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Abstract –This paper presents the principles and application of a super-resolution (SR) technique,
based on a L1-Norm minimization procedure. In particular, the technique is applied to improve
low-resolution resolution spectra as obtained from the optogalvanic effect in Neon and Argon
discharges over the 413-423 nm wavelength range. By applying the super-resolution algorithm
to the experimental data, a surprising 70-fold reduction of the linewidth is achieved allowing to
resolve prior indistinguishable peaks. It is found that further improvements on the resolution
are limited by the signal to noise ratio of the original spectra. The importance of a suitable
mathematical representation of the experiment and the discussion on other applications of this
super-resolution technique in spectroscopy are also presented.

Introduction. – In atomic and molecular spec-
troscopy it is desirable to resolve relevant spectroscopic
features present is the spectra by achieving the high-
est possible resolution. Unfortunately, the light sources
and instruments employed in experiments induce limits
in the final resolution of the measurements. To tackle
this limitation experimentalist traditionally resort to line-
stabilized, high resolution light sources along with Doppler
free spectroscopy techniques [1] or supersonic sample cool-
ing [2]. These techniques present, however, the inconve-
nience of involving relatively elaborated experimental ar-
rangements. Here, we present a novel mathematical tech-
nique aimed at helping experimentalists to improve the
spectral resolution of their data. This technique, called
Super-Resolution, is based on the mathematical tools de-
veloped within the scope of Compressed Sensing (CS)
[3,4]. The basic idea behind CS is that, under the a priori

knowledge that a signal or an image has a sparse repre-
sentation (see below), this can be reconstructed from far
fewer data/measurements as compared to those required
by the well-known Shannon/Nyquist sampling theory [5].
Here, the term sparsity means that there exists a basis in
the space of functions (e.g. a Fourier basis or Wavelets)
where the signal can be represented by a small number of

elements. In spectroscopy, a spectrum of a single element
or molecule can be represented as a linear combination
of single peaks of a similar shape centered at their spe-
cific transition wavelength values. In this case, the spec-
trum can be represented by a small number of parameters,
namely the locations of the transitions, their correspond-
ing widths, and their amplitudes. These parameters con-
stitute the sparse representation in this case.
In a general context, Compressed Sensing can be regarded
as an optimal sampling and interpolation algorithm for
sparse signals in the appropriate base.

Along the ideas of CS, some new versions of algorith-
mic or computational Super-Resolution (SR) algorithms
have been developed recently. These SR algorithms have
been successfully applied to many practical cases, includ-
ing medical imaging [6], satellite imaging, and video ap-
plications (for instance sec. 1.2 in [7] and the references
within).

In the context of the present work, SR algorithms are
applied to the particular case of recovering high resolution
features such as peak centers, from experimental spectra.
We show here that this kind of mathematical problem can
be treated by the recently developed mathematical theory
of Super-Resolution by Candès and Fernandez-Granda [8,
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9].

The aim of this paper is to show that SR algorithms
can also be a valuable tool in spectroscopy by allowing
to resolve peaks that cannot be separated from the origi-
nal data due to instrumental limits in spectral resolution
[10, 11]. In particular, we show here that the SR algo-
rithm can dramatically improve the resolution of measure-
ments, in particular allowing a surprising effective 70-fold
reduction in the linewidth of the original spectral measure-
ments. This improvement allows to separate apart real
structures that are not resolved in the original experimen-
tal data. In particular, in order to test and quantitatively
show the power of the SR technique, we present here ex-
perimental optogalvanic spectra of well-known Neon and
Argon atomic transitions. Upon the application of the SR
technique we can quantify dramatic improvements in the
resolved features. The optogalvanic effect (OGE) consist
of a change in the total current of a plasma when interact-
ing with laser light. The change is resonant when the laser
wavelength corresponds to an atomic or molecular transi-
tion of the gas species present in the plasma [12]. Although
the specific example shown here is devoted to the OGE ef-
fect, we believe SR algorithms can be applied in other
spectroscopic areas, including photoionization, photoab-
sorption, Raman or others. To the best of our knowledge
this is the first application of super-resolution algorithms
based on compressed sensing ideas aimed at improving the
resolution of spectroscopic measurements.

Super-Resolution algorithms. – In any imaging
system, the resolution limit is measured by the shortest
separation between two features, before they mingle into
one. The limitations of the instrument used and, on a
more fundamental level, the diffraction limit set the con-
straints to the maximum experimentally achievable reso-
lution in any optical system. There are currently several
instances and many different approaches to SR in imaging,
and we invite the reader to revise the exciting applications
of optical super-resolution currently being developed(e.g.
[13] and references within). In an analogous manner as
in optics, in any type of optical spectroscopy, the spectral
resolution is limited by the linewidth of the light source
and quantified by the minimum separation in wavelength
required to clearly separate apart two different transitions.
This has been traditionally considered the ultimate limit
of resolution in spectroscopy. Since the applications of SR
techniques to spectroscopy are scarce and not widespread
in the experimental community, we will give a basic intro-
duction in the context of optogalvanic spectroscopy.

Let us denote by y a one dimensional acquired signal as
obtained from a source x through an optical or any other
measuring device. In our particular case y corresponds to
the optogalvanic signal as and x corresponds to the orig-
inal spectrum as produced by the physical interaction of
the laser with the plasma. Assume, as it happens in our
optogalvanic case, that the values of y and x both depend
on the wavelength λ. A mathematical model of such a pro-

cess can be described by the following convolution model

y(λ) =

∫
∞

0

G(λ− s)x(s)ds + w(λ) (1)

Here, G represents, mathematically, the effect of the mea-
surement equipment/process upon the original physical
data, s is an integration variable and w is a noise term
that can be deterministic or stochastic and such that

‖w‖L1 =

∫
∞

0

|w(λ)|dλ < ε, (2)

but otherwise arbitrary. Here, ‖w‖L1 denotes the contin-
uum version of the vector norm, colloquially known as the
taxicab norm. Notice that ε ≥ 0 is a constant measuring
the noise level of the acquired signal. In the reciprocal
space (1) becomes

ŷ(ν) =

{
Ĝ(ν)x̂(ν) + ŵ(k) for k ∈ [−νc, νc]
ŵ(ν) otherwise

(3)

where Ĝ denotes the Fourier transform of the function
G and ν = 1/λ is the usual definition of wavelength per
unit distance. In this mathematical representation the in-
strument G can be seen as a low pass filter that limits
the bandwidth of an otherwise ideal and spectrally nar-
row source signal. In (3) νc > 0 is the cutoff number of
wavelength per unit distance of such a filter. For the mo-
ment, and for simplicity in the exposition, we discard the
noise term of (2) by letting ε = 0.

Formally, the aim of the SR algorithms is to find an
estimate xest of the source x such that:

{
(i) Ĝ ∗ xest = Ĝ ∗ x on [−νc, νc]
(ii) x̂est is supported in [−νhi, νhi]

(4)

where νhi > νc and x̂est denotes the Fourier transform of
the estimate xest. In simpler terms, the aim of SR is to
use the frequency limited information as produced by the
instrument (or light source) to make an extrapolation (in
this case xest) to higher frequencies in reciprocal space.
This extrapolation would allow, upon an inverse Fourier
transformation, to obtain a far richer spectrum, i.e. the
“super-resolved” spectrum as compared to that obtained
originally from y, which corresponds to the measured spec-
trum. A quantitative measure of the improvement in our
signal can be defined in terms the super-resolution factor
SRF = νhi/νc. An alternative way to measure the effect
of the SR algorithm on the data is to define the percentage
improvement of the signal (PEIS) as (1− (SRF )−1)∗ 100.
It is well known that the problem given as in (4) is hope-
lessly ill posed, namely the solution xest may not exist or
may not be unique [14]. This means that, based on a trun-
cated Fourier transform, one may find a very large set of
extrapolations that faithfully represent the original data
within the interval [−νc, νc], but which are wildly differ-
ent outside this interval. This many solutions would not
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necessarily have any physical meaning even if they sat-
isfied (4). Remarkably, in the case where the source x is
composed of a “well separated” train of point–like sources,
problem (4) becomes tractable. This kind of sources can
be modeled by

x =
∑

j∈T

ajδλj
, (5)

where λj and aj are the locations (in the spectrum) and
intensities of the point sources, respectively, δτ is the Dirac
delta function1 and T is a given set of numeration indexes.
As mentioned in the introduction, the above model can

be used as a simple model for atomic or molecular transi-
tions. In these, their linewidths even when Doppler broad-
ened, are very narrow as compared to the spectral reso-
lution of the laser used in the experiment. We emphasize
again that the models and method in this paper will be
only useful to determine the locations and relative inten-
sities of the spectral lines. The present analysis is not
valid when the linewidth of the laser is small as compared
to the Doppler broadening of the transitions. For such a
case a more realistic modeling of the transition linewidths
on the source should be proposed, but that goes beyond
the scope of this work.
Next, we define the minimum separation of the point

sources as ∆ = mini,j∈T |λj−λi| where λi, λj denote again
their locations on the spectral line. The main result of the
SR theory states that, if the point sources are sufficiently
apart from each other, namely

∆ ≥ 2/νc, (6)

then there exist an efficient algorithm that recovers ex-
actly the original source. In other words, problem (4) has
a unique solution xest = x. This solution can be computed
by solving a convex minimization problem [9] that is, find-
ing the minimum of a convex function under constrains
(e.g. (7) below). Notice that there is no bound on νhi so in
principle, at least mathematically, the improvement on the
resolution may be infinite (namely, SRF = +∞), and the
location of the point sources can be determined with infi-
nite precision. As we will see latter, the presence of noise
imposes natural constrain on SRF , hence on the improve-
ment that can be obtained by the estimate xest. Before
stating the SR algorithm in detail, we need another ingre-
dient. In digital signal processing, as in any digital data
acquisition experiment, there is a finite size in the wave-
length step that is acquired, so sources and signals can be
regarded both as discrete finite vectors x = (a1, . . . , aN )
and y = (y1, . . . , yN ) measured at fixed grid of equally
spaced wavelengths λ.
In the case of continuous signals, the filter resolution is

defined by νc, that is, the width of the low-pass filter G
(see Figure 1) and it is related to the physical properties
of the experimental setting. In the experiments we also
have another loss of resolution due to the finite size of

1In mathematical rigor δτ is a Dirac measure.

sampling , i.e. the wavelength step. Notice that the latter
loss of resolution may change, for example, by reducing
the scanning step of the laser used in the experiment, but
this does not affect the resolution of the filter G. The aim
of SR algorithms is to reverse (or deconvolve) the effect of
the filter G on the source signal. Once the sampling step
size is smaller that certain threshold its effect on the SR
algorithms is negligible. This important difference, com-
bined with the unboundedness of the νhi and the separated
point source nature of the source signal explain why, in our
case, the improvement in resolution seems to be indepen-
dent of the finite sampling step size (see Figure 1). Now,

Fig. 1: Convolution of a train of point sources with a Gaus-
sian filter. The graphs on the right show:(Top) the results for
a continuous signal. (Bottom) the same signal after sampling
on a discrete grid. The basic features of the continuous sig-
nal can be recovered by an interpolation of the discrete one.
Hence, regarding the filter G, both graphs have the same cutoff
wavelength per unit distance νc.

again discarding noise, (1) becomes

yℓ =

N∑

j=1

G (λℓ − sj) aj , |λℓ| ≤ ν−1

c

for ℓ ∈ {0, . . . , N − 1},

or in more compact notation we write y = Gx where G
is an N × N matrix whose entries are given by Gℓj =
G (λℓ − sj). Hence, the SR problem (4) is reduced to
finding out the entries aj of the vector x. As proposed
in [9], to solve this problem it is enough to solve a convex
minimization program, namely

{
min
x̃

‖x̃‖L1

subject to Gx̃ = y
(7)

where ‖x̃‖L1 =
∑N

j=1
|aj |. The main result in [9] is that

the problem (7) has a unique solution xest that coincides
with the original x over the original range of inverse space,
but has a much larger span of harmonics beyond the in-
terval defined by the original cutoff wave number. This
is a surprising result and problem (7) is at the core of
the mathematical theory of super resolution. The main
feature of the L1-minimization, that “explains why” the
solution of (7) recovers the original signal, is that, it is an
efficient way to detect the support of the sparsest signals
(that is, signals that contain the least number of peaks)
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among all possible signals that produce the same observ-
able data y via the filter G. The role of the minimum
separation condition (6) is to make the solution of prob-
lem (7) unique and hence it must coincide with the origi-
nal source signal. Other important feature of problem (7)
is that it is a convex optimization problem under linear
constrains. This is a standard problem in non-linear pro-
gramming that even some spreadsheet software is able to
solve. In the presence of noise, that is for ε > 0 above,
the reconstruction given by (7) will not be exact [8], but
should instead satisfy

‖G(xest − x)‖L1 ≤ C0(SRF )2ε, (8)

where C0 > 0 is a positive constant. Therefore, the qual-
ity (or accuracy) of the estimated vector xset degrades
linearly with the noise and quadratically with the SRF.
Hence, there is a tradeoff between the noise level and the
SRF factor that limits the performance of the SR algo-
rithm. Is important to emphasize that, in order to apply
this algorithm successfully, a good control on the signal to
noise ratio is required in the original experimental data.

Filter model in optogalvanic spectroscopy. –

The last ingredient that is needed to apply the above
SR algorithm (7) to any experimental setting is to iden-
tify filter G and estimate its parameters. In general, the
shape of the optogalvanic peaks does not present a unique
profile condition and it may depend, for example, on the
current of the plasma [15]. Nevertheless, it is known that
the upper part of each peak can be well approximated at
first order by a Gaussian profile, and the lower part by
a Lorentzian. Since the aim of our algorithm is to iden-
tify the position and relative strength of the peaks and
these positions are well correlated with the upper part of
the peaks, we propose, in a heuristic way, the following
Gaussian form of the filter

Ĝ(ν) = B exp(−
ν2

a2
), for |ν| < νc (9)

where B is a normalization constant and a corresponds to
the effective broadening of the experimental peaks. Note
that it is convenient to write G in terms of its Fourier
transform since in this case it is a diagonal operator (re-
calling that the Fourier transform of a Gaussian is also a
Gaussian). What remains is simply to estimate the param-
eters νc, a and B that more closely models the experiment.
Notice that νc is the cut-off frequency and it is an impor-
tant limit since it represents the frequency (in Fourier or
reciprocal space) where the noise to signal ratio is small
enough to consider the signal consisting of pure noise.
In order to estimate the filter, we propose here a simple

but effective approach: given the above functional form
for the filter, we proceeded to obtain the filter parame-
ters using high resolution experimental data xknow from a
gas species. In our present case these correspond to Neon
optical transitions as reported by NIST [16] and its corre-
sponding spectrum as measured by our apparatus yfit. The

procedure to obtain the parameters of the filter is started
by, first, computing the Fourier transform of the measured
spectrum and the NIST reference spectrum. Second, since
in Fourier space the action of filter is multiplicative (see
(3)), the filter can be thus be obtained as the quotient of
the above quantities. That is

Ĝ(ν) = ŷfit(ν)/x̂know(ν) for ν ∈ [−νc, νc], (10)

where for ν /∈ [−νc, νc] the fraction ŷfit(ν)/x̂know(ν) only
contains the wave number information coming from the
noise term (see figure 2). To explain our fitting method
to the experimental data of Neon, in figure 2 we show a
plot of the discrete cosine transform2 of log |ŷfit/x̂know| =

log Ĝ for some of our Neon and NIST data on a particular
interval. First, starting at ν = 0 there is a noisy signal
mounted on a smooth decreasing curve that after certain
point νc can be regarded as pure noise. The point where
the signal behavior changes becomes the estimated cutoff
frequency νc.

Fig. 2: Plot of wavenumber per unit distance ν vs.
log |ŷfit/x̂know|. At the cut off wavenumber νc the graph shows
a change of behavior.

Once νc is known, the parameters a and B can be deter-
mine by a linear regression procedure for log(|ŷfit/x̂know|)
on the interval (0, νc). To have a more robust estima-
tion, the determination of νc and the linear regression is
repeated on intervals around different peaks and then the
reported values are given by their average value. This ap-
proach to estimate the parameters is effective and good
enough for the current application.

Experiment. – The experimental arrangement em-
ployed is shown in figure 3. It consists of three main parts:
the light source, the plasma discharge, and the detection
part. The electrodes, of planar geometry and with a sep-
aration gap of 7 mm, were made of copper. The Argon
and Neon used was of research grade purity. The vacuum

2Fourier and cosine transforms are equivalent in this case, here

we use the latter because it has the advantage of letting us to work

with real signals only.
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system consists of a Pfeiffer turbomolecular pump of 100
l/s that allows us to reach a base pressure of 10−5 Torr.
Pressure was measured by using a MKS baratron capac-
itive manometer type 626 and a Varian Eyesys mini-BA
vacuum gauge. We use a DC power supply HP6516 with
a voltage range of (0− 3000) Volts.
To excite the plasma we used an Ekspla Optical Paramet-
ric Oscillator (OPO) pumped by a Nd:YAG pulsed laser.
For the optogalvanic effect the voltage variations were
recorded using a ballast resistor of 3.9 KOhm. This volt-
age was amplified by a SR280 StanfordResearch Systems
boxcar averager. The power of the laser was measured
using an Ophir pyroelectric sensor PE10−S. These mea-
surements were send to a National Instruments USB−6009
Data Acquisition System (DAQ) and collected in a com-
puter using a LabVIEW automatization program. The

Nd:YAG OPO Laser
PE

HV

L

 Boxcar

Averager

Computer

DAQ

R

Discharge

LT

Fig. 3: Experimental arrangement. L:PlanoConvex lens f= 150
mm, PE: Pyroelectric sensor, R: ballast resistor 3.9 kOhms,
HV: DC power supply, LT: laser trigger.

laser resolution in the visible range reported here was 0.1
nm and its wavelength was varied in an automated way.
For each wavelength we collected several voltage values
and the values reported here are an average of at least 20
of these.

Results and discussion. – The Argon discharge in
figure 4 was obtained with a step wavelength variation of
0.1 nm. For the Neon discharge in figure 5 the wavelength

420 430 440 450
-4,4

-4,2

-4,0

-3,8

-3,6
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lta

ge
 (V
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ts

)

Wavelenght (nm)

Fig. 4: Measured Argon optogalvanic spectra at 3.9 Torr and
a current of 1.21 mA.

variation was in steps of 0.1 nm for the (600 − 650)nm
wavelength range and 0.2 nm for the (650−700)nm range.
For the filter parameters estimation we used four differ-
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Fig. 5: Measured Neon optogalvanic spectra with a pressure of
3.3 Torr and a current of 4.08 mA.

ent wavelengths ranges (windows) for the Neon experi-
ment and one for the Argon experiment. The latter was
used to double check that the main features of the filter
were the same for both experiments. The high resolution
experimental signal data used to calculate the filter pa-
rameters corresponded to the transitions reported in the
NIST atomic database for Neon [16]. This was used as
the know source signal xknow. The windows were cho-
sen in such a way that some clearly defined peaks of the
source signal xknow were contained inside a single peak in
the measured signal yfit. In table 1 we show the Neon
windows considered, the values of the cutoff wavenumber
νc and filter parameter a. The mean values for this exper-
iment are a = 6.87× 108cm−1 and νc = 14.37× 108cm−1.
The considered window for Argon was 414.5 − 417.5 nm
and the obtained parameters are a = 6.70× 108cm−1 and
νc = 14.7× 108cm−1, these values are within 2% and 5%
correspondence with the Neon mean values, respectively.
As explained in the previous sections, the resolution of the
estimated signal xest is given by νhi = 1/λhi, and the SR
algorithm does not prescribe any bound on νhi (or on the
smallness of λhi), therefore in principle it can be chosen
at will. In practice, this is not possible due to the signal
to noise ratio and the numerical stability in the solution
of (7). The latter problem is a consequence of the fact
that, for small λhi it is necessary to solve a large linear
system of ∼ 1/λhi equations that may be numerical ill con-
ditioned. The numerical scheme of the SR algorithm and
the adjustment of the filter parameters was performed as
follows: First, all signals, xknow, yfit and y, were linearly
interpolated on to a fix grid equally spaced of step size
λhi = 10−4 nm, which yields νhi = 1012 cm−1. Second, the
filter parameters were estimated by the above procedure,
and third, the minimum in problem (7) was found to ob-
tain xest. There is a final consideration to be made regard-
ing a source of error that originates from the experimental
offset in the measured intensity of the peaks produced by
the boxcar amplifier. This error is assimilated in the model
of the noise term w in (1) as an additive constant. By ad-
justing this offset, by means of another additive constant,
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Window(nm) νc × 108 (cm−1) a ×108 (cm−1)
608.5− 610.5 14.0 6.85
620.0− 623.0 14.7 6.98
625.0− 628.0 14.3 6.80
632.0− 634.5 14.5 6.82

Table 1: Filter parameter estimation with Neon data.

the performance of the SR algorithm improves dramati-
cally. In the presented experiments this value was set so
as to lower the signal by 1.6 % with respect to the highest
peak (near 420 nm). The numerical implementation was
based in the useful Matlab code from [17]. In the figure

415 416 417 418 419 420 421 422 423 424

 

Wavelength (nm)

 Superresolution results
 Experimental data

419,6 419,8 420,0 420,2

 

Wavelength (nm)

Fig. 6: Experimental Argon optogalvanic spectra and Argon
SR results. The spectral resolution improvement allows to re-
solve some prior experimental indistinguishable peaks.

6 we show a comparison between the Argon optogalvanic
spectra before and after applying the SR algorithm. The
peaks in the region 419 − 421 nm previously unresolved
are now distinguishable due to the SR algorithm. The
physical reality of these separated peaks was verified by
comparing the data obtained by the SR algorithm applied
to our Ar data with that reported in NIST atomic line data
reference. The difference in position between these values
was a remarkable 0.01 nm. The improvement in resolu-
tion, in terms of the cutoff frequencies, was extended from
νc = 14.37× 108 cm−1 to νhi = 1012 cm−1. This is about
3 orders of magnitude or in terms of the super-resolution
factor SRF about 70 times. In practical purposes this
implies that the linewidth of a peak is reduced about 70
times as compared to the original measured peaks. This
means, equivalently, a percentage improvement of the sig-
nal (PEIS) of 98.5%. As a final remark, is important to
emphasize that the reason why the peaks in the region
419− 421 nm can be well resolved by the SR algorithm is
because the distance ∆ between these peaks is about 0.3
nm and 2/νc = 1.4 × 10−2 nm. Therefore, the minimal
separation condition (6) holds and the hypothesis of the
SR theorem [9] are satisfied. Hence, up to the noise to
signal ratio, the obtained estimate of the peak locations
of the source signal is exact.

We showed in this work that dramatic results in resolution
improvement for optogalvanic spectroscopy data in Argon
using a Super-resolution algorithm. The results show an
improvement in the resolution of the experimentally ob-
tained data by a factor of 70. The physical reality of the
unraveled structure was checked by comparing the super-
resolved spectrum with atomic transitions reported in the
NIST data base. We point out that the identification of
the appropriate filter G that models accurately the ex-
periment and the estimation of its parameters are two of
the main issues to be address in order to correctly use of
SR algorithms. We believe that SR algorithm could have
a major impact on the analysis of experimental spectro-
scopic data. This is because it makes possible to obtaining
high resolution spectral features without resorting to ex-
pensive and sophisticated experimental infrastructure.
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