Artículos en revistas con arbitraje indizadas (Web of Science, JCR, SCOPUS)
1.- COVID anomaly in the correlation analysis of S&P 500 market states
Liga a la publicación
2.- Two-species k-body embedded Gaussian unitary ensembles: q-normal form of the eigenvalue density
Liga a la publicación
3.- Non-linear correlation analysis in financial markets using hierarchical clustering
Liga a la publicación
4.- Statistical nuclear spectroscopy with q-normal and bivariate q-normal distributions and q-hermite polynomials
Liga a la publicación
5.- Non-linear correlation analysis in financial markets using hierarchical clustering
Liga a la publicación
6.- Wavefunction structure in quantum many-fermion systems with k-body interactions: conditional q-normal form of strength functions
Liga a la publicación
7.- Distribution of higher order spacing ratios in one- plus two-body random matrix ensembles with spin symmetry
Liga a la publicación
8.- Bivariate q-normal distribution for transition matrix elements in quantum many-body systems
Liga a la publicación
9.- Manan Vyas and V. K. B. Kota
Quenched many-body quantum dynamics with k-body interactions using q-Hermite polynomials
Journal of Statistical Mechanics: Theory and Experiment
2019
103103
2019
Liga a la publicación
10.- S. K. Haldar, N. D. Chavda,
Manan Vyas and V. K. B. Kota, J. Stat.
Fidelity decay and entropy production in many-particle sysmtems after random interaction quench. Mech.: Theory and Experiment 2016, 043101/1-23 (2016).
Liga a la publicación
11.-
Harinder Pal,
Manan Vyas and Steven Tomsovic.
Generalized Gaussian wave packet dynamics: Integrable and chaotic systems. Physical Review E 93, 012213/1-15 (2016); arXiv:1510.08051
12.-
Adrian Ortega, Manan Vyas and Luis Benet.
Quantum efficiencies in finite disordered networks connected by many-body interactions. Ann. Phys. (Berlin) 527, 748--756 (2015).
Liga a la publicación
13.- V.K.B. Kota and
Manan Vyas.
Random matrix theory for transition strength densities in finite quantum systems: Results from embedded unitary ensembles. Ann. Phys. (N.Y.) 359, 252--289 (2015)
Liga a la publicación