.append(scales, tk.Scale(frame, from_=0, to=250, tickinterval=50,

orient=tk.HORIZONTAL, variable = tk.DoubleVar(), length=250))

scales[0].pack(padx=10, pady=2)

# scales[0].set(68)

entries = np.append(entries, tk.Entry(frame, width = 8,

xscrollcommand = lambda x, y: scales[0].set(float(entries[0].get())) ))

entries[0].pack(padx=2, pady=2)

entries[0].place(x=215, y=77)

entries[0].insert(0, 33)

properties.update({"Displacement" : entries[0]})

labels = np.append(labels, tk.Label(frame, text="Radius of Curvature (mm)"))
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labels[1].pack(pady=0)

scales = np.append(scales, tk.Scale(frame, from_=0, to=150, tickinterval=50,

orient=tk.HORIZONTAL, variable = tk.DoubleVar(), length=250))

scales[1].pack(padx=10, pady=2)

scales[1].set(64)

entries = np.append(entries, tk.Entry(frame, width = 8,

xscrollcommand = lambda x, y: scales[1].set(float(entries[1].get())) ))

entries[1].pack(padx=2, pady=2)

entries[1].place(x=215, y=163)

entries[1].insert(0, 64)

properties.update({"RadiusCurvature" : entries[1]})

labels = np.append(labels, tk.Label(frame, text="Socket Radius (mm)"))

labels[2].pack(pady=0)

scales = np.append(scales, tk.Scale(frame, from_=0, to=100, tickinterval=50,

orient=tk.HORIZONTAL, variable = tk.DoubleVar(), length=250))

scales[2].pack(padx=10, pady=2)

scales[2].set(30)

properties.update({"Radius" : scales[2]})

return properties, labels, scales, entries, checkbox

class Pager:

def __init__(self):

self.labels_page1 = []

self.labels_page2 = []

self.properties_page1 = []

self.properties_page2 = []

self.scales_page1 = []

self.scales_page2 = []

self.entries_page1 = []

self.entries_page2 = []

def toggle_page1(self, selection, frame):

type = types()

if selection.get() == "Transducer":

if len(self.labels_page1) > 0:

for i in range(len(self.labels_page1)):

self.labels_page1[i].destroy()

for i in range(len(self.scales_page1)):

self.scales_page1[i].destroy()

for i in range(len(self.entries_page1)):
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self.entries_page1[i].destroy()

self.checkbox_page1.destroy()

self.properties_page1, self.labels_page1, self.scales_page1,

self.entries_page1, self.checkbox_page1 = type.transducer(frame)

if selection.get() == "Array":

if len(self.labels_page1) > 0:

for i in range(len(self.labels_page1)):

self.labels_page1[i].destroy()

for i in range(len(self.scales_page1)):

self.scales_page1[i].destroy()

for i in range(len(self.entries_page1)):

self.entries_page1[i].destroy()

self.checkbox_page1.destroy()

self.properties_page1, self.labels_page1, self.scales_page1,

self.entries_page1, self.checkbox_page1 = type.array(frame)

def toggle_page2(self, selection, frame):

type = types()

if selection.get() == "Reflector":

if len(self.labels_page2) > 0:

for i in range(len(self.labels_page2)):

self.labels_page2[i].destroy()

for i in range(len(self.scales_page2)):

self.scales_page2[i].destroy()

for i in range(len(self.entries_page2)):

self.entries_page2[i].destroy()

self.checkbox_page2.destroy()

self.properties_page2, self.labels_page2, self.scales_page2,

self.entries_page2, self.checkbox_page2 = type.reflector(frame)

if selection.get() == "Array":

if len(self.labels_page2) > 0:

for i in range(len(self.labels_page2)):

self.labels_page2[i].destroy()

for i in range(len(self.scales_page2)):

self.scales_page2[i].destroy()

for i in range(len(self.entries_page2)):

self.entries_page2[i].destroy()

self.checkbox_page2.destroy()

self.properties_page2, self.labels_page2, self.scales_page2,

self.entries_page2, self.checkbox_page2 = type.array(frame)
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def render(self, masterframe_inst):

if masterframe_inst.top_selection.get() != "Select Type" or masterframe_inst.bot_selection.get() != "Select Type":

bot_properties, top_properties,

medium_properties = definedicts(self, masterframe_inst)

Ux, Uy, Uz, Vx, Vy, Vz = CreateGeometry(top_properties, bot_properties)

fig = plt.figure()

ax = Axes3D(fig)

ax.scatter3D(Vx, Vy, Vz, marker=’.’)

ax.scatter3D(Ux, Uy, Uz, marker=’.’)

ax.set_xlim([-0.05,0.05])

ax.set_ylim([-0.05,0.05])

ax.set_zlim([-0.065,0.065])

plt.show()

else:

print("Please define system geometry")

def compute_potential(self, masterframe_inst):

top_selection = masterframe_inst.top_selection

bot_selection = masterframe_inst.bot_selection

if top_selection.get() != "Select Type" or bot_selection.get() != "Select Type":

bot_properties, top_properties,

medium_properties = definedicts(self, masterframe_inst)

Ux, Uy, Uz, Vx, Vy, Vz = CreateGeometry(top_properties, bot_properties)

start = time.time()

acoustic_radiation_pressure, relative_potential, pressure, x_span, z_span = MatrixMethod(medium_properties,top_properties,bot_properties)

end = time.time()

diff = end - start

print("Total time elapsed was %.4f" % diff, "seconds")

x = len(x_span)

z = len(z_span)

xmax=np.max(x_span)*1e3

xmin=np.min(x_span)*1e3

zmax=np.max(z_span)*1e3

zmin=np.min(z_span)*1e3

_relative_potential = np.real(relative_potential).reshape([z, x])
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X, Y = np.mgrid[zmin:zmax,xmin:xmax]

Z = _relative_potential

maxPotential = np.max(Z)

minPotential = np.min(Z)

colormap = masterframe_inst.colormap.get()

fig = plt.figure(figsize=(8, 6), dpi = 80, facecolor=’w’, edgecolor=’k’)

ax = fig.add_subplot(111, projection=’3d’)

ax.scatter(Vz*1e3, Vy*1e3, Vx*1e3, marker=’.’)

ax.scatter(Uz*1e3, Uy*1e3, Ux*1e3, marker=’.’)

ax.set_xlim([-50,50])

ax.set_ylim([-50,50])

ax.set_zlim([-50,50])

ax.view_init(azim=0,elev=90)

levels = np.linspace(minPotential,maxPotential,1000)

cset = ax.contourf(X, Y, Z, levels, cmap=colormap)

ax.clabel(cset, fontsize=9, inline=1)

ax.set_xlabel("z (mm)",fontsize=16, labelpad=16)

plt.xticks(rotation=45)

plt.title("Acoustic Radiation Pressure", fontsize=16)

plt.xticks(size=16)

plt.show()

else:

print("Please define system geometry")

def compute_acoustic_rad(self, masterframe_inst):

top_selection = masterframe_inst.top_selection

bot_selection = masterframe_inst.bot_selection

if top_selection.get() != "Select Type" or bot_selection.get() != "Select Type":

bot_properties, top_properties,

medium_properties = definedicts(self, masterframe_inst)

Ux, Uy, Uz, Vx, Vy, Vz = CreateGeometry(top_properties, bot_properties)

start = time.time()

_acoustic_radiation_pressure, relative_potential,

pressure, x_span, z_span = MatrixMethod(medium_properties,top_properties,bot_properties)

end = time.time()

diff = end - start

print("Total time elapsed was %.4f" % diff, "seconds")

x_len = len(x_span)
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z_len = len(z_span)

xmax=np.max(x_span)*1e3

xmin=np.min(x_span)*1e3

zmax=np.max(z_span)*1e3

zmin=np.min(z_span)*1e3

X, Y = np.mgrid[zmin:zmax,xmin:xmax]

Z = _acoustic_radiation_pressure

maxPotential = np.max(_acoustic_radiation_pressure)

minPotential = np.min(_acoustic_radiation_pressure)

colormap = masterframe_inst.colormap.get()

fig = plt.figure(figsize=(8, 6), dpi = 80, facecolor=’w’, edgecolor=’k’)

ax = fig.add_subplot(111, projection=’3d’)

ax.scatter(Vz*1e3, Vy*1e3, Vx*1e3, marker=’.’)

ax.scatter(Uz*1e3, Uy*1e3, Ux*1e3, marker=’.’)

ax.set_xlim([-50,50])

ax.set_ylim([-50,50])

ax.set_zlim([-50,50])

ax.view_init(azim=180,elev=90)

levels = np.linspace(minPotential,maxPotential,1000)

cset = ax.contourf(X, Y, Z, levels, cmap=colormap)

ax.clabel(cset, fontsize=9, inline=1)

ax.set_xlabel("z (mm)",fontsize=16, labelpad=16)

plt.xticks(rotation=45)

plt.title("Acoustic Radiation Pressure", fontsize=16)

plt.xticks(size=16)

middle_index = int(np.ceil(x_len/2))

profile = Z[:,middle_index]

fig = plt.figure(figsize=(8, 6), dpi = 80, facecolor=’w’, edgecolor=’k’)

plt.title("Radiation Pressure Profile", fontsize=16)

ax = plt.gca()

xPlot=np.linspace(zmin, zmax, z_len)

plt.plot(xPlot,profile)

ax.set_xticks(xPlot[::5])

ax.set_xlabel("z (mm)",fontsize=16, labelpad=5)

plt.xticks(rotation=45)
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np.savetxt(’profile.txt’, profile, delimiter=’,’)

np.savetxt(’xPlot.txt’, xPlot, delimiter=’,’)

plt.show()

else:

print("Please define system geometry")

def compute_pressure(self, masterframe_inst):

top_selection = masterframe_inst.top_selection

bot_selection = masterframe_inst.bot_selection

if top_selection.get() != "Select Type" or bot_selection.get() != "Select Type":

bot_properties, top_properties,

medium_properties = definedicts(self, masterframe_inst)

Ux, Uy, Uz, Vx, Vy, Vz = CreateGeometry(top_properties, bot_properties)

start = time.time()

acoustic_radiation_pressure, relative_potential,

pressure, x_span, z_span=

MatrixMethod(medium_properties,top_properties,bot_properties)

end = time.time()

diff = end - start

print("Total time elapsed was %.4f" % diff, "seconds")

x = len(x_span)

z = len(z_span)

xmax=np.max(x_span)*1e3

xmin=np.min(x_span)*1e3

zmax=np.max(z_span)*1e3

zmin=np.min(z_span)*1e3

_pressure = np.real(pressure).reshape([z, x])

maxPressure = np.max(_pressure)

minPressure = np.min(_pressure)

X, Y = np.mgrid[zmin:zmax,xmin:xmax]

Z = _pressure

maxPotential = np.max(Z)

minPotential = np.min(Z)

colormap = masterframe_inst.colormap.get()

fig = plt.figure(figsize=(8, 6), dpi = 80, facecolor=’w’, edgecolor=’k’)
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ax = fig.add_subplot(111, projection=’3d’)

ax.scatter(Vz*1e3, Vy*1e3, Vx*1e3, marker=’.’)

ax.scatter(Uz*1e3, Uy*1e3, Ux*1e3, marker=’.’)

ax.set_xlim([-50,50])

ax.set_ylim([-50,50])

ax.set_zlim([-50,50])

ax.view_init(azim=0,elev=90)

levels = np.linspace(minPotential,maxPotential,1000)

cset = ax.contourf(X, Y, Z, levels, cmap=colormap)

ax.clabel(cset, fontsize=9, inline=1)

ax.set_xlabel("z (mm)",fontsize=16, labelpad=16)

plt.xticks(rotation=45)

plt.title("Acoustic Radiation Pressure", fontsize=16)

plt.xticks(size=16)

plt.show()

else:

print("Please define system geometry")

class masterframe(tk.Tk):

def __init__(self, *args, **kwargs):

tk.Tk.__init__(self, *args, **kwargs)

self.frames = {}

self.drops = {}

self.btns = {}

self.drop_selections = {}

def setouterproperties(self):

self.geometry("750x850")

self.iconbitmap(".\icon.ico")

self.title("Simulation Platform for Acoustic Levitation Traps (SALT)")

def placemainwidgets(self):

container = tk.Frame(self)

container.pack(side="top", fill="both", expand=True)

container.grid_rowconfigure(0, weight=1)

container.grid_columnconfigure(0, weight=1)

pager = Pager()

self.top_selection = tk.StringVar()

self.top_selection.set("Select Type")

self.frames[0] = tk.LabelFrame(self, text="Top component", padx=10, pady=10)

self.frames[0].pack(padx=10, pady=10)

self.frames[0].place(x=20, y=0)
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self.drops[0] = tk.OptionMenu(self.frames[0], self.top_selection,

"Array", "Transducer",

command=lambda x:pager.toggle_page1(self.top_selection, self.frames[0]))

self.drops[0].pack()

self.bot_selection = tk.StringVar()

self.bot_selection.set("Select Type")

self.frames[1] = tk.LabelFrame(self, text="Bottom components", padx=10, pady=10)

self.frames[1].pack(padx=10, pady=10)

self.frames[1].place(x=420, y=0)

self.drops[1] = tk.OptionMenu(self.frames[1], self.bot_selection,

"Array", "Reflector", command=lambda x:pager.toggle_page2(

self.bot_selection, self.frames[1]))

self.drops[1].pack()

self.frames[2] = tk.LabelFrame(self, text="Medium Properties")

self.frames[2].pack(padx=5,pady=5,anchor=tk.CENTER)

sub_frame = tk.LabelFrame(self.frames[2], text="Speed of sound (m/s)")

self.medium_c = tk.Entry(sub_frame, width=8,justify=tk.CENTER)

self.medium_c.insert(0,343)

self.medium_c.pack(padx=5,pady=5,side=tk.BOTTOM)

sub_frame.pack(side=tk.LEFT)

sub_frame2 = tk.LabelFrame(self.frames[2], text="Zero-density (kg/m^3)")

self.medium_density = tk.Entry(sub_frame2, width=8, justify=tk.CENTER)

self.medium_density.insert(0,1.2)

self.medium_density.pack(padx=5,pady=5,side=tk.BOTTOM)

sub_frame2.pack(side=tk.RIGHT)

self.frames[3] = tk.LabelFrame(self, text="Options", padx=10, pady=10)

self.frames[3].pack(padx=10,pady=10,side=tk.BOTTOM)

self.btns[0] = tk.Button(self.frames[3], text="Display Geometry",

command=lambda:pager.render(self))

self.btns[0].pack(pady=10, padx =5, side=tk.LEFT)

self.btns[1] = tk.Button(self.frames[3], text="Run Simulation",

command=lambda:pager.compute_acoustic_rad(self))

self.btns[1].pack(pady=10, padx = 5, side=tk.LEFT)

self.colormap = tk.StringVar()

self.colormap.set("hot")

self.drops[3] = tk.OptionMenu(self.frames[3], self.colormap,
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"hot", "hsv", "jet", "winter", "bone")

self.drops[3].pack(pady=10, padx = 5, side=tk.BOTTOM)

B The matrix method

B.1 matrices.py

This module contains methods which computes the different matrices involved
in evaluating the matrix method

import numpy as np

def DistanceMatrices(Vx, Vy, Vz, Ux, Uy, Uz, Mx, My, Mz):

"""Function computes the distance between measurement plane and components"""

nT = len(Vx)

nR = len(Ux)

nM = len(Mx)

Ax = np.repeat(Vx,nM,0).reshape(nT,nM).T

Bx = np.repeat(Mx.reshape(nM,1),nT,axis=1)

Ay = np.repeat(Vy,nM,0).reshape(nT,nM).T

By = np.repeat(My.reshape(nM,1),nT,axis=1)

Az = np.repeat(Vz,nM,0).reshape(nT,nM).T

Bz = np.repeat(Mz.reshape(nM,1),nT,axis=1)

r_nm = np.sqrt((Bx-Ax)**2 + (By-Ay)**2 + (Bz-Az)**2)

Ax = np.repeat(Ux,nM,0).reshape(nR,nM).T

Bx = np.repeat(Mx.reshape(nM,1),nR,axis=1)

Ay = np.repeat(Uy,nM,0).reshape(nR,nM).T

By = np.repeat(My.reshape(nM,1),nR,axis=1)

Az = np.repeat(Uz,nM,0).reshape(nR,nM).T

Bz = np.repeat(Mz.reshape(nM,1),nR,axis=1)

r_im = np.sqrt((Bx-Ax)**2 + (By-Ay)**2 + (Bz-Az)**2)

Ax = np.repeat(Ux, nT, 1)

Bx = np.repeat(Vx.T, nR, 0)

Ay = np.repeat(Uy, nT, 1)

By = np.repeat(Vy.T, nR, 0)
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Az = np.repeat(Uz, nT, 1)

Bz = np.repeat(Vz.T, nR, 0)

r_in = np.sqrt((Bx-Ax)**2 + (By-Ay)**2 + (Bz-Az)**2)

r_ni = r_in.T

return r_nm, r_im, r_in, r_ni

def TransferMatrices(

mediumProperties, zPosProperties, zNegProperties, r_nm, r_im, r_in, r_ni):

""" Method for computing transfer matrices """

Sn = 1e-6

Si = 1e-6

c = mediumProperties["SpeedOfSound"]

f1 = zPosProperties["TransFreq"]

if "TransFreq" in zNegProperties:

f2 = zNegProperties["TransFreq"]

else:

f2 = 0

if f1 != 0:

wL1 = c/f1

kk1 = 2*np.pi/wL1

elif f1 == 0:

wL1 = 0

kk1 = 0

if f2 != 0:

wL2 = c/f2

kk2 = 2*np.pi/wL2

elif f2 == 0:

wL2 = 0

kk2 = 0

if zPosProperties["Type"] == "Array" and zNegProperties["Type"] == "Array":

T_TR = Sn*np.exp(-1j*kk1*r_ni - 1j*kk2*r_in)/(r_in)

T_RT = Si*np.exp(-1j*kk1*r_in - 1j*kk2*r_ni)/(r_ni)

T_RM = Sn*np.exp(-1j*kk1*r_im)/r_im

T_TM = Si*np.exp(-1j*kk2*r_nm)/r_nm

elif zPosProperties["Type"] == "Array" and zNegProperties["Type"] =="Reflector":

T_TR = Sn*np.exp(-1j*kk1*r_in)/(r_in)

T_RT = Si*np.exp(-1j*kk1*r_ni)/(r_ni)

T_RM = Sn*np.exp(-1j*kk1*r_im)/(r_im)

T_TM = Si*np.exp(-1j*kk1*r_nm)/(r_nm)
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elif zPosProperties["Type"] == "Transducer" and zNegProperties["Type"] =="Reflector":

T_TR = Sn*np.exp(-1j*kk1*r_in)/(r_in)

T_RT = Si*np.exp(-1j*kk1*r_ni)/(r_ni)

T_RM = Sn*np.exp(-1j*kk1*r_im)/(r_im)

T_TM = Si*np.exp(-1j*kk1*r_nm)/(r_nm)

return T_TR, T_RT, T_RM, T_TM

B.2 geometries.py

This module contains methods which generates the different components of an
acoustic levitation device.

import numpy as np

def CreateArray(properties):

""" Method for constructing an array of transducers """

transducer_radius = 4.5*1e-3

transducer_per_layer = properties["Depth"]

layers = properties["Layers"]

socket_radius = properties["Radius"]

r_c = properties["RadiusCurvature"]

h = properties["Displacement"]

s = properties["Orientation"]

tz0 = s*(h - r_c)

X, Y = np.mgrid[-socket_radius*1e3:socket_radius*1e3,

-socket_radius*1e3:socket_radius*1e3]

X = X*1e-3

Y = Y*1e-3

r = np.array([24, 46, 68, 90, 112, 135, 158, 180])*1e-3

Vx = []

Vy = []

for kk in range(layers):

n = int(transducer_per_layer[kk])

beta = np.linspace(2*np.pi/n, 2*np.pi, n)

for ii in range(n):

C = np.sqrt((X - 0.5*r[kk]*np.cos(beta[ii]))**2 +

(Y - 0.5*r[kk]*np.sin(beta[ii]))**2) <= transducer_radius

vec1 = X[C]

vec2 = Y[C]

Vx = np.append(Vx, vec1)
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Vy = np.append(Vy, vec2)

if properties["Concave"]:

Vz = tz0 + s*np.sqrt(r_c**2 - np.power(Vx,2) - np.power(Vy,2))

elif not properties["Concave"]:

Vz = s*h*np.ones([len(Vx),1])

Vx = Vx.reshape([len(Vx),1])

Vy = Vy.reshape([len(Vy),1])

Vz = Vz.reshape([len(Vz),1])

S = Vx + Vz + Vy

if np.isnan(S).any():

Vx = np.delete(Vx,np.argwhere(np.isnan(S)))

Vy = np.delete(Vy,np.argwhere(np.isnan(S)))

Vz = np.delete(Vz,np.argwhere(np.isnan(S)))

Vx = Vx.reshape([len(Vx),1])

Vy = Vy.reshape([len(Vy),1])

Vz = Vz.reshape([len(Vz),1])

return Vx, Vy, Vz

def CreateMedium(Vx,Vz,Ux,Uz):

"""Function generates points in a plane between

components where pressure will be calculated"""

xMax = np.max(Ux)+5e-4

xMin = -np.max(Ux)-5e-4

zMax = np.min(Vz)-5e-4

zMin = np.max(Uz)+5e-4

x_span = np.arange(xMin, xMax, 1e-3)

z_span = np.arange(zMin, zMax, 1e-3)

Mx, Mz = np.meshgrid(x_span, z_span, sparse=False)

sz = Mx.shape

My = np.zeros([sz[0],sz[1]])

szx = Mx.shape

Mx = Mx.reshape(szx[0]*szx[1],1)

szy = My.shape

My = My.reshape(szy[0]*szy[1],1)

szz = Mz.shape
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Mz = Mz.reshape(szz[0]*szz[1],1)

return Mx, My, Mz, x_span, z_span

def CreateReflector(properties):

""" Method for constructing a reflector """

R = properties["Radius"]*1e3

r_c = properties["RadiusCurvature"]

s = properties["Orientation"]

d = properties["Displacement"]

z0 = s*d

R_span = np.arange(-R*1e-3,R*1e-3,1e-3)

R_length = len(R_span)

X, Y = np.mgrid[-R:R, -R:R]

X = X*1e-3

Y = Y*1e-3

Z = np.zeros([R_length, R_length])

rows, cols = np.mgrid[0:R_length, 0:R_length]

C = np.sqrt((rows-R)**2 + (cols-R)**2)<R

Vx = X[C]

Vy = Y[C]

if properties["Concave"]:

if s == -1:

Vz = z0 - np.sqrt(r_c**2 - (Vx)**2 - (Vy)**2) + r_c

elif s == 1:

Vz = z0 + np.sqrt(r_c**2 - (Vx)**2 - (Vy)**2) - r_c

else:

Vz = 0

elif not properties["Concave"]:

if s == -1:

Vz = z0*np.ones([len(Vx),1])

elif s == 1:

Vz = z0*np.ones([len(Vx),1])

else:

Vz = 0

Vx = Vx.reshape([len(Vx),1])

Vy = Vy.reshape([len(Vy),1])

Vz = Vz.reshape([len(Vz),1])

S = Vx + Vz + Vy
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if np.isnan(S).any():

Vx = np.delete(Vx,np.argwhere(np.isnan(S)))

Vy = np.delete(Vy,np.argwhere(np.isnan(S)))

Vz = np.delete(Vz,np.argwhere(np.isnan(S)))

Vx = Vx.reshape([len(Vx),1])

Vy = Vy.reshape([len(Vy),1])

Vz = Vz.reshape([len(Vz),1])

return Vx, Vy, Vz

def CreateTransducer(properties):

""" Method for constructing a single transducer """

R = properties["Radius"]*1e3

r_c = properties["RadiusCurvature"]

s = properties["Orientation"]

d = properties["Displacement"]

z0 = s*d

R_span = np.arange(-R*1e-3,R*1e-3,1e-3)

R_length = len(R_span)

X, Y = np.mgrid[-R:R,-R:R]

X = X*1e-3

Y = Y*1e-3

Z = np.zeros([R_length, R_length])

rows, cols = np.mgrid[0:R_length, 0:R_length]

C = np.sqrt((rows-R)**2 + (cols-R)**2)<R

Vx = X[C]

Vy = Y[C]

if properties["Concave"]:

if s == -1:

Vz = z0 - np.sqrt(r_c**2 - (Vx)**2 - (Vy)**2) + r_c

elif s == 1:

Vz = z0 + np.sqrt(r_c**2 - (Vx)**2 - (Vy)**2) - r_c

else:

Vz = 0

elif not properties["Concave"]:

if s == -1:

Vz = z0*np.ones([len(Vx),1])

elif s == 1:

Vz = z0*np.ones([len(Vx),1])
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else:

Vz = 0

Vx = Vx.reshape([len(Vx),1])

Vy = Vy.reshape([len(Vy),1])

Vz = Vz.reshape([len(Vz),1])

S = Vx + Vz + Vy

if np.isnan(S).any():

Vx = np.delete(Vx,np.argwhere(np.isnan(S)))

Vy = np.delete(Vy,np.argwhere(np.isnan(S)))

Vz = np.delete(Vz,np.argwhere(np.isnan(S)))

Vx = Vx.reshape([len(Vx),1])

Vy = Vy.reshape([len(Vy),1])

Vz = Vz.reshape([len(Vz),1])

return Vx, Vy, Vz

B.3 computation.py

This module contains methods which carry out the algebra of the matrix method.

import numpy as np

def ComputePressure(mediumProperties,T_TR,T_RT,T_RM,T_TM,

zPosProperties,zNegProperties,nT,nR,nM):

""" Method computes pressure matrix in accordance with the matrix method """

t1 = zPosProperties["Phase"]

f1 = zPosProperties["TransFreq"]

if "Phase" in zNegProperties:

t2 = zNegProperties["Phase"]

else:

t2 = 0

if "TransFreq" in zNegProperties:

f2 = zNegProperties["TransFreq"]

else:

f2 = 0

d1 = 1e-6

d2 = 1e-6

rho = mediumProperties["Density"]
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c = mediumProperties["SpeedOfSound"]

t = 0

if f1 != 0:

wL1 = c/f1

omega1 = 2 * np.pi * f1

U1 = np.ones([nT, 1])*d1*np.exp(-1j*(omega1*t + np.pi*t1))

A1 = (1j/wL1)

C1 = omega1*rho*c/wL1

if f1 == 0:

wL1 = 0

omega1 = 0

U1 = np.zeros([nT, 1])

A1 = 0

C1 = 0

if f2 != 0:

wL2 = c/f2

omega2 = 2 * np.pi * f2

U2 = np.ones([nR, 1])*d2*np.exp(-1j*(omega2*t + np.pi*t2))

A2 = (-1j/wL2)

C2 = omega2*rho*c/wL2

if f2 == 0:

wL2 = 0

omega2 = 0

U2 = np.zeros([nR, 1])

A2 = 0

C2 = 0

if zPosProperties["Type"] == "Transducer" and zNegProperties["Type"] == "Reflector":

PT0 = (C1)*T_TM@U1;

PT1 = (C1)*(A1)*T_RM@T_TR@U1;

PT2 = (C1)*(A1**2)*T_TM@T_RT@T_TR@U1;

PT3 = (C1)*(A1**3)*T_RM@T_TR@T_RT@T_TR@U1;

PT4 = (C1)*(A1**4)*T_TM@T_RT@T_TR@T_RT@T_TR@U1;

PT5 = (C1)*(A1**5)*T_RM@T_TR@T_RT@T_TR@T_RT@T_TR@U1;

PT6 = (C1)*(A1**6)*T_TM@T_RT@T_TR@T_RT@T_TR@T_RT@T_TR@U1;

PT7 = (C1)*(A1**7)*T_RM@T_TR@T_RT@T_TR@T_RT@T_TR@T_RT@T_TR@U1;

PT8 = (C1)*(A1**8)*T_TM@T_RT@T_TR@T_RT@T_TR@T_RT@T_TR@T_RT@T_TR@U1;

PT9 = (C1)*(A1**9)*T_RM@T_TR@T_RT@T_TR@T_RT@T_TR@T_RT@T_TR@T_RT@T_TR@U1;

PT = PT0 + PT2 + PT4 + PT6 + PT8

PR = PT1 + PT3 + PT5 + PT7 + PT9

elif (zPosProperties["Type"] == "Array" and zNegProperties["Type"] == "Array") or

(zPosProperties["Type"] == "Transducer" and zNegProperties["Type"] == "Array"):

PT = (C1)*T_TM@U1

PR = (C2)*T_RM@U2
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elif zPosProperties["Type"] == "Array" and zNegProperties["Type"] == "Reflector":

PT = (C1)*T_TM@U1

PR = (C1)*(A1)*T_RM@T_TR@U1

P = PT + PR

return P

def ComputeRelativePotential(Ptotal, mediumProperties, zPosProperties, zNegProperties):

""" Method computes the relative acoustic potential """

c = mediumProperties["SpeedOfSound"]

rho = mediumProperties["Density"]

f = zPosProperties["TransFreq"]

w = c/f

p = np.real(Ptotal)

sz = Ptotal.shape

M = sz[0]*sz[1]

phi = -Ptotal/(1j*w*rho)

gradx, grady = np.gradient(phi,5e-4,5e-4)

gradP = np.sqrt(gradx**2 + grady**2)

T1 = (np.real(Ptotal*np.conj(Ptotal))/M)/(3*rho*c**2)

T2 = -0.5*rho*(np.real(np.multiply(gradP,np.conj(gradP)))/M)

potential = T1+T2

return potential

B.4 MatrixMethod.py

This module contains methods which call the methods in the modules presented
in the previous subsections in the right order to evaluate the matrix method for
the parameters defined by the input from the GUI.

import time, sys

import numpy as np

from geometries import CreateTransducer, CreateReflector, CreateArray, CreateMedium

from matrices import DistanceMatrices, TransferMatrices

from computation import ComputePressure, ComputeRelativePotential

def MatrixMethod(mediumProperties,zPosProperties,zNegProperties):

if zPosProperties["Type"] == "Array":

print("Creating array...")

start = time.time()

Vx, Vy, Vz = CreateArray(zPosProperties)

end = time.time()

diff1 = end - start

print("Create array took %.6f" % diff1, "seconds")
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elif zPosProperties["Type"] == "Transducer":

print("Creating Transducer...")

start = time.time()

Vx, Vy, Vz = CreateTransducer(zPosProperties)

end = time.time()

diff1 = end - start

print("Create transducer took %.6f" % diff1, "seconds")

else:

Vx = 0

Vy = 0

Vz = 0

if zNegProperties["Type"] == "Array":

print("Creating array...")

start = time.time()

Ux, Uy, Uz = CreateArray(zNegProperties)

end = time.time()

diff2 = end - start

print("Create array took %.6f" % diff2, "seconds")

elif zNegProperties["Type"] == "Reflector":

print("Creating reflector...")

start = time.time()

Ux, Uy, Uz = CreateReflector(zNegProperties)

end = time.time()

diff2 = end - start

print("Create reflector took %.6f" % diff2, "seconds")

else:

Ux = 0

Uy = 0

Uz = 0

print("Creating medium...")

start = time.time()

Mx, My, Mz, x_span, z_span = CreateMedium(Vx, Vz, Ux, Uz)

end = time.time()

diff3 = end - start

print("Creating medium took %.6f" % diff3, "seconds")

print("Computing distance matrices...")

start = time.time()

r_nm, r_im, r_in, r_ni = DistanceMatrices(Vx, Vy, Vz, Ux, Uy, Uz, Mx, My, Mz)

end = time.time()

diff4 = end - start

print("Computing distance matrices took %.6f" % diff4, "seconds")
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print("Computing transfer matrices...")

start = time.time()

T_TR, T_RT, T_RM, T_TM = TransferMatrices(mediumProperties, zPosProperties, zNegProperties,

r_nm, r_im, r_in, r_ni)

end = time.time()

diff5 = end - start

print("Computing transfer matrices took %.6f" % diff5, "seconds")

nT = len(Vx)

nR = len(Ux)

nM = len(Mx)

print("Computing pressure matrix...")

start = time.time()

pressure = ComputePressure(mediumProperties,T_TR,T_RT,T_RM,T_TM,

zPosProperties,zNegProperties,nT,nR,nM)

end = time.time()

diff6 = end - start

print("Computing pressure matrices took %.6f" % diff6, "seconds")

x = len(x_span)

z = len(z_span)

P_ = pressure.reshape([z, x])

print("Computing relative acoustic potential...")

start = time.time()

relative_potential = ComputeRelativePotential(P_, mediumProperties, zPosProperties,

zNegProperties)

end = time.time()

diff7 = end - start

print("Computing relative acoustic potential took %.6f" % diff7, "seconds")

c = mediumProperties["SpeedOfSound"]

rho = mediumProperties["Density"]

# acoustic_radiation_pressure = (np.real(pressure)**2/(4*rho*c**2)).reshape([z, x])

acoustic_radiation_pressure = (np.real(P_)**2)/(4*rho*c**2)

return acoustic_radiation_pressure, relative_potential, np.real(P_), x_span, z_span

def CreateGeometry(zPosProperties, zNegProperties):

if zPosProperties["Type"] == "Array":

Vx, Vy, Vz = CreateArray(zPosProperties)

elif zPosProperties["Type"] == "Transducer":

Vx, Vy, Vz = CreateTransducer(zPosProperties)

else:

Vx = 0
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Vy = 0

Vz = 0

if zNegProperties["Type"] == "Array":

Ux, Uy, Uz = CreateArray(zNegProperties)

elif zNegProperties["Type"] == "Reflector":

Ux, Uy, Uz = CreateReflector(zNegProperties)

else:

Ux = 0

Uy = 0

Uz = 0

return Ux, Uy, Uz, Vx, Vy, Vz
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