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Elements of Euclidean optics

Kurt Bernardo Wolf

ABSTRACT Euclidean optics are models of the manifold of rays and
wavefronts in terms of coset spaces of the Euclidean group. One realization
of this construction is the geometric model of Hamilton’s optical phase
space. Helmholtz optics is a second Euclidean model examined here. A
wavization procedure is given to map the former one on the latter. Non-
euclidean transformations of the manifold of rays are provided by Lorentz
boosts that produce a global “4x” comatic aberration.

6.1 Introduction

A plane is said to be similarly inclined to a plane as another is to another
when the said angles of the inclinations are equal to one another. ..
Equal and similar solid figures are those contained by similar planes

equal in multitude and in magnitude.
Euclid, Elements
Book XI, Definitions 7 and 9

This monograph structures the results of several previous articles, some
written more than a decade ago, in the light of discussions held during and
after the second Lie Optics workshop. The considerable advances in the use
of Lie algebraic methods for magnetic and light optical design suggest their
application to other closely related areas, such as polarization and wave
optics, and invites incorporating more distant fields such as signal analysis
and tomography, in the directions of polychromatic and far-metaxial optics.

The motivation of the present work may be focused in two questions
that can be posed, in the context of their current solution, in the following
terms:

1. How far off the optical axis can we go? Paraxial optics with its
linear transformations of phase space is, of course, the starting point.
The art of aberration expansions into the metaxial regime has been
refined by their classification, computation, and understanding the
way they compound in propagating through a system. The validity
of such expansions must stop somewhere, however; probably much
before 90°, and certainly before 180°.
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9. How do we wavize geometric optics? Again, the paraxial regime may
be said to be domestic territory: the symplectic group of canonical
integral transforms provides a well-established bridge to transit from
geometric to wave optics, as it does between classical and quantum
mechanics in systems with quadratic potentials. On the wave side,
it couples naturally with Fourier and coherent-state optics. Hilbert
spaces, Wigner distribution functions, and measurement theories, of-
ten translated from quantum mechanics, are available. The metaxial
regime does not seem to have such a reliable wavization procedure.
In particular, we would like to be able to design an optical system
with the tools of Lie geometric optics, and thereby know its behavior
as we turn on the wave nature of light. Lastly, there is a gulf in the
global regime, 1.e., “41” optics that extends over the full sphere of ray
directions.

From the experience of quantum mechanics, it is evident that both ques-
tions are related. There, global properties of the potential (over the full
real line or 3-space) are most important, and the ‘far-away’ regions can be
seldom ignored.! Yet, the most striking difference between (nonrelativistic
point-particle) mechanics and (geometric) optics is in their phase spaces:
the former is flat and unbounded both in position and in momentum, while
in the latter momentum ranges over a sphere projected flat on two disks
in its equatorial plane. The Heisenberg-Weyl group of phase space motions
underlies the symplectic geometry of the former, but not of the latter,
unless we replace optics by its paraxial regime. It is our contention that
the basic group of global optics is the three-dimensional Euclidean group
£5 = I1SO(3) of rigid motions of three-space.

In Section 2 we examine the structure of the manifold of rays of geo-
metric optics, a vector bundle p, introducing the local and standard screen
coordinates, and the Descartes sphere of ray directions. Section 3 reviews
the composition rule for the Euclidean group of Lie operators that take a
standard frame to any position and orientation. Thus we have a Euclidean
theory of frames. The infinitesimal generators yield the Euclidean algebra
on that group manifold given in Section 4.

When the objects that we regard as elementary have a symmelry group
H C &, a corresponding model of optics follows. For example, in geometric
optics rays are pictured as straight lines filling space, with a 7, symmetry
under translations along the line times R under rotations around it. Sec-
tions 5, 6, and 7 show that the manifold of rays g is the space of cosets
‘H\E3. The Euclidean group and algebra are realized on that space, and
shown to be canonical in the usual symplectic sense of Hamilton’s theory,
here derived from the conservation of the Haar measure. Indeed, also po-

10p the other hand, in quantum mechanics, kinetic energy is mostly of the
fixed standard form p*/2m.
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larization and signal optics may be identified with coset spaces, Ro\&3 and
71\ &3, respectively.

Our second main model of interest is wave optics. When the elementary
object is a plane, it defines wavefront optics.? This we introduce in Section 8
as the manifold £\ &3, and note that it can carry signalsin a train amenable
to Fourier analysis. In Section 9 we show that the Fourier decomposition is
irreducible under Euclidean transformations, each wavenumber component
satisfying a corresponding Helmholtz equation that is the Casimir invariant
of the algebra. Following the modus operandi of quantum mechanics, Sec-
tion 10 builds the Hilbert space of oscillatory solutions over the standard
screen whose inner product, uniquely invariant under Euclidean motion
and endowed with a non-local measure, was previously found with Stanly
Steinberg (Albuquerque). This, rather than £2(%?), seems to be the Hilbert
space appropriate for wavized optics because, as shown in Section 11, it in-
volves by necessity and on the same footing, both the wave function and its
normal derivative at the screen.® With these elements we propose a definite
“4m wavization” process that leads from geometric to wave optics on the
level of the Euclidean group.

Up to here, we deal only with a group theory of rigid motions. Section
12 introduces the Lorentz transformation responsible for stellar aberration.
Although this phenomenon has been known for centuries, its implications
for Hamiltonian optics in image formation seem to have been overlooked.
Sections 13 and 14 contain the results of two recent papers with Natig
Atakishiyev (Baku) and Wolfgang Lassner (Leipzig) that predict a global
comatic aberration of geometric and wave images on boosted screens, stem-
ming from the nonlinear action of the Lorentz group on the corresponding
coset space models. The proposed wavization process is applied to these
transformations, and seen to hold.

Field theories on groups in empty space have been abundant —and some
have been very important; yet optics visibly needs the dynamics of inho-
mogeneous media. We have felt obliged thus to add some preliminary re-
flections on refraction among the concluding remarks in Section 15. This
process appears as a coupling between representations of the Euclidean
group through the conservation law due to Willebrord Snell (experimen-
tally) and René Descartes (theoretically). We are inspired by the Cartesian
M¢éthode in regarding Optics as Nature observing Symmetry, because in
that way it pleases the mind.

2When only 7; symmetry is present, it describes polarized polichromatic wave
optics.

®Quantum mechanics uses only the first one because the Schrddinger equation
has a first degree derivative only in the evolution variable.
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FIGURE 1. (a) Local screen parametrization of a bundle of parallel rays.
(b) Parametrization by a fixed reference screen.

6.2 The bundle of rays in geometric optics

We ought to give the whole of our attention to the most insignificant and

most easily mastered facts, and remain a long time in contemplation

of them until we are accustomed to behold the truth very clearly and
distinctly.

René Descartes, Rules for the Direction of the Mind

Rule IX

In geometric optics light rays are modeled as lines in 3-space oriented in
all directions. In a homogeneous medium the lines are straight, and usual
Euclidean geometry applies. We examine here this manifold g of oriented
lines to show its structure, and find good sets of coordinates.

With the tools of thought we can sort out all those lines that are oriented
in a chosen direction and identify them by a point 7 on a sphere §3. This
is a projection 7 : p > So. The inverse image 7~ !(7) of such a point is a
set of paralell rays that can be brought one onto the other by translations
within their perpendicular plane. The set of translations constitute a group
and a vector space 7. These properties of structure are those of a vector
bundle [1]. The manifold of light rays in geometric optics is thus a (non-
trivial) vector bundle p, with an Sy base space of ray directions, and a 75
local screen, the typical fiber of the bundle. The screens are local because
each is associated to its set of parallel rays and perpendicular to them. Two
rays that are not paralell will have their screens oriented differently. Let us
now introduce coordinates.

The set of directions of the rays —the Sy base space of the bundle— is
the Descartes sphere. This can be parametrized by a pair of usual Euler -
angles {0, ¢}, with the well-known but treatable difficulties of coordinates
on spheres. Alternatively, we may choose a Cartesian three-vector § =

(Pz, Py, p.) on asphere of fixed radius n = || = | /p2 + pi + p?. (Of course,
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n will be the refractive index of the medium!) Two of the three coordinates,
say p = (pz,Py), supplemented by the sign o of the otherwise redundant

third component p, = oy /n? — p2 — p2, will also serve to indicate a point

of the Descartes sphere uniquely.* Depending on the need we shall use one
or the other parametrization for S,.

The local screen of each paralell pencil of rays is an #2 Cartesian manifold
of translation two-vectors {t,,t,/} with an origin or optical center and an
orientation of its local z’ and y’ axes. We may choose these in the direction
of the p; and p, axes of the Descartes sphere, but we will have orientation
trouble when effecting the paralell transport of the screens around the
sphere.5 Such features are normal in bundles that are not direct products,
but we may always work on local charts in a sizable neighborhood of some
standard ray. See Figure 1(a).

A local parametrization that is preferred in Hamiltonian optics is that
of a standard screen. This screen is referred to an optical axis po = (0,n),
placed at z = 0. Rays within paralell pencils are parametrized by their ob-
servable of position, i.e., their intersection q = (¢, gy) with that standard
screen. See Figure 1(b). This works well except for rays that are paralell
to the screen, all of which will map on a point at infinity. Again, the co-
ordinates parametrize well sizable neighborhoods of rays, but cannot be
global. Since it does happen that q and p are canonically conjugate in
every neighborhood, they do deserve particular attention.

We may approach similarly other models, such as the manifold of frames
(oriented point-objects), ribbons or of screws for polarization optics, and
planes (for wavefront optics). We see naturally such manifolds as coset
spaces of the group of Euclidean motions, modulo the symmetry subgroup
of the object.

6.3 Lie operators on the Euclidean group

The action of the elements g of a Lie group G on the space of functions
[ of its own manifold variables v [2], is carried by Lie transformations £,
[3] that may be realized in at least two ways: through right or left action,
viz., '

£ = I oy = Fvg), ‘(3.1(1)
Loy = FESy= i) (3.1b)

*When p, = 0 we may take o = 0.

®The rays of geometric optics may be easily parametrized in Cartesian solid
geometry by the line 7(s) = sp'+ ¢, where s € R measures length along the ray
in units of 1/n. The vector ¢ may be chosen orthogonal to 7, namely #- 5= 0, so
it contains only two independent local screen parameters.
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Still another one is the conjugation I,ff('y) = f(¢~'vg), and in fact any
subgroup G of G x G may be used with bilateral action [4].

Lie transformations may be generally represented as exponentials of dif-
ferential operators of first degree in the manifold coordinates of 4. They
have the above property of “jumping into” the function’s arguments. Let
us verify step by step that the right action (3.1a) is consistent with the
reguir};ement lt‘hat the group composition property be preserved, i.e., that
£y £, = £4,,, holds when acting on any function f. We use (3.1a) for
the rightmost factor to write

£5,£5,F() = £5.F(£5,7) = £4,f(792), (3.2a)
and call
Fa(k) = f(£5,K) = f(xg2), (3.2b)
for any k such as v. Thus we continue (3.2a) writing
£8 £,(7) = f2(£5,7) = fa(v91)- (3.2¢)
Now we can use (3.2b) again, with £ = vg;, and finish (3.2a) with
2R PREmTe P D8N 0 (3.2d)

Observe carefully that £§1 acts first and £?2 second on v to yield vg192,
as read in the usual direction.®

The Euclidean group & = ISO(3) contains the group of rotations Rz =
SO(3) and of translations T3. It has the following well-known structure that
we display in coordinates. Let R3 3 R be an orthogonal 3 x 3 matrix, of
unit determinant, and 73 3 ¥ = (vz, vy, v,) a Cartesian three-dimensional
row-vector.” We may denote the elements of the Euclidean group &3 as

E(R,7) = £R £8 = E(R,0)E(1, 7). (3.3a)

The two subgroup products are denoted by matrix multiplication and (com-
mutative) sum as

E(Ry,0)E(R2,0) = E(RiRo,0), (3.3b)
E(1,#)E1,7) = E(1,81+ ). (3.3¢)

The yuxtaposition of the two subgroups is that of semidirect product, £3 =
R T3, specified by the action of R3 on T3, in row-vector and matrix
notation

E(R,0)E(1,7)E(R™L,0) = E(1,#R™). (3.3d)

®A similar argument verifies that (3.1b), i.e., action from the left by gty is
also consistent with the group property. Not consistent with it would be g, vg~t,

979, etc.
"We use the top arrow ~ to denote three-dimensional row-vectors.
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FIGURE 2. The standard and a Euclidean-displaced frame.

The translation subgroup is thus the invariant or normal subgroup of the
Euclidean group. From here, the group multiplication law is

E(R1 y Ul)E(Rg, 1?2) = E(Rle, 171R2 + 172) (336)

The group unit is E(1,0), and the inverse is E(R, FE=ER-L YR ).

Functions on the six-dimensional £3 manifold will be denoted by f(P,+),
and we shall refer generically to P as direction and to  as position, because
of ulterior motives. Direction is subject to rotation, and position to both
rotation and translation. We act on these functions first with the right Lie
transformation of the rotation £& and second with that of the translation
£,§’“, to get

E(R,7)f(P,7) = £ £3f(P,7) = £3 f(P,7+ 7) = f(PR,FR + ),
(3.4)
by (3.1a) and (3.3¢). Upon this, the group unit E(1,0) is rotated by R
and translated by v to E(R,¥). The_group unit may be seen as a standard
frame of three orthogonal axes, defining the origin both of direction and
position. See Figure 2. Through rotations and translations, we may bring
this frame to any other one, mounted on the generic # and with the ori-
entation obtained by the action of the rotation matrix P on the standard
frame. At this stage we may say that we are defining the model of frames as
the set of Ra-orientable objects in T3-space. Note that the translation by
v of the frames’ origin is performed with reference to the standard frame,
i.e., TR + ¥, and not some (7+ ¥)R appears in (3.4). This corresponds to
the preferred parametrization of rays in optics by a fized standard screen®.

Lie operators act moving the underlying space referred to a fixed frame.

80n the other hand, the natural bundle parametrization by local screens dis-
cussed in the previous Section proceeds in accordance with the left action of
Lie operators in (3.1b). For these, the parametrization of £ by (3.3a) may be
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The Euler angle parametrization of rotations is

R(¢,0, ¢) = R.(¥)Ry (O)R.(9)- (3.5)

The effect of a rotation R on P can be best des by letting R act on at
least two distinct row-vectors § = (pz,py,p:) of length n, and referring
to the z—axis as the optical azis, following the ancient convention used by
opticists. It is the forward pole of the Descartes sphere. Thus R will map
the direction of the optical axis p, = (0,0,n) onto

7= p,R(¢,0,8) = (nsinfcos ¢, nsinfsin ¢, n cosf). (3.5b)

We note that the angle 1 is absent from the right-hand side of the last
equation. Similar formulae can be produced for the other directions, say
(n,0,0) (that will contain ). The action of R on the whole p-sphere is
transitive (a right frame may be mapped to any other right frame) and
effective (no frame is left invariant except by the group identity).

6.4 Generators of the Euclidean group

As a standard assumption in Lie theory, our group G has its manifold para-
metrized by a set of coordinates, g(z), z = {z;}X;, g(0) = identity, and
for vanishing ¢ we can write £, f(v) = f(v) + eLif(y) + -+ The T;
are the generators of the group and are realized as first-order differential
operators in the coordinates of 7 [2]. The set of these generators {F;}
closes under commutation into a Lie algebra [f‘i,f‘j] = c,-jkfk, and the Lie
transformations may be written as £,(;) = exp z;T;.

We may find the generators of the Euclidean group on functions of its
own six-dimensional manifold f(E(P,7)) = f(P,7) from (3.4); these will
constitute the Euclidean Lie algebra in the frame realization. The right

conveniently replaced by
E'(#,R) = £5 L} = E(R,7R).
Accordingly, the action on the space of frames now parametrized accordingly is
E'(#,R)f(%P) = f([{- ?)lRT",R7'P).

Here, the translation ¢ is in the frame of { as it is rotated by R~'. Parallel
developments can be made for left group action g~ 'y and their Lie operators. The
third possibility, g~'vg, favors parametrization by conjugation classes. For the
R subgroup, this is through specifying the rotation axis (8, ¢) and the rotation
angle x around that axis. The latter labels the classes. Under the adjoint action
of R3, # transforms as a vector and y is invariant.
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translations £5 = exp 7 - T act as

exp - Tf(P,F) = f(P,7+7). (4.1a)
We thus find
9 e ey
T:,; — %, Ty = ‘ér_y; Tz - 67'3 d (41b)

Translations do not affect ray direction, so no p;—derivatives appear.

For rotations, we may use the explicit expressions of the 3 x 3 matrices
that act in (3.4) both the p'= (px,py,pz) and 7 = (r;,ry,r,) row-vectors,
that transform in unison. We call R; the generators of the finite rotatlon
matrices R;, in the following way:

1 0 0
expagy R, +— Ry(az;)= |0 cosa, sina, |, (4.2a)
0 —sina,; cosay
X cosay 0 —sinay
expayRy — Ry(ay)= 0 1 0 : (4.2b)

smay, 0 cosa,

cosa, sina, 0

exp gl - Fe R,(a;)=| —sine, cosa, 0 ]. (4.2¢)
0 0 1
The rotation generators take their very familiar form
~ 0 0 d
— =Pt Ty— — Ty — 4.

Ra Py Op, = Opy Ty or, s 01y, 58]
~ 0 a 0 0
Ry = Pzé;;"Pmaz—)z'i-T'zE)?;—?’x'aT;a (4-31))
~ d 0 0 0
R, = posz— apy — Py s +7r xary Ty%. (436)

The length n of the vector p, the radius of the Descartes sphere, is naturally
a Euclidean invariant in homogeneous media —only.

The hatted operators are a vector basis for the Lie algebra. As we can
check, their commutators [X,Y] = XY — Y X close:

[T,,ff}] = 0 i,] = z,¥,2 (4.4a)
R, T;] = ey, €ry: = 1, (4.4b)
[Ri,Rj] = =—cijiR, (4.4c)

and all other independent commutators are zero. This clearly displays the
Euclidean algebra as the semi-direct sum of the translation and rotation
subalgebras [2].°

® At this point we could introduce rotations that act exclusively on the frame
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6.5 Coset spaces and rays

The realization of frames seen in the last Section will serve now to define
other objects subject to Euclidean group action. In scalar geometric optics,
light rays are modeled by straight lines, with no particular origin nor po-
larization plane. If such an object is rotated around its axis or translated
in its direction, it is still the same elementary object. These are symmetry
transformations of the object, and they always form a group [2]. In the geo-
metric optics case, the group is H8°™ = R3 x T3, the direct product of the
rotation group in two dimensions with the translation group in one dimen-
sion. The rays of a model will be identified thus as the equivalence classes
of the Euclidean group modulo the symmetry subgroup of the object. We
will now formalize this construction presenting some standard material on
the equivalence classes in a group called cosets, before we apply it to the
Euclidean group.

If G is a group and H a subgroup, we may divide the manifold of G
into disjoint subsets by H in the following way: let g € G and consider the
set {hg}nen, called the (left) coset of g by H. We thereby introduce the
relation g; = g2 between two elements of G when Hg; = Hgz. The coset
of the identity e € G is He = H. Clearly, the cosets of g and of hg are
equal, and from here it is easily shown that = is an equivalence relation,
i.e., it divides the manifold of G into disjoint subsets; the set of left cosets
is denoted by H\G. Within every coset we may choose a representative
element v € G. We can thus display the structure of G to be that of a fiber
bundle whose base space is the set of these representatives v, namely H\G,
and whose typical fiber is H. The projection operator :G — H\G may be
used to introduce subgroup-adapted coordinates on the manifold of G by
writing g as g(p,v) = h(p)y(v), with h parametrized by coordinates p for
M, and coordinates v for ¥ € H\G as representative. It may be that in a
badly chosen set of representatives, some elements of will not admit such
a decomposition; in approaching these elements, some of its coordinates in
v will escape to infinity.

Left cosets transform under right group action. If under k € G the group
manifold transforms as g — ¢’ = £kR:g = gk, and the subgroup—coset
coordinates read g(p,v) = h(p)y(v) and ¢'(p,v) = g(p',v") = K'(p)7'(v) =
h(p')y(v'), then we may subduce the mapping f(v) — f'(v) = f(V') =
£ 1,:”’7{: f(v), where £ }:"H is now a Lie transformation acting on the functions
f of the coset space coordinates v.

For the Euclidean group & = R3 >73, we have that R3\&3 = 73 and
orientation p-space, as Sy = Py9p, — P20p,, etc;, with commutators [5'.-, TJ] =0,

(8, Rj] = =5, [5:,55] = —Sk. The structure of this group would be R3 x
(RE~SbT).
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&3/T3 = R3 are groups themselves and have been used for the global
parametrization of E(R,, #).1° We will now show that geometric optics is a
model based on the p = (R2 x 77)\& manifold. Let us now see the way
the coordinates of R2\&3 and 77\ &3 transform under Euclidean action.

For the rotation group Rz C &3 the Euler angle parametrization (3.5) is
the appropriate one when the symmetry group R, is Ry(¥) with ¢ € S;.
Each coset is thus a one-dimensional sphere, i.e., a circle. The cosets
RoR(9,0,4) = RoR(0,0,4) are the points of the space R3\R3, and the
appropriate coset representatives are plainly v(6,¢) = R(0,0,¢). Their
manifold is the two-sphere: Ro\R3 = S2. Transformations of the points
of this sphere by £1§ under a rotation S(a,f,7) are found, as usual, by
simply applying the matrix S to the row vector in (3.5b). The result will
yield f/(6,4) = f(6',4"), 0'(8,¢; @, 8,7) and ¢'(0, ¢; a, B,v). The manifold
of cosets R, \E&3 is thus parametrized by {y(8,¢), (rz,ry,r.)} = {p,7}. The
model R,\E3 describes objects that are points in space 7 with a direction
vector p of fixed length on each point, i.e., a special kind of vector field. It
has one dimension less than the original six-dimensional full group mani-
fold.

We examine now the cosets by the translation symmetry subgroup 7;
along the z—axis. These are built in an analogous way, but with the dif-
ference that while 73 and its subgroups splits off easily to the right of
&3 = R3bTz, we need it to the left. The standard frame e = E(l, (0,0, 0))
and the line of z-translated frames E(l, (0,0,5)), s € R, constituting the 73
coset of the identity, parametrize the same standard ray in the geometric
optics model. Similarly, an arbitrary frame E(P,7) and the coset of frames
E(1,(0,0,s))E(P,7) = E(P,7+ (0,0,5)P), s € R describe the same ray,

whose position vector is, in coordinates

(rzyry,72) +(0,0,s)P = (r; + ssinf cos ¢, ry + ssinfsin @, r, + scosb),
(5.1)
and carries the orientation P(v,0, ¢). Further cosetting by Ry will ellimi-
nate the plane polarization angle .

The space of cosets H8°™M\ £, H8O™ = R4 x T; we shall show now, is the
manifold of geometric optics rays p described in Section 2. The elements
of H&*°™ are E(R.(¥),(0,0,5)), ¥ € S1, s € R, a cylindrical submanifold
of £3. Every other coset is a right-translated version of this submanifold
by E(P,7). The coset representatives may now be chosen in writing the
decomposition

E(P(z,b,@,d)),(rz,ry,rz)) 5 E(R(¢,O, 0),(0,0,8)) E(P(O»H»d’)v(Qz,‘Iy’(%)%y)

where the vector (¢z,¢y,0) = ¢ indicates a point on the screen, whose

1We may use Tz\&s and £3/Ra for the left parametrization of E'(f, R), corre-
sponding to the coordinates of p by local screens.
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z—component will be henceforth assumed to be always zero. Thus we write

F=(rp,Ty,Tz) = (0,0,S)P(0,0,dJ) + (92,9, 0) = sp/n + q. (5.3)

The coordinates of each HE®™ coset are {¢, s} and those of the space of
coset representatives are the four independent parameters in {p,q’}, where
P lies on the Descartes sphere of radius n, and ¢ indicates the ray inter-
section at the standard screen. Any nonzero value of ¥ and r, will fall
into the H&™ factor to the left. Both are (by definition) unobservable in
scalar geometric optics, but may be retained in the less stringent models of
geometric optics with a polarization orientation or signals along the line.
We relate the group and coset parameters through

Py = g+ ssin 6 cos &, s =Tz — Pz [Pz (5.4,1)
f =it sinfsing, te. q =Ty — r:Dy/ Pz (5.4b)
r, = 0+ sHcost, s=r,secl = fr,[p;. (5.4¢)

There is a submanifold where these coordinates fail, however: rays parallel
to the standard screen —as may have been expected. For 6§ = n/2,p, =0,
and both s and |{| go to infinity because the decomposition (5.2) is im-
possible there. Figure 3 shows the geometrical situation in two dimensions.
Comparison with Figure 1(b) justifies the identification p = H8™\&s.

6.6 FEuclidean group action on rays
in geometric optics

The Euclidean transformations ER(e,B,7),v ) of the rays in p can now
be found by acting from the right on E(P, 7) = h(, s)v(7(0,4), (4= g)'!
and then decomposing the product. See:

E(P,7)E(R,7) = E(PR, FR+7)= h(¢',s’)7(ﬁ(0’,¢’),fj"). (6.1)

We use (5.2) for P’ = PR, with R-rotated angles {¢’,0’,4'} in place of
{4,6,4},

7(0,6) =p(0,¢") = P(0,)R(e, B,7). (6.2)
This takes care of the direction part. Next, we look at the ray length pa-
rameter s’ and the position coordinates ¢ on the screen in (5.4) with
7' = FR(a, B,7) + ¥ in place of # This allows us to determine s’ = nr%/p;
and

gt = F’—s’ﬁ'/n:FR-{-i)'—s'ﬁR/n (6.3a)

11We recall that §= (gz, gy, 0) = (@, 0) is a vector on the standard screen whose
z-component is always zero. We shall use boldface q to indicate the two-vector

q = (¢z)9y)-
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FIGURE 3. The vector 7 on a ray, its length parameter s from the screen, and
its position ¢ = (¢, ¢y, 0) on the standard screen r, = 0.

(7= s'F/n)R+ 7= ({+[s — S1p/m)R+7  (6.3b)
((i’+ [fi = T—] 13‘> R+ 7, (6.3¢)

Dz p.

that is independent of s, with the third component zero.
As a particular case we may obtain from (6.3) explicitly the trans-
formation of the rays in p under translations along the optical axis by

E(l, (0,0,1)2)):

PP =0  a—d =aq-v/p.p, (6.4)
where q = (¢, ¢y) and p = (pz, py). This is geometrically obvious in Figure
3, but underscores the fact that while r, — ¢, = r; 4+ v, for any point 7 of
the bearing space, the screen-coordinate q of the ray slides down; thence
the minus sign. If we want to advance the screen along the optical axis, we
should translate the space by —z.

The detailed formulas for the general transformation of the ray and
coset, coordinates under elements g of the Euclidean group may be found
from ordinary vector analysis and are, by themselves, not particularly suc-
cint. What is important is that the ray coordinates {§'(6, ¢), ¢’} map only
amongst themselves while the coordinates in the coset {1,s} transform
according to the coset to which they belong, i.e., ¥'(¥,5(0,4);9) and
s'(s,P,q;9). This is a general consequence of the fact that the spaces of
cosets are base spaces for the group bundle. Another consequence of this
pertains the factorization of the Haar measure as we shall now show for
the p manifold of cosets in &s.

We may ask from (6.1)—(6.3) if there is a volume element in g, the space
of geometric optics rays, that is invariant under the Euclidean group; if
so, this will provide a good integration measure for purposes of harmonic
analysis and Wigner distribution theory. In fact, such exists and appears
to be the origin of the symplectic structure of . The Haar measure dg of a
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group manifold is a volume element such that under g — g =ggoorgr—
¢"" = g5'g, the Jacobians at the group identity, are unity: dgfdy'ly=c =1
or 8g/8g"|g=e = 1 [2]. A semidirect-product group such as the Euclidean
groups in any dimension does have a right- and left-invariant Haar measure
that is the simple product of the Haar measures of the rotation and trans-
lation subgroups, because the latter is invariant under the former. They
are, for £3, R3, and T3, respectively,

dg = d°P 437, d®P = dy sin6dO de, d3F = dry drydr,.  (6.5)

where {1,0, ¢} are the Euler angles. We can also write the invariant mea-
sure in terms of the coset-decomposed coordinates {¢, s; p, ¢'}. For the ro-
tation subgroup, recalling (3.5b),

dp, d
SR = dy J’n—pﬁ. (6.6)

The expression for d37 in terms of dsdq, dgy can be found from (5.4),

d37 = (dgy+ps/nds+sdp. /n)A(dgy+py/nds+s dpy /n)A(p, ds+sdp.)/n,

(6.7)
where dp, = —(pz dp; + py dpy)/p.. Using differential form calculus (5],
where only unlike-differential factors remain, the outer product of (6.6)
and (6.7) is then the Euclidean-invariant Haar measure

dg = dip ds n~=2 dp, dp, dq. dgy. (6.8)

The factor di ds is the volume element over the space of each coset, while
the second factor is the Euclidean-invariant volume element over the space
of rays, p.

6.7 The Euclidean algebra generators on rays

In Section 4 we displayed the generators of the Euclidean algebra on the
£; manifold {P,7}. Now that we have found how the rays of geometric
optics live on the submanifold p C &3, we shall restrict the generators of &3
to this, by elliminating p, and r,. We will arrive thus at those previously
found for geometric optics [6].12

The direction manifold, the Descartes sphere, is a two-dimensional man-
ifold. We have written on occasion (8, ), but for a large neighborhood
(0 € 0 < 7/2) of the optical axis (§ = 0) we can work equivalently

with p = (ps,py), since the third component is p, = /n2 — p? (we de-
note p = |p| < n). If we go beyond this forward hemisphere, into the

12We note a difference of a 7/2 rotation around the z axis with respect to this
reference.
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backward hemisphere, we must supplement the coordinates in by a sign
o € {+,0,—-}, p, = o|p,|, as done in Section 2. All operators on g in-
volving 8/0p are thus in principle two-chart operators, with forms perhaps
differing by a sign on the two hemispheres of the Descartes sphere, and
matching requirements for functions f(p,q,0) near the equator. In this
Section we shall not build a Hilbert space of such functions, however, so
these precautions are not as indispensable as they will be for Helmholtz
optics in Section 9 et seq.

On functions f(ps,py,4z,qy;0) of p, 0f/0p. will be zero. Hence, in sub-
ducing operators from &3 to g, the restrictions on p and 3/9p are:

p: — h =++/n2 - p2, s — 0. (7.1)

op.

For the Euclidean position manifold ¥ € ®3 we similarly reduce the inde-
pendent position variables 7 = (rz,7y,7;) to the two coordinates on the
standard screen q = (¢, ¢,) and length along the ray s through (5.4), and
thereafter require the independence of our function space on s. The action
of 3/0r, on functions f of q is given by the chain rule for (5.4a) and (5.4b),

namel
: 8/(a) _ 0a 05(a) _ _p 0f(a) o

or, — Or, dq h  0q

The proper replacement of 7 by q thus entails!3

5} p 0
6rz H—E'éa (7.3)

r, =0,

The generators of the Euclidean translations, Egs. (4.16) on the screen
variables of p, arel4

. 0

R o :
T,; = aqx {Pm o}, (7 4a)
-~ a
Typ = a—q; = —{py, O}7 (74b)
fip ol TR i i ;
= £ 43 {h,0}. (7.4¢)

13Notice very carefully that, as announced, the operator exhibiting A is actually
a two-chart operator, having two different signs when acting on the forward and
the backward hemispheres of the Descartes sphere of ray directions.

*The eye catches an apparent sign difference between the last expressions in
(7.4a,b) and in (7.4¢). To set intuition straight, look at Figure 3, displacing space
with the embedded rays in z—y and 2z directions from a fixed reference screen.
In the former cases the intersection moves with the space, while in the latter it
~slides down along p with a factor —|p|/k = — tan#.
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The generators of rotations are on p given by Egs. (4.3) with the replace-
ments (7.3). They are

~ 0 p 0
° s e S R s 15 S = {—
A hapy Wy 94 {—qyh,o}, (7.5a)
0 p 0
e — == —
RY h@px +qz e {qzh,o}, (7.5b)

i F) 8 ,
R .= — — Dy ={pxq,o}. 7.5

z Pz Bpy Py Ops + 95— B4y —qy5— Ode ={pxq,o} (7.5¢)
The last term in each line of the above six expressions, writes the Euclidean
group generators as Poisson operators of functions f(p, q), with the symbol

rrate i S B O (7.6)

That such can be done is in principle quite remarkable, although our ac-
quaintance with Hamiltonian optics makes us expect this to happen, and
rightfully call the manifold (p,q) the phase space of geometrical optics.
What it means is that Euclidean motions, in particular screen motion along
the z—axis (6.4), is a canonicalevolution of the system governed by a Hamil-
tonian h and conserving the phase space volume element dp dq, as seen at
the end of last Section. The Euclidean Lie algebra is thus the natural dy-
namical algebra of the manifold of rays g in a homogeneous medium, with
z taking the role of time. Indeed, Hamilton’s equations hold on p with
canonically conjugate coordinates p and q. The first of these equations,
on dq/dz, is found from (5.4a,b). Since 75, ry and p are independent of

r, = z, the total and partial derivatives with respect to this z are the
same. It follows through (7.1) that
dq p Oh
S e 7.7
dz h Op ()

It is known that the origin of this first equation is geometrical [7]. The
second, dynamical, Hamilton equation is of the form dp/dz = —0h/dq.
It is tr1v1ally satisfied in a homogeneous medium since pis constant, so
dp/dr, = 0, and also 8h/dq is zero.!®

Being familiar with the Hamiltonian formalism, we know that the in-
variance of this measure extends to all transformations generated by oper-
ators {f,o}. This is not sufficient, however, to guarantee that p’(p,q) =
exp{f,o}p, for arbitrary f will remain within a disk of radius n, i.e., that

13In inhomogeneous media, translating {rom place to place will change the
size of the Descartes sphere, n(7'); the vector p’ will accomodate according to
Snell’s law, conserving the components of p perpendicular to 6n, and leading to
Hamilton’s second equation in nontrivial form [7].
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it will be an optical transformation mapping g onto itself. That f’s beyond
the Euclidean algebra are permissible will be seen below, in Sections 12
et seq., regarding the generators of a Lorentz group. The Poisson bracket
formalism is rooted in the Heisenberg-Weyl algebra, that is royal road to
quantization. It will become clear in Section 11, when we draw the way
to wavization provided by the Fuclidean algebra, that screen coordinates
are not fit to follow it because they are not operators within this alge-
bra.

As a concrete example, we produce a finite translation by z along the op-
tical axis of the space that bears the rays by exponentiating its infinitesimal
generator (7.4c) on the screen coordinates. We have:

. = zm a\"
p — p =exp(zIf)p=)_ - (—% : 55) P =D, (7.8a)
m=0 )

5 0
q — q' =exp(zI¥)q= (l—z%~%+"'>q=q—z%~ (7.8b)

This result is the same as (6.4), and is geometrically obvious.

6.8 The coset space of wavefront optics

We shall now follow the cosetting strategy seen above to describe other
kinds of optics where the elementary objects are not lines, but planes, i.e.,
wavefronts. The symmetry group H"! of a plane wavefront is the two-
dimensional Euclidean group &,.

Consider the two-dimensional Euclidean-subgroup H*%f = & C &3 given
by the elements E(R. (%), (tz,ty,0)), ¥ € 81, (tz,ty) € R? and a generic
decomposition of the elements of E(P,7) € & that is paralell to (5.2).
The symmetry subgroup factor and a representative of the coset space

W= 52\83, are

E(P(d)v 9’ ¢)) (7'1,-, ry ) rz)) = E(R(tp, 01 0)’ (tl‘a ty ] 0))E(P(Oa 0; ¢): (0) 07 U))
: (8.1)
The factorization of the rotation subgroup into a polarization angle and a
coset representative of the two-sphere, p'(8,¢) € Ro\R3 = S,, proceeds as
in Section 5.
Regarding the position parameters , the analogue of Eqgs. (5.4) is

(rs,yryy72) = (t5,ty,0)P(0,0,¢) + (0,0, u). (8.2a)

Directly replacing the matrix P(0, 8, ¢) = Ry(0)R..(¢) found through (4.2),
we obtain

(re,ryy =1tz cosb,ty) (

cos¢d sing

oty cos¢> y T, =—tysinf+u. (8.2b)
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FIGURE 4. Plane wavefronts in space showing the coset space parameters 7 and
u, as well as s = up,/n.

u

These can be inverted for the new parameters in terms of p = (Pzrpy),
r = (ry,ry), dot and cross products, as

t, = — g
p: |pl
The coordinates {1,t;,t,} are in the H"' coset and {5(6,¢),u} in the
space of cosets W = &£,\&3. The decomposition fails when p, = 0, i.e., for
planes parallel to the z—axis. This was also a feature of geometric optics.

The points in W, H*TE(P(0,6, ¢), (0,0, u)), as in (8.1), are each a wave-
front, i.e., a plane H" in space, given by 7§ = up,, orthogonal to p, and
with intercept u on the z—axis. See Figure 4. The quantity up, = ¥- 5 = ns
is n times the distance s of the plane to the origin, i.e., ns is the usual
optical distance. We may picture a function Sy(s) = f(p,u = ns/p,) as
representing a signal through a train of paralell planes in the direction .
The coordinates (tz,t,) and polarization angle 1 on the plane are absent
m W, of course. On the r, = 0 screen, where the 7, and r, coordinates
may be called ¢, and ¢, as in the last Section, this plane {§,u} cuts the

line pyq- + Pyqy = P-qQ=up,.

1, e I-f)—lxr’ u=r,+ 25 = 2T (8.2¢)

D= Pz

The translation subgroup 73 C &3 acts in the following way as a Lie
transformation through the decomposition (8.1):

E(L§)f(7 ) = fI"E (0,0,)EQL, )] = [ u+7-5/p.). (83)
The rotations that transform §+— 5’ = FR and ¥ — 7/ = #R, will turn
u="7"-pfp, intow =7"-p'/p, =F-p/p, = up,/p, and s = s'. Hence,

E(R,0)f(5,u) = f[H"E(F,(0,0,))E(R, 0)] = F(FR, up, /p,).  (84)

We now realize the Lie algebra of the Euclidean group &; on the space of
wavefronts /. We may find the Lie generators as in last Section, or ab ini-
ti0, since the group action in (8.3) and (8.4) is explicit. For the translations,
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‘asin (4.1) and (7.4),

o 0 = o

For the rotations (8.4) we can compute explicitly the scale factor p, /p/, for
R:(az), Ry(ay), and R;(a;) from the matrices (4.2) acting on the row
vector p, and then let o — 0. The results are: ;

; 5 R l
wo_ = e Y By 4 |
Hy' =5 3, P,  PaS uau, (8.6a) !
. J 0 pr O
BY =g 2 e + — U—, .6b
¢ £ apr P apz + D: Uau (8 ; )
RV = 0 4 (8.6¢)

P — = Py=——
Iapy yapx

We may check that the Lie brackets (4.4) hold.

6.9 Helmbholtz optics

The Euclidean generators (8.5)~(8.6) form a Lie algebra, and within its
enveloping algebra we can find group invarianis. The t!xree—diznegsional

Euclidean algebra has two quadratic invariants, 72 = 7. T and T R, that

may be used to label the irreducible representations of the algebra and i
group. The latter invariant is identically zero on W. The former, on the
other hand, is

72 = (TW)?} TV + (V) = L (9.1)
Tt y z . pf Ou?’ :

The action of the Euclidean group on W will thus map functions f(p, u)
amongst themselves, but respecting the linear eigenspaces of the operator
in (9.1), that will remain invariant under that process. Their u-dependent
factors will be linear combinations of sin kp.u/n and cos kp,u/n, for k in
principle complex, with eigenvalues —k2?. We may thus apply Fourier anal-
ysis in u € R to the functions f on W. Each of its partial wave components
Wk, is the form

f(P,u) = O(F) exp iks, s=up,/n=p- 7/n, (9.2)

and they will transform irreducibly under the Euclidean group. The Eu-
clidean invariant k 1s the wavenumber in the medium of refractive index
n. When this number k is real, the functions (9.2) exhibit a translational
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invariance under s — s + A, A = 2r/k, as true plane waves do.'® We thus
have all and only plane waves of a given wavenumber, in all directions of
the Descartes sphere.

In the same way as in geometric optics, the direction sphere p € Sz
may be projected (twice) on its equatorial screen plane, the disk é,,, where
Ip| < n and the boundary |p| = n sews the two disks. We will write the
function ®(5) as ®+(p) independent of p, through for p, — oy/n? —p?
(with p? = p - p); the signof p,, 0 € {+,0,—} distinguishes the two open
hemispheres and the common boundary circle. (We shall usually disregard
the zero.) The functions will be understood to be continuous between the
two charts, i.e., matching as limjp|_., @4 (p) = limjp|p &_(p) = Po(p).

As in ordinary Fourier analysis, the operator 8/0u acts only on the g
factor (recall that s = up,/n), so in the translation generators (8.5), it is
replaced by the factor ikp, /n, with one sign in each chart. The generators
of Euclidean translations in W are thus

L L spy ibiky/n? = p?
== T, Ty = —n—, T,= = ——-—n-—"— (93)

The restriction from W to W; of the generators of rotation (8.6) pro-
ceeds through noting that neither 8/0p, nor 8/du act on ®4(p), and that
p;0s/0p, = uds/du. Hence, their form on functions of this space is:

" 0
Rt = Fy/n?2-p?—, 9.4a
" or (9.4a)
REE = 4\/n?-p? 6f> : (9.4b)
~ 0 0
k. _ :
Rz Px apy Py 6?:: (946)

This realization of the Euclidean algebra, by construction, belongs to a
definite irreducible representation, determined by the values of the Casimir
invariants. Plane waves moreover, are a representation basts further reduced
and classified by the translation subalgebra Tjki, j = z,vy, and the sign of

Tz"i. Another subgroup basis, where the diagonal generators are TZH and
Rﬁi, are functions with support on a ring 6 = 6o, with a definite rotation
covariance. These are the nondiffracting J, -beams [8]. Finally, multipole
fields are obtained as the rotation subgroup eigenbasis of the subalgebra

16\We note that there is a fundamental wavenumber (light color) ko associated
with the vacuum n = 1, and for any other medium k = n ko. Thus even though %
and n will be written jointly in most of the text, they always appear as the ratio
k/'n = ko.
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Casimir operator
- o? 6?
E : kEN2
(Rj) —n<02+3p>

i=z.y,2
0 0 0 0
(gt (e gy +1) 09

and R’;i, t.e., the projection of the spherical harmonics of the sphere on the
disk. Each of these bases will yield a different realization of the Euclidean
algebra through differential or difference operators in the row labels of the
representation.

The effect of the exzponentials of these operators on the two-chart func-
tions are simple when the direction hemispheres do not mix, and rather
complicated otherwise. In any case, we may conveniently revert to the de-
scription by functions ®(p’) over the sphere. Translations exp(_; v; T;)
multiply it with the phase exp(ik 3= ; viPj /n) = exp(iko ZJ v;pj), and rota-
tions act on the argument row vector p through right matrix multiplication
as usual.

6.10 The Hilbert space for Helmholtz optics

Quantum mechanics works with £2(%") Hilbert spaces of wavefunctions
where real observables are eigenvalues of self-adjoint operators, and sym-
metry transformations are unitary. We shall now proceed to build a Hilbert
space for the oscillatory solutions of the Helmholtz equation that is unitarily
equivalent to £2(S,), the well-known space of square-integrable functions
on the Descartes direction sphere. We call the structure Helimholtz optics.

Let us return to the Haar measure over &3 given in (6.5)-(6.6). On the
direction sphere |p'| = n, the invariant surface element is

d®S(F) = n?sin 0 df dg = pﬁ dp, dp,. (10.1)

In the second form, the Descartes sphere surface element has been projected
over the screen plane as before. We must specify that p, > 0 in the ‘forward’
hemisphere 0 < 6 < 7/2, and p, < 0 in the ‘backward’ hemisphere 7/2 <
0 < m, taking account of the change in the surface element orientation.
A continuous linear superposition ®() of plane waves (9.2) over all
directions is in 3,17
k

F(7) = .

[ #3@)8@) exviibr /), (10.2)

1"We choose the normalization factor for the purposes of symmetry in the
Fourier analysis formulas. Position 7 has units of k™! = )\/2r, the reduced wave-
length. We may ascribe to § units of n, although physically dimensionless. Inte-
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and satisfies the Helmholtz equa,tion in this space:

(92 82 32
(5?3+3_7'3+02)F( )“‘—-k2F(1‘) (10.3)

This may be also written in evolution form on a space of two-component
functions

(3, DD -2 (). svmre GGy oo

The first component of this equation defines F'(7) to be the r,—derivative
of F(7), while the second reproduces the Helmholtz equation (10.3).

Previously, the geometric optics model reduced the description of rays in
position 3-space to a standard 2-dimensional screen at r, = 0. This suggests
that we perform the Helmholtz analogue of this regression to screen values
7+ (q,0) —with some extra care due to the two-chart structure pointed
out before. Oscillating solutions to the Helmholtz equation are determined
thoughout ®3 by specifying their initial value and normal derivative at a
plane. From (10.1) and (10.2) these are, on the screen r, = 0 and expressed
as integrals over the p—disk é, of radius n,'®

Flg) =~ FlE).
= elk q/n o
- /\/—— p) +&_(p)]e"P V", (10.5a)
F'(q) = 51;2) A
5 %f?zﬁ /5nd2P [+ (p) — @ (p)] P9/, (10.5b)

Both the function F(q) at the screen and its normal derivative F'(q) are
needed to encode the information contained in the two functions ®4(p) on
the disk &,. The inversion of (10.5) to solve for the function on the sphere
is found through Fourier transformation in the plane:

k /n? - p? 1 ¥
2u(p) = 7 | dq [——;’—’—F(q):t;,;F'(q) e~fhealn, . (10.6)

4mn

gration over the sphere with the measure (10.1) endows it with units of n?. Hence,
if we regard ®(§) as having units n =", F(i*) will have units of k. We recall that
k/n = ko, the fixed wavenumber of vacuum in the Fourier signal decomposition
of last Section.

8 Note the factor k/27n = ko/27 = 1/Xo = 1/n), with Ao the wavelength in
vacuum n = 1.
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For example, a single plane wave €5, directed by some py will have
its coset representative function given by a Dirac delta on the Descartes
sphere, i.e., under the measure (10.1) and appropriate range,

Qs (F) = bs,(Fo,7) = (n*sin0)~18(6o — 0)8(¢0 — 4), (10.7a)

or,

2 — o2
Qpoo(p) = YL

Poz — p-‘l?) 6(p0y oE py)éa,signpo‘ . (10.7b)

The corresponding Helmholtz plane-wave solution function and its normal
derivative at the screen form then the two-function

Wi (o] = (Wﬁ ((1)> _k ( 1 )eikpo-q/'n. (10.8)

Wi (a) ) ~ 2mn \ikpo./n

The normal derivative distinguishes the two distinct plane waves pt =
(p,p.) and p~ = (p,—p.) that are reflected versions of each other by a
mirror in the screen. A Helmholtz function whose normal derivative on the
screen is zero contains, for every constituent plane wave, its reflection. The
last Section will elaborate further on this.

Square-integrable functions on the sphere with the measure (10.1) are
well known to constitute a Hilbert space L£2(S5), for which a definite value
of k is implied. The sesquilinear inner product of two functions in that
space 18

(@1, ®2)s, = Sd25(5)®1(5)*¢2(l7) (10.9a)

nd*p
5. /n? — p?

X [®1,4(P)" @2,4(P) + P1,-(p)” P2, (p)], (10.9b)

where the asterisk * indicates complex conjugation. This inner product is
manifestly invariant under rotations of the Descartes sphere, as well as
under translations, since the latter only multiply the functions by a phase
that cancels on account of the sesquilinearity of the inner product. It is an
invariant under Euclidean transformations: (£,®,, £,®P3)s, = (®1, ®2)s,.
The last expression shows the form of the inner product as an integral
over the disk é, of radius n, for both ‘forward’ and ‘backward’ waves. The
Euclidean generators in (9.3) and (9.4) will be skew-adjoint under this inner
product.

Let us now write the inner product (10.9) in terms of the initial value
and normal derivative on the screen of solutions to the Helmholtz equation,
as given by equations (10.5), replacing the ®4(p)’s from (10.6) into (10.9).
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There is a triple integration where we can move to the right the integral
over the compact domain,

k O\’ / nd’p / : ,
d ,Q . = d2 / d2 l e—zkp-(q—q )/ n
( 1 2)8 (27!’71) 5o n2 — p2 R2 1 R2 1

n? PZ * ' 1 ' x il
X |=03 Fi(q) Fz(‘l)'*‘ﬁﬂ(‘l) Fy(d)

(10.10a)
e _L ! 2 2 ./
= (m) [o#a ],
x [w(la = d')F1(q)" F2(q')
+ w(la— q'|)Fi(a)" F5(q)]- (10.100)

We have assimilated the p-integration!® into two nonlocal weight functions,
w and @,

I
| =
IS
)
kel
S
N
|
=
~N
39
:
B
°
=
.as
N
~
]

w(la—4q') 5/, .
1 n n2—p2 2m : ,
= ] d de e—ikpla—a’|cosp/n
;[ part T [ dpe

= I [ pd/aT=Fdolhrla—alfm)  (10.110)

0
S
7mzh( lq ?I)
klq — q'|

and

e—ikp(a—a')/n

1 / n
/ 2
w(lg—q R d°p ——=
(a-a) = 5z [ From—
2
™m* |
= zjo(kla—dl), ' (10.11b)
19We note the useful integral [Gradshteyn & Ryzhik, Egs. 6.567.1 and 6.554.2]:

/ pdp(n? )P e Ry =2 T eyttt JetlD),
0

$M+1
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where we have the spherical Bessel functions

. m in z
jo(2) = \/27]1/2(2)=Sm ) (10.12a)

z

i (z P sinz — zcosz
Jli I /2? Tapalz) = 28 (10.12b)

The weight functions are solutions of the Helmholtz equation; w(q) in-
tegrates ®(p") = constant over the whole direction sphere [cf. (10.5), thus
with zero normal derivative] and w(q) correspondingly integrates ®(p) =
constant x p2. Since they are the widest, smoothest functions on the sphere,
they may be seen as the narrowest functions on the screen that are still
purely oscillatory solutions of the Helmholtz equation.2?

We may write this inner product on the space of screen conditions for
the Helmholtz equation in 2-matrix form as

€1 F = [ #a [ @d R0 i - dDP(a), (10130
RZ 2

Fi(ag) = (?,Eg;) ) (10.13b)
J

| (phta=a)
P kla — d'| : : (10.13¢)
0 jo(kla —q'])
This inner product is also Euclidean invariant: if F;(7), j = 1,2 are two
solutions of the Helmholtz equation, whose values and normal derivatives
at the standard screen r, = 0 are Fj(q) and Fj(q), their inner product is
unchanged if we move or rotate the screen to any other plane. Since it was
built unitarily equivalent to £2(S,), it thus serves to define a Hilbert space of
oscillatory solutions to the Helmholtz equation that we shall call Hy. Such
an inner product for the two-dimensional Helmholtz solutions was found
by Steinberg and Wolf [9] searching for Euclidean-invariant inner products
with an in general nonlocal matrix measure Hy(|q—q'|); its matrix elements
were obtained through boundary and differential conditions that hold in the
subspace of oscillatory solutions of that equation, and shown to be unique.?!

Hi(lq - q'|)

*%Dirac §’s are not allowed in q since their Fourier conjugate has support
outside the p-disk 8. Also, evanescent waves are not allowed unless we go into
the complex—k extension of our group. This we shall not do here. The issue
of localizability is correspondingly different from what we are familiar with in
quantum mechanics.

21 A similar treatment was made in [9] for the inner product in the Klein-Gordon
equation solution space. In the form (10.13), the measure is then shown to be
local (by Dirac é’s) and, in matrix form, antidiagonal. This verifies the known
result for the three-dimensional Poincaré-invariant inner product. We should note
that the inner product is not total illumination —that will be examined in the
next Section.
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6.11 The Euclidean algebra generators
in Helmholtz optics —wavization

Our last realization of the Euclidean algebra generators was given in equa-
tions (9.3)—-(9.4) for two-chart functions on the two disks of the squashed
Descartes sphere. We now want to display the form of the generators on the
Helmbholtz Hilbert space of two-functions on the screen q, with the nonlocal
inner product (10.13). Upon comparison with the Euclidean generators on
the geometric optics phase space, we will arrive at what appears to be a
good recipe for wavization.

When the function over the direction sphere ®(5) in (10.2) or its equiv-
alents @4 (p) in (10.5), are multiplied by p, /n or p,/n, this factor becomes
ik0/8q, and ik8/8q, on the Helmholtz solution F(+) in (10.2) or its equiv-
alent two-function F(q) in (10.5). The z—translation generator, multiplica-
tion by p,/n, is different on the two charts: p, ®(p) — £/n? — p?®4(p).
Such a multiplication turns the integral for F(q) in (10.5a) into the inte-
gral for F'(q) in (10.5b). It also turns the latter into the former with an
integrand factor of n? — p?. This factor, in company with exp(ikp - q/n),
becomes (minus) the Helmholtz operator A in equation (10.4) acting on
the same exponential. This operator is then extracted from the integral.
Hence, the translation generators in (9.3) may be written as 2 x 2 mairiz
operators on the Helmholtz Hilbert space, thus:

e — . 0 FHe 2 0 He — 0 1
T:L‘ bt < 0 6‘1::) ’ Ty e ( Ov a‘]y) ’ TZ _(—Ak 0)
(11.1a,b,¢)
We may follow a similar procedure for the generators of rotations around
the £ and y axes in (9.4) through (10.5a,b), the sign difference on the two
charts turning one into the other. The roots of n? — p? cancel or combine
with their measures; derivatives with respect to p;’s can be integrated by
parts because the boundary terms between functions on the two disks can-
cel, and are thus thrown on the exponential factor. Finally, the exponent
turns p;’s into 8/8g;’s and /8p;’s into g¢;’s that can be extracted from the .
integral. We thus arrive at the following matrix operator realization:

& 0 q

R'Hk - y §
2 (“‘IyAk = By, -0 )

PH x =2 0 —r

Ry i (quk % 6‘1: 0 > :

FHe - = (anqy — qy04, 0 ) ;
: 0 qxaQy iR anq_,,,

The above generators were also found by Steinberg and Wolf [9], for t :
two-dimensional Helmholtz equation and were further studied and ap
by Atakishiyev, Lassner and Wolf in reference [17]. They are skew-adjo
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under the nonlocal inner product in the Helmholtz Hilbert space (10.13).
Their commutation relations are of course the same as (4.4), and as a irre-
ducible representation of the Euhclideahn algebra they are identified by their
invariants (T""k)2 = —k?1 and THx . BHx =, Regarding the pure rotation
subalgebra (11.2), the representation that is spanned is not irreducible, but
quite closely so:

AHk )2 AH\2 sz _ [ D(D —1) + k2¢2 3 vl
(RIY? 4+ (RI*)? 4 (R _( L B pohe ey
b (11.3a)
wiere
D = 3(90q +94°9) = 20, + 440y, +1 (11.35)

is a ‘dilatation’ operator on the screen, that is self-adjoint on £2(%2), but
not separately so in Hj.

Let us exemplify the handling of the sphere and Helmholtz inner products
(@1, ®2)s, = (F1,F2)n, by finding the matrix elements of the z—translation
generator in £2(Sz), 7% in Egs. (9.3), and its Helmholtz version THx
in Egs. (11.1) through (10.2)—(10.5). This generator is the analogue of
the quantum mechanical Hamiltonian, so we may asign (®,7%®)s, =
(F,T*F), the interpretation of the energy —illumination— of the state
described by ®(p) as a function of direction, or by F(q) as the Helmholtz
two-function on the screen.

To this end we calculate, following (10.9), the cross matrix elements

ik g
:z 3,(7) (11.4q)

(@1, T432)s, = /S &25(7) @1 (5)"
K 2

= ik /&,. d’p [®1,4(p)" ®2,+(P)
= ®1,-(p)" ®2,-(P)].  (11.4d)

Next, we replace the ®(p)’s by F(q)’s and F’(q)’s through (10.6) with
cancellation of summands, and exchange integrals. We thus obtain

o7 L 4 [ ) B) ~ @) Fa)

2 _n2 2 '
x/ d’p VN P —ikp(a-q')/n (11.4¢)
b 3

L 2
o) Lt
™ R2 R2

<A@ A@) (_ygeqp 10 ) (BD) ara

—w(la—q'])
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= (27rn) /wd2 / d*q’ (Fi(q) F{(a))"

(5 oetan) (o o) () @1
= (F1, T/*Fa)n,. (11.4f)

The step (11.4c—d) recognizes the integral in (10.11a) while the equality
(11.4d-e€) proceeds through integration by parts on q’, matrix multiplica-
tion, and the differential equality

Avw=w (11.5)

_between the two weight functions of the Helmholtz Hilbert space measure.
" In the form (11.4a) it is evident that we are integrating functions over the
sphere of directions with an obliquity factor of p,/n = cosf, where 6 is the
angle between the plane of the waves and the z = constant screen. Upon
transformation to Helmholtz ‘wavefunctions’ over the screen in (11.4d), the
same inner product takes a nonlocal Klein-Gordon-type of antidiagonal
measure structure [9] that should merit further inquiry elsewhere.

Now that we have presented geometric and Helmholtz optics as two struc-
tures contained within the Euclidean group, let us define wavization g
heuristically as the passage from one to the other that is paralell to that
from classical to quantum mechanics. Comparison of the translation gener-
ators on W; given by (9.3) and recall of the relation k/n = ko, suggest the
replacement of the ‘geometric’ momentum components of p'in the p man-
ifold by the self-adjoint matrix operators (11.1) in the Helmholtz Hilbert
space Hy, through the map

w o E 8
p:l,' e —E ( 0 6%) 3 (11.60)
W oA D
Py v _ko ( 0 aqy) ) (11.6b)
p, =% ("‘Ak 0) " - (11.6¢)

Note that the role of Planck’s constant i in quantum mechanics is taken
by vacuum wavenumber kg in Helmholtz screen optics. o

Let us articulate first a naive guess based on our Schrodinger “3” exp
rience: classical functions satisfying certain Poisson brackets should quan-
tize to operators satisfying analogous commutators. This will turn out to
be somewhat off the mark, but may be instructive to point out pitfall '
If we map the space coordmates (rz,7y,7,) to the multiplicative operators
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(42, dy, 0) on functions in H;,, and the symmetrization scheme is followed, 22

the classical components of angular momentum RX = #x p that generate
rotations, will map correctly as

Ry = TyPz — T2Py = %{‘iy;ﬁz}+ = —i/ko }%Z;‘k’ (11.70)
R; = TPz —TzP, a _%{‘i-’v»ﬁZ}+ = -—i/ko R;{k’ (11'7b)
RY = ropy—rype > Gopy — Gybe = —ifko R,  (11.7¢)

Compare with (11.2), noting that the 2-1 matrix element of R s gy A+
Argy) = qyAx + 8,, and similarly for R;‘k It may be somewhat surprising
however that the ‘wavized’ factors gy and g, do not commute with p,.

Three reasons for not accepting this wavization recipe are: (a), multi-
plicative operators §, and gy are by themselves not self-adjoint under the in-
ner product (10.13) Hi; (3) even classically, exp v, {qs, 0} and exp vy{qy,0}
map the momentum variables p outside their proper optical range |p| < n
—recall this is not the Heisenberg algebra and such operators are not
within the Euclidean algebra; and finally, (c), in Sections 13 and 14 we
shall present the Lorentz group generators, properly constructed both in g
and H},, where the above recipe does not quite work. The difference will
be small enough, however, to merit notice.

Our position here is that we should wavize only variables in p that are
within the Euclidean algebra into self-adjoint operators in . This means
that the maps between (7.5)2% and (11.2) that should complement the
momentum wavization (11.6), are:2

i w __i DM _ __i_ 9 dy 11
s b koRz 5 71k (“IyAk =000 )7 (H1ca)
S R et A 6 ) (11.8b
Ry qxh ary koRy kO (q.z'Ak +8q: 0 ), ( . )
R, = qxp ' —ZLR;H"
0
i (450, — ¢,0, 0 )
= —— v 2 . 11.8
ko ( 0 9204, — 4y 0,, d1:82)

In quantum mechanics, position is a very good observable: its eigenstates

*In quantum mechanics, if two observables quantize as a +> A and b 2 B,
the symmetrization scheme in entails that the product quantize through their
anticommutator: abrg %{/i, B}, = %(AB-}- BA). When ab is of the form qf(p),
pf(p), or quadratic in ¢ and p, this scheme is equivalent to any other quantization
scheme [12].

#3Note that the ‘classical’ functions to be wavized are minus the functions that
appear in the Poisson operator.

24Although h = p., we write h in place of p, here to emphasize that the
components of q will not be wavized alone, but only in company with the h’s.
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are Ditac s thak, while not quite in L2(RY, are nevertheless limit points

of weak sequences of functions that are. One feature of Fuchdean-based
wavization is the absence of a good position operator in Helmholtz optics.
Dirac 6’s are nowhere near to functions in the space. The coordinates ap-
pear only as the arguments of functions in H; and are not extractable from
there as eigenvalues of a polynomial operator. Correspondingly, in H; The
closest we can come to “screen coordinates” are the rotation functions gz h
and g h above.25 These functions do not have zero Poisson brackets nor
do their operators commute, for they are generators of a rotation group
R3. Educated intuition confirms that they should not be simultaneously
observable, since w(q) and @(q) are the ‘sharpest’ screen functions avail-
able. Indeed, we expect to find a form of the sampling theorem (valid for
the sphere, rather than the circle or torus, as is usual in power spectrum
and signal theory [10]). Such is a good program to be followed elsewhere.

6.12 The ray direction sphere
under Lorentz boost transformations

It is natural to follow the strategies of classical and quantum mechanics in
developing Euclidean optics. The formulation of mechanics may be derived
from the nilpotent Heisenberg-Weyl [11], its enveloping algebra, group, a
ring [12], from the Galilei group [13}, or from the general symplectic group
[14]. These groups are inappropriate for optics because here the momentum
observable has a bounded range, whereas in mechanics it is infinite. The is
sue of position coordinates has arisen above and we have seen that they
are outside the pale of good Euclidean operators. Linear canonical trans-
formations of phase space, a well-studied terrain common to classical and -
quantum mechanics, are thus meaningless in global optics. Yet because the,
constitute the essence of the paraxial approximation and the tool of aberra-
tion expansions we shall continue to work with them in the near-metaxial
regime —elsewhere. Here we now review a group of transformations that
is beyond the Euclidean group but whose action s well-defined and globa
both in geometric and Helmholtz optics, and follows the wavization process
proposed above. :
In geometric optics the basic object, a light ray, is a coset {p,o;q} in the
Euclidean group by the symmetry group of the ray. In Helmholtz o
the basic object is a plane and its corresponding space of cosets has
divided into irreducible subspaces {p;o}|r. They have in common th
direction sphere § € S;. The sphere is a well-known subject of relati
Lorentz SO(3,1) transformations because it is a space of cosets of that

25We are not allowed to divide by h, because the spectrum of h = —ifko THe

includes zero.
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group by the noncompact factor. Physically, this comes about as follows.
Let £ = (£,4) = (£,8y,4,,40) be a lightlike four-vector, |€] = |£,
undergoing a Lorentz boost by v = ctanh & in the z—direction,

Ly s (12.1a)
£, +— £, = {,cosha+ fysinha, (12.1d)
fy +— £y = L£,sinha+£ycosha. (12.1¢)

The direction of such a four-vector on a sphere S, of radius n is given by
the components of ¢ normalized by division through £5/n, namely,

% nly nf,).

—_— = 12.2

p= (P:c;py>Pz) = (

In these homogeneous coordinates, the boost ( 12.1) becomes the transfor-
mation

’ P

= 12.
P cosha+p,/n sinha’ {1280)
AELT LRt p; cosha + nsinha (12.38)

cosha + p,/n sinha’

where p = (pz,py) as usual, and p = |p|. In terms of angles {, ¢} over the
sphere, [cf. (3.5b)], we find ¢ to be invariant while the colatitude 8 follows
the nonlinear transformation given by

p
p:+n

= tan 16 + tan 10’ = e~ * tan 14. (12.4)

An observer in a spacecraft moving with respect to the stars will therefore
see the directions of their rays concentrate towards his direction of motion
by the amount (12.4). This effect was noticed in 1725 by Bradley, who
termed it stellar aberration, recognized it to originate from the earth’s
orbital motion during the year, and provided the first estimate of the speed
of light. It is a global deformation?® transformation of S that has a group-
theoretic origin.

To find the z—boost generator responsible for the nonlinear transforma-
tion (12.4), we may linearize it to a translation through the change of
variables

1 / a
¢(=-Intan 360 — ¢ _C+a_exp(adc)c (12.5)
From e~¢ = tan 14 = - , we find
> n4m2op?
2¢$ e¥ —1
et T - P =g (126)

*%i.c., the measure over the sphere (10.1) is not preserved [15).
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On the p—disk 8, there are two values of p for each value of ¢, reflecting the

map Sz L, §,,. The boost generator B, effecting exp(aﬁz)f(C) = f({+a),
is thus
g o omPd RS LD

6.13 Relativistic coma in geometric optics

When images are enlarged as in a slide projector, or reduced as in a camera,
the angles of the rays that arrive at the screen to form the image are
inversely reduced or enlarged. This well-known property of passive optical
devices is succintly described by the statement that optical transformations
must preserve the phase space volume element dpdq. That is, they are
bound to produce only canonical transformations of the coset manifold
seen in Sections 6 and 7. The relativistic Lorentz transformation (12.3) of
ray directions, expanded in series of |p| to fifth order, is

) e P
PP = Cosha+ h/n sinha (13.18)

= e %p+in? sinh ae”2*p?p (13.1d)
+ in™* sinh ae™2%(1 — %6—20)(}72)2]) + . (13.1¢)

As before we abbreviate h = £+/n? — p2, the sign indicating the hemi- -
sphere and p? = pZ + pz. To first order in p, we have a magnification by a
factor of e—“ that is less than unity for o > 0; after this we have the series
of terms that tell us that the magnification is not linear, but a distortion
of the ray direction sphere. Therefore, to first order in the ray position q
(intersection with the standard screen), we expect a magnification with the
inverse factor €. This will be followed by aberration of the nature of coma,
as will be borne out below.

In order to eztend the boost action (12.6) from the direction sphere p to
the whole space p of geometric optics {p,0;q} canonically, we note that
the boost generator in (12.7) may be written as

p h 0 o(=hp-q/n) 0

This is the 8/p part of a Poisson operator [cf. Eq. (7.6)], and suggests we
ertend it to p as

0 h 0 Pq 0

- h
B¢ = {+hp-aiitolmiegPigs TS Fo RE P By (13.2b)
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Now we can exponentiate this operator and show?? that the boost action
on ray position at the screen, conjugate to (13.1), is
g B ,
= exp(aBf)q (13.3a)

a, .
= - qp) (13.3b)

= h h inh i
(cothoa=tih/n einlva) (q nsinha+ hcosha n
= e“q—n_lsinhap-qp— %n-zsinhapzq

—in"?sinhae™?*p’p -qp — gn~*sinha (p*)’q

i (13.3¢)

By construction it is guaranteed that the measure dp dq will be preserved.?®
In the last expression we have developed the closed formula (13.3a) in series
of powers of |p| and |q| to fifth order. The leading linear term shows indeed
a magnification factor of e* as required. The rest of the series contains terms
in (p?)™q and (p2)™~!p-qp, m = 1,2,.... The presence of only such terms
determines the mapping to be circular comatic. This is the name of a class
of aberrations that are comet-shaped, and that have the very important
property of being 2:1 mappings of object rays to screen points: (p,q) and
(—p,q) are mapped on the same image point q'(p, q).%°

Lorentz boosts in directions other than the screen normal may be ob-
tained transforming the generator Bf in (13.2b) by means of the generators
of rotations given in (7.5) through Poisson operators. In this way we find

Bf = {ng; —psp-a/n,0} = {g:h* +pyaxp,0}, (13.40a)
Bf = {ng, —p:p-q/n,0} = {q,h’ —p.qxp,0},  (13.4b)

where x is the vector cross product. The three-vector of boosts is thus
generated by the Poisson operator of the vector function B = 7x R, where
R= ¢ x p with ¢ = (q, 0) is the three-vector function generating rotations
through Poisson operators given in (7.1)-(7.5).3% Since these are three-
vectors, it is natural to expect that

[BF’R;?] = —¢ixBf (13.5a)

holds, as it does. Moreover, it is also true that

2TThe way to derive this formula will be indicated below. Prima facie, this is
a nontrivial task.

*5The Poisson bracket of the transformed variables (13.1a)-(13.3a) is also con-
served: {gi,pj} = 6i,; = {4i, p;}, etc.

2°We must emphasize the word point because the two image rays are dis-
tinguished by their direction at the screen. Witness in (13.1) that p'(p,q) =
—p'(-Pp, q), as required by the essential 1:1 bijection of all canonical mappings
of phase space.

%Note that {7, 7, ﬁ} form a right triad of vectors.
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[BF,Bf] = “eusRf. (13.5b)

Hence the R°’s and B®’s close into the algebra of the Lorentz SO(3,1) group
of special relativity.?! It is left as an exercise to the reader to decide whether
this fact is natural or remarkable. We also note the z-y vector identity
q = b/n — b,p/nh, that allowed us to derive the rather formidable Lie
exponential of B? in (13.3) through knowing the transformation properties
of the pieces in the right-hand side. Not so obvious is the boost exponential
in the z—direction, that may be shown to be3?

exp(aBf) ¢z = ¢, = (cosha+p;/n sinha)
x (gz cosha + p-q/n sinhe), (13.6a)
exp(aBf) gy = ¢} = (cosha+ps/n sinha)gy. (13.6b)

The transformation undergone by p, and p, may be found from (12.3) with
the rotated replacement (pz,py,p:) — (Pz,Pz,Py)-

Take an image-forming device that is in focus when at rest, and then
boost it to a. Figures 5, 6, and 7 show33 respectively what our mathematics
predicts should be the image formed by an array of luminous points on a
screen moving towards (+2), sideways (+z), and away from (—2) the optical
axis, at the rather considerable speed of a = 0.3 (v = 0.29131c¢). The
images are supposed to be formed out of a 45°—cone of directions around
the forward pole (optical axis). The paralells and meridians of this spherical
cap constitute the spot diagram of the original point images (marked by
crosses) magnified and aberrated by the Lorentz motion represented by
equations (13.1)-(13.3) and (13.6). :

Some detailed geometric properties of the figures have been explored in
reference [16]. Here we only want to remark that the three figures are faces
of the same aberration, and that they are global: they appear as circular
comatic for small angles in +z-motion and astigmatic/curvature of field for

31posed as a group deformation procedure, we may add to B a multiple p of
and still have the commutation relations (13.5) close. The Lorentz invariants are
B -R =n?p? and R.-B=o.

32These expressions were found by Wolfgang Lassner by a back-and-forth
process involving hand and symbolic REDUCE computation on the trusty old
1IMAS/Cuernavaca PC, checking that two successive z-boosts will compose
properly. '

33] would like to thank Guillermo Correa (IIMAS—UNAM /DF) for the graphics
program SPOT_D, that is capable of reading muSIMP output files through PASCAL
and plotting the corresponding spot diagrams; it works not only with aberration
expansions, but with exact global formulas that apply for Euclidean optics. It
is reported in: G.J. Correa-Gémez and K.B. Wolf, SPOT_D, Programa para Grafi-
cacién de Diagramas de Manchas en Optica. Comunicaciones Técnicas IIMAS,
Serie Desarrollo, No. 97 (1989), 51 pags. The program is open and may be re-
quested from the author.
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FIGURE 5. Relativistic coma in geometric optics. A screen receives the focused
image of an array of object points through collecting rays from 45° cones. When
the screen approaches the source at a velocity of v = 0.29131 ¢ (o = 0.3) the
image amplifies and exhibits global coma.

/rjrg/ =,
=

FIGURE 6. The screen moving at right angles (to the right) at the same velocity.

cross motion; they represent part of the 2:1 mapping of the full Descartes
sphere on the screen. When the motion is but in the screen plane, there will
be a circle of rays that become paralell to the moving screen; the position
coordinate of these rays will then appear to escape to infinity, without
implying any actual singularity in the ray manifold.

6.14 Relativistic coma in Helmholtz wave optics

Helmholtz optics was presented in Sections 9 to 11 as the Euclidean geom-
etry of planes belonging to a definite irreducible representation k of that
group. Here we want to explore the Helmholtz wave optics representation
of the relativistic Lorentz transformation seen in Section 12. We shall do
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FIGURE 7. The screen moving away from the object. Figures 5 and 7, when
superposed, show the § < 45° and 6 > 135° parts of global coma.

this first ‘longhand’, by conventional means of the group deformation argu-
ments of Ref. [15], and then through application of the wavization process
(11.6)—(11.8) on the results of last Section. Finally, we comment upon the
results obtained in reference [17].

The Lorentz transformation of the sphere g€ Ss was shown to have the
formal generator (12.7). Taking into account the measure of the £2(S)
inner product (10.9a)—(10.9b), and recalling the matching condition among
the two functions of the latter, the skew-adjoint generator of z—boosts on
L%(8,) is its symmetrized version,

: AL
g o= (p.gg+%.p), (14.1a)

and the two-chart operator for Hj over the disk 4, is

R Y RO
B = i—’l—p(p-z’%ﬂ). (14.1b)

The upper sign applies on the ‘forward’ hemisphere (p, > 0) and the lower
sign in the ‘backward’ one (p, < 0). Finally, through replacement in the
integrand of the transform pair (10.5), integration by parts (with the ap-
propriate cancellation of boundary terms for &4 with ®_) and extraction
from the integral, we obtain the z—boost generator skew-adjoint on the
Helmholtz Hilbert space My on the screen:

Tl 2R -D
B‘k_lc<(D+1)Ak—k2 o)’ Gl

where D = %(q-(?q + 04:4q) is, as in (11.3) the usual dilatation operator,
and A the Laplacian on the screen plus k2.
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This Lorentz z-boost generator can be written abstractly in terms of the
Euclidean generators T; and R;, j = z,9,2 given in (9.3)-(9.4), (11.1)-
(11.2), or any other realization where Zj 7}2 = —k2, a constant, in the
following forms:

B, = %(:i;fzy SRR ) | (14.3a)
= %(fzyj; —RT, =T (14.3b)
= BT - HASL (143¢)
= —Z (R + (&) + (BT, (14.3d)

where {4, B}, = AB + BA is the anticommutator, [A,B] = AB — BA the
commutator. All operators are here skew-adjoint. The last form (14.3d)
allows us to write the vector boost generator as

B %[RZ,%]. (14.4)

This is the usual algebra deformation formula for ISO(3) = SO(3,1) [15],
and insures that the three components of B; close, together with the rota-

tion generators Rj, into the Lorentz algebra:3*

[Bi, Bj] = —einnBy, (15.4a)
[Bi, B;] = +eijeks. (15.4b)

In £2(S,) the boost generators are first-order skew-adjoint differential op-
erators in the components of p, whose expression includes the symmetrized
version of the p—operator part of the corresponding geometric-optics op-
erators in (13.2) and (13.4). In the Helmholtz Hilbert space M, of two-
functions, they are 2 x 2-matrices with 0/0q-operator entries that may be
found from (11.1)~(11.2) and (14.3)-(14.4). The results so obtained were
reported in reference [17]. They are given by (14.2) for B¥* and, in screen
two-vector form,

Aﬁk__i' ﬁ8q+k2q : 0 '
v k( 0 (D +1)0q + k2q ) - g

The same results for the boost generators may be obtained through ap-
plying the wavization rules given in (11.6)~(11.8) on the function compo-

34We are again allowed to add any real multiple u of T' to (14.4), leading to
all nonexceptional continuous series of SO(3,1) representations according to the

deformation algorithm. The values of the Casimir operators are 2 — B2 = 1 and
R-B=o
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FIGURE 8. Relativistic coma in Helmholtz optics. A Gaussian beam displaced
from the optical center by 2/ko units (marked by the x) and of width 4/kZ units
is focused on a screen. When the screen approaches the source at v = 0.29131¢
(a = 0.3), as in Figure 5, the image exhibits the indicated ‘isophote’ lines given
by the square of the first component of the Helmholtz two-function.

nents of the three-vector

st Pz ¢zh+ py qxp
B=pxR=| —pzaxp+p.qh |, (14.7)
_prxh—pyth

where we write the components as a column to save space. They contain
the same functions that appear in the Poisson operators (13.2b)—(13.4) for
geometric optics. We emphasize that for the purpose of wavization, we
must consider ¢;h and gy h as single observable subject to the wavization
mapping. If we were to replace hp, by p? = n? — p2 — p§ in the first two

components of E, we would obtain n2q — p-qp —tempting us to wavize
q alone. The wavization of this form of the function would be a diagonal
matrix with equal elements (D + %)Bq + k2q.35 The z-component of B,
on the other hand, involves only the combinations hq, and its wavization
yields the correct result anyway.

et us now report on the essentials of the exponentiation of the z-boost
generator (14.2), exp(iaBJ**), carried out in reference [17]. Let us promi-
nently note that the 1-2 matrix element contains D, by itself the generator
of magnifications exp(aﬁ) : f(q) — e*/2f(e®q). The 2-1 matrix element
contains the inverse magnification plus the Schrodinger-quantized coma-
generating function p? p-q [18].

In reference [17] we expanded the matrix operator B* in series to fifth
order in a, involving differential operators up to degree nine. This was ap-
plied with a symbolic computation muSIMP program to a forward Gaussian
beam with waist at the screen, off the optical axis. Strictly, of course, a

35This is, in fact the average of the two diagonal matrix elements in (14.6).
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FIGURE 9. The same beam focused on a screen receding from the source at that
velocity. The dashed lines indicate the geometric Seidel coma caustics at the
apex. The position of the apex is shifted due to magnification and reduction for
each case.

Gaussian function is not, in the Helmholtz Hilbert space Hi because its
Fourier transform has small but nonzero support outside the disk §,,. Cal-
culational expedience, however, makes such a beam an irresistible candi-
date for Investigation: successive 0y,;~derivatives simply pile a g-polinomial
factor in front of it. The resulting Lorentz-transformed squared function
was then evaluated on a square grid, and the numerical matrix fed into
a plotting algorithm that drew the spline level curves shown in Figure 8,
for @ = +0.3 and Figure 9 —0.3, respectively.36 These figures should be
compared with the ones for the geometric optics phenomenon seen in the
last Section. The geometric coma caustic angle (of 60°) and origin (shifted

seem to stabilize by degree five in «. Comparing the figures with the pat-
tern of diffraction in coma aberration [19], it would seern that the o = —0.3
figure comes closer to that of pure coma than the o = 40.3 figure. Actu-
ally, the series contains also, prominently, the magnification generator that
contributes itself with circular fringes centered on the optical axis. These
counteract the curved fringes of pure coma in the first figure, and reinforce
those in the second.

The relativistic coma phenomenon predicted for geometric and Helm-
holtz optics is in a sense perplexing, since none of the two models entertains

e b

%1 would like to thank José Fernando Barral, of the Instituto de Astronomfa,
UNAM, for the indispensable help with the figures in this Section, Some ideas on
applications to digital image processing were also aired and may be pursued with
José Luis Morales, at the Instituto Nacional de Astrofisica, Optica ¥ Electrénica,
Tonantzintla.
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a time variable and, prima facie, has nothing to do with motion. Bradley’s
observation of stellar aberration is fulfilled however, as far as mappings of
the sphere of ray directions is concerned. Yet his experimental setup (a
telescope) will not show the comatic phenomenon because only a single ray
direction is involved in the formation of the stellar image, rather than a
spread pencil of directions brought to focus on the moving screen. It may
well be that a more appropriate environment for this effect to manifest
its properties is in the field of radiating relativistic elementary particles
whose disintegration products are spread and collected from large angles
by means not necessarily optical. Some estimates of the relative size of the
coma caustic have been also given in the reference.

6.15 Reflection, refraction,
and concluding remarks

As, for example, if there passes a ray in Air from A to
B that finds at B the surface of Glass CBR, it detours to
I in this Glass; and another from K to B detours to L;
and another from P to R that detours to S; there must
be the same proportion between the lines KM and LN, or
) 24 PQ and ST, than belitgels[n AI; E%%IG, b;ths)t th:; ;c}lg‘e
7 /2527 between the angles an , or an ;
7 /////////% than between ABH and IBG.
René Descartes, Discourse on the Method
Second Discourse: On Dioptrics

Throughout this paper we have considered the radius of the Descartes
sphere of ray directions to be a fixed number n; in passing to Helmholtz
optics we defined the wavenumber in the medium to be k = nky, with
ko the wavenumber for n = 1. The need for this unit is not in Euclidean
optics of a single homogeneous medium, but to allow for the phenomenon of
refraction, where at least {wo homogeneous media are involved. This we do
here starting with reflections, and ending with some concluding remarks on
what has been done to establish a theory of global optics with wavization,
and what remains to be done. :

In geometric optics, we recall from Section 5, a single light ray is a coset
in the Euclidean group {p,0;q}, a point in the space p = HE™\ &3, In
Helmholtz optics, Sections 9 and 10, a single plane wave is the irreducible
component k = nkg of a coset in N \&5, characterized by p or {p,o}
[see Egs. (10.7)], and realized by the two-function Wp ,(q) (amplitude
and normal derivative) at the z = 0 screen q € R? given in (10.8). We
may define the following two physical operations on the two-disk projected
Descartes sphere of ray directions:

Reflection V'~ "\, R:{p,o}+~ {p,—0}, (15.1a)
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®oovssovvaccchbocscccccssos

FIGURE 10. Four rays on the Descartes sphere: the original ray I, the reflected
ray R, the conjugate ray C, and the reflected-conjugate ray RC.

Conjugation V'~ J}, C:{p,o}— {-p,—0}, (15.1b)

and their product
/VH \f\n RC: {p,d} ERK {_p7‘7}' (1510)

We have called the two former operations physical because the first corre-
sponds to ordinary reflection by a mirror in the z = 0 plane, and the second
to reflection in a phase-conjugation mirror, that reverses the directions of
rays and wavefronts. They both belong to the component of the orthogonal
group O(3) disconnected from the identity I, and may be realized by 3 x 3
matrices diag(1,1,~1) and diag(—1,—1,—1), respectively, of determinant
—1. Their product RC = CR is a proper R3 rotation by 7 around the
z-axis; also, RZ = C? = I. See Figure 10. The small arrow diagrams in
(15.1) express our intuition in geometric optics regarding reflections and
inversions at the screen. In Helmholtz optics reflection R reverses the sign
of the second, normal derivative component in (10.8)3” while conjugation
C is complez conjugation. Note that these operations act exclusively on
ray direction, i.e., on points of the Descartes sphere; they do not affect q,
neither in the geometric nor Helmholtz cases.

In geometric optics the operator | + C produces a world of nondirected
“ X7 rays® while in Helmholtz optics it leads to purely real wavefunctions.

%"The operator of reflection on the Helmholtz Hilbert space M, is realized by
the 2 x 2 matrix diag(1, —1).

38We may see them as having Wigner-type distributions that have the same
value for 5 and —7 at every q. Alternatively, this property could be introduced
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FIGURE 11. The joining of two homogeneous media with two different refractive
indices at the reference (1-dim) screen.

The operator I4R correspondingly creates a “ JK” world where every optical
being is accompanied by its reflection by the z = 0 screen-turned-mirror;
Helmholtz two-functions in particular have zero normal derivative there [see
p, appear in the second component in (10.8); with I —R the first component
is made to vanish]. We should not conclude that there is “nothing behind
the mirror”—whatever that means; only that the distribution of rays or
wavefunctions are forced to satisfy certain boundary conditions at the z = 0
plane. Indeed, through linear combinations of I, C, R, and CR acting on
distributions on g or wavefunctions in Hj, we may describe four-ray 3
situations “3K ” where the z = 0 plane is a special submanifold where
boundary conditions can be imposed.

After these reflections, consider two homogeneous media, characterized
by different refractive indices n, and n,, joined at their z = 0 plane. We
use the word joined rather than separated, because we have the paradigm
of two homogeneous interpenetrating media, and postulate that quantities,
ray distributions or wavefunctions, match at the reference plane. See the
sketch of the two-dimensional analogue in Figure 11.

In geometric optics, let us indicate the coordinates of single rays in the
two p’s by superindices () and (?). The conservation statements will be

gV = q@ € #?, 6n, 3P0 =p@ € 6,,, oV =0®. (152a,b,¢)

as part of the H8°°™ symmetry group.
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or,

pM) 3 {p,a;q}(l) ={p,0;q}?® ¢ ©®  on the common domain.

' (15.2d)
The conservation of ray position q at the refracting surface, the equality
(15.2a), is a generally implied but not at all irrelevant statement; it is on the
same footing as Snell’s law of refraction, equality (15.2b). In the common
region 6, () 6,,, the latter entails n(!) sin (1) = n(?) gin (2 and ¢V = ¢
in the usual spherical coordinates. Equality (15.2¢), distinguishes between
the two possibilities 8(2) and 7 — 6. An immediate consequence of (15.2b)
is the relation between the z—components of 7 and p(2;

ni = (pY)? = nf - (p{V)2. (15.3)

The problem for the global joining between p(1) and p? is that in the
region between the union and the intersection of the 8,’s, one of the p,’s
must be imaginary.

A similar set of conservation statements may be made for Helmholtz
two-functions in the form

F)(q) = F?)(q), for all q € R?. (15.4)

If we work with the plane waves in (10.8), in linear combination with their
reflections through R CJ‘/‘Wp(j),o(j)(q) + C.;-\Wp(j),_,(j)(q), we find also
Snell’s law in the form (15.26) and with the consequence (15.3). There are
also two relations for the four linear combination coefficients, C{" + C’;\ =
C{ +Cy and p,(,l)(Cl/‘ +CQ) = p?‘)(C’{ + C,"). The assumption that a
transmitted wave is not accompanied by its transmitted reflection provides
the ratio of the coefficients of transmission and reflection. As is also well
known, this exercise provides the interpretation of imaginary p,’s as evanes-
cent waves, exponentially decreasing beyond the boundary where total in-
ternal reflection occurs [19]. Such solutions are outside the Hilbert space
Hy. Four-wave situations are of interest in the case of dynamic holograms,
but this would take us beyond the intended scope of this monograph.

In Figures 12, 13, and 14 we present the three subcases of global refrac-
tion for n; < nj, between air to the left and glass. to the right, say. For
01 = +1 = 0, rays, we have the traditional rendering in Fig. 12 of refrac-
tion into denser media, in company with some reflection back into air that
is indicated by dotted lines. In Fig. 13 we picture a 0y = -1 = ¢, ray,
for which the same configuration applies with z = 0 serving as interface
for right-to-left glass-to-air refraction, entailing some reflection back into
glass. Beyond sin () = p, /n2, the conservation laws (15.2) et seq. imply
total internal reflection, as for the ray in Fig. 14, with the presence of an
evanescent wave of imaginary p, lying on one of the branches of the equi-
lateral hyperboloid extending beyond the inner sphere. The three processes
occur in global refraction. To the right, corresponding Feynman diagrams
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FIGURE 12. The diagram of Descartes for refraction from one lighter medium

into one denser.

FIGURE 13. The two media with rays issuing from the right, out of the denser

medium.

FIGURE 14. Internal reflection for rays comming from the denser medium, and

the evanescent ray.
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are drawn, borrowing the implications of a field theory on the coset spaces
of the Euclidean group.

Refraction through curved surfaces 2 = ¢(q), the classical problem of
geometrical optics still has to be understood in Euclidean optics. The root
transformation described in Ref. [18] is amenable to Euclidean treatment,
but the transformation depends on the point of contact 7= (@,¢(q)) in an
implicit form, a function of the ray coordinates {p,o;q}. The problems of
rays tangent to the surface and multiple refraction then appear. A telescope,
in global optics, receives rays from both ends. This inevitably limits the
actual calculational possibilities of Euclidean optics. It is quite clear that
for design purposes, we must resort to the well-tried paraxial approximation
and the aberration expansion tools developed before.

We must thus point out the following avenue of the Euclidean theory
to incorporate lenses, that can be best explained in geometric optical
terms. Euclidean operations that are well defined both in Euclidean and in
Heisenberg-Weyl paraxial optics [see (7.4)(7.5)] are z— and y—translations,
and z-rotations, generated by {p,o} and {p X q,0}. These paraxial &,
transformations are complemented by z— and y-rotations, generated by
{—ayh,0} and {gzh,0}, or by the boosts (13.4), when they are approxi-
mated by {q, o} through A = —n+ ... The approximation of z—translation
(74c) through h = —n+p?/2n + . - - yields first-order spherical aberration
{p?,0} and the z-boost (13.2b) approximates the paraxial magnification
generator {p-q,o}. However, we do not have a Euclidean or Lorentz op-
eration that approximates the generator {¢2,0} [18], so as to have the
paraxial axis-symmetric linear group Sp(2,R); we only have one of its solv-
able subgroups. In other words, we do not have yet3® global “thin-lens”
transformations corresponding even to the paraxial form pP—p+aq.

Slightly over fifty years ago, Eugene P. Wigner published his classical
paper [20] classifying the irreducible representations of the Poincaré group;
possible free particles in Nature were identified as their bases, for each
stratum of four-momenta and corresponding little group spins. Building
on this, in a less well-known paper, Francois Lurgat [21] proposed, twenty-
five years later, that fast decaying particles could be represented by poles
on the complex plane of its coset manifolds, having a Breit-Wigner distri-
bution of masses and spins. Marco Toller [22] took this picture to search
for poles in the scattering cross section at forward momentum transfer to
account geometrically for families of Regge poles that should provide a
kind of dynamics for elementary particle scattering. Now, unlike the case
in Schrédinger quantum mechanics, choosing interactions is notably dif-
ficult in field theories on the Poincaré group, and they remain basically
as theories on empty space. We perceive the analogy with the Euclidean

3%GSee the ch’apter by V.I. Man’ko and K.B. Wolf in this Volume, that addresses
this problem and gives a solution.(Note added in proof).
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group, in itself much simpler than the Poincaré group, in that homogeneous
space rays and waves, polarized or scalar, are well described. But otherwise
well-known elementary interactions such as refraction by a plane, already
need their complex extension. One may hope that processes with a hidden
symmetry, such as scattering by a refracting sphere, by a Maxwell fish-eye
medium, say, or bound systems such as parabolic- or elliptic-profile fibers
could be analyzed in terms analogous to hidden symmetry in quantum
mechanics, keeping ray direction on its now complex Descartes sphere.

In Euclidean optics we do have transformations that globalize some of
the second-order aberrations in the z and y-boosts, and for Seidel spherical
aberration {(p?)?,0} (in z-translations) and circular coma {p’p-q,0} (in
z-boosts). They have been constructed both in geometric and in wave
optics, and generate an infinite dimensional solvable subgroup of all passive
optical transformations. With this limitation and extent we answer the two
questions posed in the first Section. Other issues that have been raised in
the intervening material should be left for further development.
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