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Given a group, its coset spaces provide all homogeneous spaces for its action. A
subgroup chain allows for the construction of a bundle of sections over a coset
space of independent variables, where the fiber coordinates are dependent variables
and all their partial derivatives up to some order, (i.e., the kth order jet). In this
coset bundle, group invariants take the form of differential equations. We present
two families of group-subgroup chains, one leading to various tensor Burgers-type
differential equations, and the other to Korteweg—de Vries equations with an nth
space derivative. Maps of the Hopf-Cole type appear in both families as transfor-
mations which intertwine the original group action to a multiplier realization of a
normally extended group, yielding a new differential equation with greater sym-
metry.  © 1986 Academic Press, Inc.

1. INTRODUCTION

The Burgers equation [1; 2 Chap. 4]

—cuy,+u,+uu, =0, (1.1)

is known to be invariant under the five-parameter set of similarity transfor-
mations [3, 4]
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. td—b
(%5 = ; (1.2a)
a el
q—% q:qd+(cq+x)a:ct+y, (1.2b)
u—4> d=u(a—ct)+cqg+x, (1.2¢)

which constitute a local group %, :=T, A SL(2, R). This is the two-dimen-
sional abelian (translation) group T, with parameters V :=(x, y) in
semidirect product with the group SL(2, R) of unimodular 2x2 real
matrices parametrized through M := (¢ %), ad —bc=1; T, is normal in %,.

The product law for g,, g,€ %, parametrized as g := {M, V}, is
M, Vi }{M,, Vo } = (MM, VM, + V,}. (.3)

The action (1.2) of % on the three-dimensional manifold R> with coor-
dinates (u, ¢, t) is transitive and effective, and thus [5, 6] can be identified
with the right (or left) action of this group on a coset space %, by some
subgroup . In [7], it was proposed to consider the subgroup 4, of

elements
={( L) oolex, (142)
€ =i

and to introduce coordinates on the coset space through representatives

B g, )= {<é _1’> fi q—ut)} cG=H)\%.  (14b)

Since any element g€ % may be decomposed as g = hc uniquely, the right
action of g’ €%, on %, may be found through performing

he(u, g, 1) =5 he(u, g, t) g' = h"c(a, g, ©). (1.5)

This coincides with (1.2), as may be verified through elementary algebra.
The Burgers equation (BE) may be seen thus group-theoretically as an
invariant built out of coordinates of the coset space €.

In this paper we formalize and use this construction procedure for two
partial differential equation families: tensorial versions of the BE and a
family of equations which includes the Korteweg—de Vries (KdV) equation

—CUyyy+u, +uu,=0. (1.6)
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These two equation families are interesting because they possess analogues
of the Hopf-Cole transformation, which we interpret as an intertwining
map between the obtained realization of the symmetry (similarity) group
and a multiplier representation of a normal extension of this group. It may
be remarkable that the intertwining we obtain for (1.6) was used by Hirota
[2, Sect.17.2;8] in his search for multisoliton solutions of the KdV
equation.

The plan of the paper is the following: In Section 2 we set up a general
framework for our construction in the language of coset bundles. This is
not intended to develop a general theory for the subject, since there are still
few compelling steps in the construction, but only to identify them in more
precise terms than those outlined for the simple BE case above.

In Section 3 we propose ab initio a group %y :=Ty A SL(N, R), and a
chain of subgroups of it. The right action of %, on a coset space %, =
A\, and a 2-jet over it leads to various invariants on this coset bundle,
among them tensor versions of parts of the BE. Only when certain sym-
plectic subgroups of %, are considered, however, do we obtain all terms
present in a tensor generalization of (1.1). The task of Section4 is to
produce a multiplier realization of the above group action. This leads to
the Hopf-Cole map of tensor diffusion equations in a group-theoretic con-
text, plus a normal (central) extension of the symmetry group.

There is a wide freedom in choosing groups, coset spaces, and coor-
dinates. Section 5 proceeds through an informed guess to produce the KdV
equation (1.6) among a family of related equations. These have an nth
order g-derivative in the first summand. The symmetry group in this case
has the form 4™ :=T, A, (T,®T,) (an n-dependent semidirect product).
The analogue of the Hopf-Cole transformation leads in Section 6 to a mul-
tiplier representation of a normal extension of this group. The intertwining
does not lead—predictably—to a linear differential equation (except for the
n=2 Burgers case). Instead, we obtain another nonlinear but scale-
invariant equation which for n=3 was used by Hirota in one of his
celebrated papers on the KdV equation [8]. This equation exhibits a
seven-parameter symmetry group.

Some concluding remarks are offered in Section7 on the bundle-
theoretic meaning of our Hopf-Cole-type map, and on the possibility of
extending this construction to other nonlinear differential equations.

2. COSET BUNDLES

Lie groups have a natural action on their coset spaces through right (or
left) multiplication [5, Chap.4]. If  is a group and 4 > #, > #; a chain of
closed subgroups, we may construct the coset spaces %,= #\¥%, %, =
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H\Y, and 6,= H#;\A,. As manifolds, locally, €,=%,x%,. (This is true
globally in our cases.) If we have local systems of coordinates for these
spaces, so that

ci(x)eb, cu)e®, and colu, x) €%, xe R", ue R™,

the group action of % on %, may be found from

hoco(u, x) =5 hoc (u) ¢y(x) g
= hoc (u) hi(x; g) ¢, (%(x; g)) (2.1a)
= h()CO(’Z(uJ X3 g)’ X_(X, g))

Thus as in (1.2)—where x is (g, t)—the transformation nests as

x5 x=%(x; g), u—4> u=1a(u, x; g). (2.1b)
We shall treat x as the independent variables—coordinates of %,, and u as
the dependent variables.

A function u(x) is defined by a section in the bundle %, over 4,, a surface
of dimension # subject to the action of 4. Having this space of functions on
%, with given transformation properties, we can construct its kth-order jet
bundle 2, [9] and determine the action of the transformation group on it.
The points z € &, have a natural coordinate system

z=z(x, u(x), u;(x),..., u(x)), (2.2)

where u,(x) is the collection of all jth-order partial derivatives of the com-
ponents of u with respect to the componénts of x.

The prolongation 7, of the action of ¥ to 2, acts on %, transforming
kth-order partial derivatives into up-to-kth-order partial derivatives. The
action of J, is thus nested as in (2.1b) down to %,=%,. We shall be
interested in those (tensor-valued) functions @ on %, which transform as

P(z) = T, B(z) = (2) = u(z; g) D(2), (2.3a)

where u is a multiplier, i.e., a tensor-valued function on %, x 4 which, due
to the group property, satisfies

Wz g1 82)=u(z; g,) mz(z; 81); 82), mlz;e)=1. (2.3b)

Functions @ satisfying (2.3a)-(2.3b) will be called invariants on the coset
bundle. The solution space of the differential equation @(z)=0 is thus
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invariant in the usual sense [3] under ¢, and ¢ will be contained in its
symmetry group. In fact, we aim to describe situations where % is the
maximal symmetry group of the differential equation.

Suppose we find two invariants @' and &> which satisfy (2.3) with mul-
tipliers u' and u”. Only when the latter are equal will also ¢®' + &2 (¢ con-
stant) be an invariant under ¢. Alternatively, it may be that u' and u?
coincide only over a subgroup %° of 4, ie., u'(z; g°) = u*(z; g°) for g° € %°
only. In that case we may replace ¢ by %4° in all preceding statements, and
consider anew the question of constructing a bundle Z9 out of the coset
spaces €Y= A#N\%° and G)=HN\Y°, where #=H#N%° and #=
#,%°. This reduction will apply for the tensor Burgers equations.

The above framework is sufficient to conceptualize the results of Sections
3 and 5, and those at the end of Sections 4 and 6. The connection between
the two pairs, namely, the group-theoretic version of the Hopf-Cole map,
will be developed heuristically in the latter Sections. We shall defer its for-
mulation in bundle language to the concluding remarks.

3. THE %y-, 95P-, AND 95"-TENSOR BURGERS EQUATIONS
N~ N N

In the context of the preceding section we propose the following con-
struction which will lead to tensorial extensions of the Burgers equation: let
Yy =Ty A SL(N, R). Its elements will be parametrized as

A B

g={M, V), M=<C b

>, detM=1, V=(X,Y), (3.1a)

where A is an m x m matrix, D is an n xn matrix, B and C are m xn and
nx m matrices, m+n=N, while X and Y are m- and n-row vectors. The
multiplication rule in %y is the N x N generalization of (1.3), namely

M,V }{M,,V,} ={M,M,, VM, +V,}. (3.1b)

The group identity is e={1,0} and the inverse {M,V}~'=
M_,, -VM'}.
We consider the subgroups

hy= {<2 l(;>’ (0, 0)} € A, (3.2a)

h,={<2 1(;)’ (X,O)}e]fj, (3.2b)
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where det A #0, and the corresponding coset spaces are parametrized
through the representatives

co(U,Q,T) := {(; _1T>, (U, Q- UT)} €b=\Y, (33a)
1 =T

a@m:={(; ) oeles-mna. (3.3b)

V) = {1, (U,0)) €,= 7\ . 64)

The group action from the right on %, leads through (2.1) to the following
transformation of the coordinates U, Q, and T:

T —% T(T)= (A —TC)~(TD — B), (3.52)
Q— Q(Q, T)=0D + (QC +X)(A—TC) (TD —B)+Y, (3.5b)

U—% U(U, Q, T)=U(A—TC) + QC +X. (3.5¢)

This can be seen to be the generalization of (1.2).
We denote

L:=(D+CT)"}, M:=A-TC, S =QC+X, (3.6)
so that we can write

2, _ or

00 o —6_5—&20’
= OTV (3.7)
Qu_ s "ML
" B vu
oT,, T,

We reserve the first Greek letters o, f,.., for indices in the range
{1, 2,.., m}, and the middle letters y, v,..., for those in the range {1, 2,..., n}.
The dependent variables U= U, form an m-vector under SL(¥, R), the
dimensionality of the space variable Q=0 is n, and T=T,, is an mxn
matrix. Although the interpretation of T as time is not a felicitous one, it
provides one straightforward generalization of Burgers equation to tensor
form. (Later we shall consider T to be a square symmetric matrix, and then
finally allow T=11.)
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Through (3.6)-(3.7) we can calculate the action of J, on the fiber coor-
dinates of the coset bundle %, viz.,

Ua:U5M60c+Sa, (383)
-

Vet [aU" Mo+ c} (3.8b)
20, 20,
30

oUs ou,
e | (M _s My~ C.(Us;Msp+ S ] 3.8¢
o= (Mo 755G Mo ClUsbag S| G30)

&0, L U,
00,00, " 700,00,

where repeated indices are summed. We omit the expressions for
0*0,/0Q, 0T,, and 0°U,/0T,, 0T,

We now consider the space of functions @ on the bundle %,, and search
for invariants in the sense (2.3). In using the expressions (3.8), we may con-
struct

Méoca (38(1)

ou, 6U
6T,,” 00,

Dy z) = Ug—% L, oMM, D)5 (). (3.9)

(This is actually a function on the bundle Z,.) We also have

0*U,

avu(z) ——'an—aQ” LuvaaM /ap(z) (310)
Additionally, one may build further invariant functions through tensor
coupling of the above, or consider 0®,,,/0Q,, or functions thereof. A guide
for the search can be conducted for m=1=n dimension (where L= M),
constructing monomials which transform with the same power of M; it is
straightforward to see that the invariants presented above are the only ones
in %,.

It may be verified that %, is not the maximal symmetry group of either
the differential equation system ®@'(z)=0, or ®?*(z) =0. The former—in its
Schrodinger version (see below )—has been analyzed by Rosen and Ullrich
[107; the latter is linear and its symmetry group includes conformal trans-
formations in each coordinate, linear transformations in any plane, scaling,
and the addition of any fixed solution of itself. Moreover, the two
invariants (3.9)-(3.10) do not define an invariant plane of functions
—c®? + @', since their multipliers are different. We expect a differential
equation to be economically embedded in a group to have this group as its
maximal symmetry group. Otherwise, loss of information or redundancy
may be present.
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Since % does not have a single, full Z,-invariant (in place of two dif-
ferent ones on a sub- and quotient-bundle), we direct our search for sub-
groups of %, where the multipliers in (3.9) and (3.10) are equal. Due to the
dimensions involved, this requires that m = N/2=n, so that N must be
even, and all submatrices in (3.1a) and (3.6), square. Equality of the matrix
multipliers needs L=MT" (transpose), for all values of T. To zeroth order
in T this implies that the submatrices in (3.1a) must satisfy DAT —
CA " 'BAT=1. To first order in T we must satisfy CA~'T=(CA~ )T TT,
which is possible if T is symmetric, reducing thus the dimension of the
coset space and implying in turn (for T=1) that CA ! is symmetric. Since
T must remain symmetric, A~ 'B is symmetric, and hence also D ~'B and
D ~'C. This set of %, elements constitutes the inhomogeneous real symplec-
tic group 43P :=T A Sp(N, R) (with even N), with elements

g={<é g), (X, Y)}: (M, V), (3.11a)

ABT=BA", ACT=CA", BD"=DB",

(3.11b)
CD"=DCT, ADT -BCT =
%3 is the semidirect product of T, with the Sp(N, R) group of real
matrices preserving the symplectic form

0 -1
MKMT =K K:= ] 11
M ’ <+1 0) (3:11e)

The subgroups H#§P « #5P = 43P determining the new coset spaces and
bundles will be the intersection of the old ones with %SP. This restricts
(32)-(33)to D=A"""and T=T". In all ensuing equations (3.6)—(3.7) it
sets L =MT. This restriction in the coset space dimension makes the chain
rules involving T,, read 6/8Ta,,—2(6 /6 «p) 0/0T,, (summing over all
values of i and v) It sets thus a factor of on, and symmetrlzes the right-
hand sides of Egs. (3.8) for every 0/0T,, on the left-hand sides. In other
words, we apply the symmetrizer to every equation involving T4
derivatives, in particular (3.9).

The maximal invariant differential equation obtained in Z5P is thus the
symplectic (tensor) Burgers equation system:

2
U, , 3, 1< ou, aua> L ey

—{ U +U,— |=
aQ,,aQy 0T}, 700, 700,

Each index ranges from 1 to N/2.For N=2 we reproduce the common BE
(1.1), in %:=T,ASp(2,R)=T, ASL(2, R); this is an accidental
isomorphism for N=2.
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The tensor generalization (3.12) of Burgers equation may be regarded as
unnattractive due to the T -derivative, which stands for time in the one-
dimensional original. In order to have a scalar time variable, we may
further restrict 43P to a subgroup obtained by reducing Sp(N, R)>
SL(2, ®) ® SO(N/2). This defines 45" := Ty A [SL(2, R) ® SO(N/2)]. The
group elements will then have the form

b
g:{cg dg>’(X,Y)}E€4§fh, 00"=1, ad—bc=1. (3.13)

The product law is (3.1b), common to all ¥ subgroups. The subgroups
H " = AN G and AN = A, A G5 have the form (3.2) with A = a0,
C=¢0, and D =a"'0. They define coset spaces €5 and €5 with replace
T by 11 in (3.3). The coordinates of the first coset space are (U, Q, ¢),
where U and Q are still N/2-dimensional vectors, but ¢ is a scalar time
parameter. These replacements persist in (3.5) and (3.6), and LT=M=
(a—tc) O. The coset bundle 23" is built upon 3" as before using the
transformation properties of the dependent variable U stemming from %Sch,
The transformation of the coordinates in 25" under the action of 5" may
be translated from (3.8), multiplying by d.swhenever 0/0T,; or 0/0T
appear, summing and formally identifying 0,,0/07,, with 0/0i and
0,30/0T,; with 9/0t. This transformation holds as far as the invariants
themselves in (3.9), (3.10), and the differential equation (3.12). The latter
we may call the Schrédinger (vector) Burgers equation system:

—cV?U +9,U+U-VU =0, (3.14)

for N/2-dimensional U and Q. Again, for N =2 this reproduces the com-
mon Burgers equation.

4. SUMMATORS, MULTIPLIERS, AND THE HOPF—COLE MAP

In this section we present the Hopf-Cole [11, 12] map from a group-
theoretic point of view for the tensor BE. The basic result is its inter-
pretation as an intertwining between the realization (3.5) of 5P and a mul-
tiplier realization of a normal (here central) extension of this group.

Equation (3.8a) for the transformation of the section U(x) (where x
stands for (Q, T)) has the form

U(x) = U(x) =U(x) M(x; g) +S(x; g). (4.1)

This we shall call a summator realization of a group on the section space.
Here M and S are given by (3.6). The composition property of the group
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leads to the well-known composition properties of the (right) multiplier
factor
M(x; g182) =M(x; g) M(X(x; £1); £2),  M(x;e)=1.  (4.2a)

For the summator term, it implies
S(x; 8182) =S(x; g) M(¥(x; £,); £2),  S(x,e)=0.  (4.2b)

Any multiple of a summator term is a summator, in the same way as any
power of a scalar multiplier factor is a multiplier. Due to the presence of
the summator term, the space of sections U(x) does not here constitute a
linear vector space for %, action. The latter is a necessary (but not suf-
ficient) condition for U(x) to be the solution of a linear differential
equation satisfying (2.3).

Turning a summator into a multiplier may be achieved, prima facie,
through taking logarithms. This is not directly possible since U—besides
being an n-vector—is multiplied under %, transformations by M(x; g) =
A —TC. Under the %3P subgroup, where L =MT for (3.6), this factor coin-
cides with the space transformation Jacobian (3.7a), namely

—Z—%’f= [D+CT) '1y=(A—TC)p = [M(x: )1 (43)

v 4

If we express U as the space gradient of a scalar function, the latter will in
general transform according to a summator realization of ¢35 with a unit
multiplier factor. Summator terms S(x; g), moreover, transform under
g' € %3P with the same multiplier factor M(X(x; g); ') as U(x), but in the
g-transformed independent variables x(x; g) [compare (4.1) and (4.2b)].
We thus propose

U.(Q, T)=Kag In ¢(Q, T), (4.4a)

ox

$,(Q,T; g) =K 5% In o(Q, T; g), (4.4b)

o

with as yet undetermined constants K and K'. In this way, as anticipated
(4.1) becomes

0 o e
a—Qaln¢(Q,T)-~*5—Q:1n¢(Q,T)

a

QQ_—’%L—IEiMln o(Q, T; g)
00, KaQ,

= % In[e(Q. T; )% $(Q, T)1. (4.5)
aQa

0
- [—(;Q— In $(Q. T)]

B
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Under integration with respect to Q —# Q, this leads to the multiplier
group action

$(Q, T)— ¢(Q, T)=u(Q, T; ) 4(Q, T), (4.6a)
where the multiplier
Q. T; g)=v(T; g) a(Q, T; g)*'¥ (4.6b)
stems from the summator (4.4b) which, upon integration, yields
a(Q, T; g)* =exp[ (;QC +X)(A-TC) ' Q"] (4.6¢)

times the integration “constant” v(T, g), which may be a function of g and
T alone. This integration function is quite crucial, as it may allow or force
us to centrally extend %3P by a one-parameter group, trivially as a direct
product, or nontrivially as a semidirect product. We thus obtain a scale-
invariant (although not necessarily linear) differential equation for ¢(Q, T).
This equation is obtained replacing (4.4a) into the symplectic tensor BE
(3.12). We express it as a gradient:

o bl A AR @

The transformations ¢ — ¢7,,(T), where 7 is a tensor-valued function of T
stemming from the arbitrariness of the integration constant in (4.4) con-
stitute an infinite abelian normal subgroup of symmetries of the above
equation system. Integrating with respect to Q,, the integration constants
will be functions Fy, of T alone. The infinite part of the symmetry group
will be now lost, but through F; (T)= —0In14,(T)/0T;,, we may set the
integration constants to zero. We do retain, however, the scaling invariance
¢+ ge” for 14, constant. The resulting (in general nonlinear) differential

equation is
0% ¢ 1.\ 0 o _
¢(—caQﬁaQy+aTBv>+<c+§K>é—Q—ﬁb—Q—;—O. (4.8)

Clearly, for K= —2¢ and ¢ #0 above, we obtain the symplectic tensor
diffusion equation

% 0f
@Qﬁ an aT/j'),.

The latter is a simple, linear equation whose solutions may be found in
terms of initial conditions using the techniques of canonical transforms. See

[13].

c

(4.9)
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If we multiply {1, (X,0)} and {1, (0,Y)} in both orders as applied to
(4.8) or (4.9), we see that the symmetry group of these equations involves
the scaling-by-e” subgroup in semidirect product, as a central extension of
%3. The symmetry group of these equations is thus G =T, A G =
Wx A Sp(N, R), where Wy =T, A Ty is the Helsenberg—Weyl group in N/2
dimensions. This group 5P may be parametrized as

§={M,V,z}={M,V,0}{1,0, zedSP= T, ®%5p, (4.10a)

with the product law

{Ml’Vlazl}{M2:V2> Zz}z{M’ V,Z}a (410b)
M=MM,, V=V,M,+V,, (4.10c)
z=2z;+z,+iVKV], (4.10d)

where as before K is the symplectic metric matrix in (3.11c). The primitive
equation (4.7), as we saw, has for symmetry group %SP times a normal
abelian infinite-dimensional semidirect factor; we shall not be concerned
with the latter, and neither with the similar extension of the symmetry
group of (4.9) due to linearity. Rather, we note that it is the generic case
(4.8) which is maximally invariant under 5P, whose central extension over
%3P is forced upon us by the Hopf— Cole map (4.4) and subsequent
integration.

Using canonical transform techniques along the lines of [7, 13], we
determine the integration factor v(T; g), whereupon we find that under
g€Sp(N, R), the dependent variable transforms as

¢ — ¢ =¢[det(A —TC)] /¥

xexp[K ' {(3QC+X)(A—TC) ' Q"+ {XT +Y) X" +z}].
(4.11)
Together with (3.5a) and (3.5b), this constitutes the (finite part of the)

group of symmetry transformations of the differential equation (4.8).
Again we have a nonlinear group action on a manifold which is trans-
itive and effective (viz. Eqs. (3.5a, 3.5b), and (4. 11)), and hence again we
may set up our coset bundle construction using a new subgroup chain
Ay < # < F3. In a pattern which we shall make explicit in the concluding

section, we note that only T,\@5P is efective on the independent variables.
Hence, the coset space may be chosen through

A 0 -
1={<C AT”)’ (X, 0), z}e]ﬁ, (4.12a)

&(Q,T) = {(; ) 0, Q), 0} = H\GP. (4.12b)

=
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The dependent variable ¢, however, is identified with the coset represen-
tative by a new subgroup:

/70={<2 AT01>, (X, 0), cln detA}e.fﬁ,, (4.13a)

1
a0 ={(y

>, (0,Q), KIn ¢} €Gy=H\G5, (4.13b)

C9) = {(; (1)>, (0,0), KIn ¢}G(Zd=,ff{,\%§. (4.13¢c)

Repeating (2.1) for (4.12)-(4.13) we obtain (3.5a), (3.5b), and (4.11). The
construction of a kth order jet bundle &, of sections over €, proceeds as
before. Upon finding the prolongation of the group on the fiber coordinates
(analogues of (3.8)) we verify that (4.8) is an invariant in &, and (4.7) an
invariant in Z,.

The Hopf-Cole map (4.4a) is thus a transformation from the bundle %,
of the last section, onto equivalence classes of %,: orbits in &, under the T,
extension in F5P = T, A %3P, such that the base spaces 4, and %, are trans-
formed in the same way. The map is defined essentially through the fiber
coordinate relation (4.4a) prolonged in the natural way to higher
derivatives. Although there seems to be no compelling restriction on the
position of # in 43P, # must be such that Z5P act effectively on %, so
that the T, extension over 43P have a nontrivial orbit.

We may repeat the above construction for the %3 subgroup of ¥45P
given in (3.13), leading to the same Hopf-Cole transformation (4.4), which
intertwines the summator realization of this group to a multiplier one of
G3h = T, A 95 The Schrodinger vector Burgers equation (3.14) is thus
transformed to the N/2-dimensional vector equation

$(—cV*$+0,8)+ (c+iK)Vg-Vg=0 (4.14)

for scalar . The conclusions on the symmetry group and a parallel coset
bundle construction obviate any further remark on this case.

5. Coset BUNDLES FOR A FaMILY oF KDV-TYPE EQUATIONS

In this section we consider the family of differential equations
—Clyy, +t,+uu,=0, (5.1)

where u,,, denotes 0"u/0q" and ¢ is a constant. This family includes the
Burgers and KdV equations for n =2 and n = 3, respectively. The similarity
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group for the latter is well known and suggests that we examine the four-
parameter solvable groups 4 whose elements we denote

b
g= (M, V}eg™, M:<g a) V=(xy), (52a)

with the product law

M,V }{M,, V,} = {MM,, al -V M, +V, 1} (5.2b)

In principle n could be any real number, but we shall use only natural #’s.
The structure of the group is

G =TED A, (TP TY)

with one n-dependent semidirect product, and where T¢" indicates that the
subgroup parameter is s.

We now propose the subgroups ¥ o #(">#¢ and coset space
representatives

= {( a&), (x, m}wﬂ;ﬂ, (5.32)
(g, 1) = {( _1t> (0, q)}e(g‘l"’zjfﬁ")\g‘"), (5.3b)
0
={< a1>’ (0,0)}69?{{‘), (5.4a)
ot g, ¢ :{( ) (1 g —un) 6l =G, (54b)
cdu) :={1, (1, 0)} € B, = HIN\A. (5.4c)

(Compare with (3.2-3.3) and note that here also cy(u, g, t) = c (u) ¢,(q, t).)
The group action from the right on the €§" coset coordinates follows as in
(2.1) leading to

t—55 {(t)=ta~2—ba~", (5.52)
9% q(g, t)=qa=*""+ txa > —xba~ "+ y, (5.5b)
u—5 d(u) =ua® " + x. (5.5¢)

(For n=2 compare with the BE case (3.5) with N=2, C=0.)
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We now consider sections u(g, ) in the bundle €{" over (" and thereby
build the nth jet bundle %, over %! with fiber coordinates
{u(g, 1), uy(q, 1),..., uy(g, 1) }. The prolongation Z,m of ¥ on Z, can be
obtained from (5.5¢c) using

0;=a”"0,,  0;=a%,—xa%,. (5.6)

Invariant functions on %, are

DU(z) i=u,+uu,,  DNz)=ugy, (5.7)

They have the same multiplier u(z; g)=a*~?" (independent of z) and
hence any linear combination —c®>+ @' provides a differential equation
(5.1) having 4™ in its symmetry group. For n=2 this is the Burgers
equation whose full symmetry group is larger: %,>%®. For n=3 it is the
KdV equation whose full symmetry group is precisely 4. This is true also
for higher n’s. The family of equations (5.1) is thus displayed as coset
bundle invariants for the above group chains.

6. SYMMETRY GROUP EXTENSION AND HopPF—COLE MAPS
FOR KDV-TYPE EQUATIONS

The summator-to-multiplier map for the KdV family of equations (5.1)
can be obtained as in Section 4. The differences with the previous case are:
(i) in (5.4) the multiplier a®>~*” and summator x do not depend on the
coordinates (g, ¢), and (ii) the multiplier is not equal to the space transfor-
mation Jacobian, but to its (n— 1)th power. The latter implies that the
analogue of the Hopf-Cole map for this equation family is

n—1

0
u(q, t)=Ké—Fin @. (6.1)

Under this map, the group action (5.5¢) becomes a multiplier realization.
For n=2 it is the ordinary Hopf-Cole map. For n=3 (and K= —12¢) it is
the map used by Hirota [8] in his search for multisoliton solutions of the
KdV equation. The general-n case leads to nonlinear and rather unwieldy
equations for ¢. We may, however, display the KdV (n = 3) case explicitly:

0y (= by +8)y = Do~ Cygy + 6.) = 3¢($2,— by D)
+[6c+3K10¢5, + 62934 —244,,)1} =0. (6.2)
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Hirota’s choice K= —12¢ and g-integration with a null constant simplifies
the expression to [2, Sect. 17.2; 8]

¢( _C¢qqq =+ ¢t)q - ¢q( »C¢qqq #+ ¢t) - 30( 511 =3 ¢q¢qq4) =0 (63)

(usvally written for c¢= —1). In spite of its complicated appearance,
(6.2)—and (6.3) as well—have symmetry groups larger than ¥, This is
due to the two (in general n— 1) integrations in the map (6.1). A similar
situation was analyzed between (4.7) and (4.8), and lead to the extension of
the symmetry group of the new over the original equation.

The analysis of the integration/extension process may be carried out as
in Section 4. Here we prefer to follow this process on the Lie-algebraic level
since it seems to yield a better insight into the structure of the extended
group in the generic case. We thus introduce the generators of the Lie-
algebra of 4 according to the parameters (5.2a). Using an obvious
notation, these are
J,= —2t0,—(2/n) q0,+ (2—2/n) ud,,, Jy=—0,, J,=0 (6.4a)

y 9>

J,=10,+0,. (6.4b)

The abelian normal subgroup T7%§°* corresponds to the subalgebra
generated by J, and J,, which commute. The particular choice of null
integration constants for (6.1) maps 0, to [K(n—1)!]"'¢"~ 1¢6¢, and ud,
to nought. Hence, (6.4) are mapped to the set of operators

Jo= =210, (2/n) q0,+v$dy4, J,=-0,, JT,=0, (6.5a)
Jo=10,+ [K(n—1)!11""q""'4d,, (6.5b)

respectively, where v is an arbitrary constant. The commutators of (6.5)
follow those of (6.4), except for [.7X,.7y] which is no longer zero, but
[K(n—2)!1""q""?¢0,. If n=2 (the BE case), the latter generator is cen-
tral and the group extension thereby complete. For n> 3, this is not the
case: through repeated commutation with J,, J,, and J, we obtain
in(n—1) extra operators

T = (KI')~' t*qg'¢d,, O<k+I<n—2, (6.5¢)
3

which together with (6.5a) and (6.5b) constitute the Lie algebra of the
extended symmetry group 4™5%™ of the differential equation (6.2)
satisfied by ¢. The subset (6.5c) is a normal abelian subalgebra, and J,, is
the center for ™. The one-parameter central extension of Section 4 is thus
specific to the n=2 BE case; the n=3 KdV case extends 4 to 4? by
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three parameters. Nonzero choices of the integration constants (functions
F(7)) used in (6.4)-(6.5) would lead to different extended algebras involv-
ing operators F(r) ¢" *¢0,, k=2,.,n and their repeated commutators
with (6.5a)-(6.5b). The present choice (6.5¢c) is minimal and keeps the
dimension of the extension finite.

" The action of the various one-parameter subgroups generated by each of
the operators in (6.5) on the %, bundle coordinates (¢, ¢, ¢) is as follows.
For ¢ and ¢ it is the same as (5.5a)-(5.5b), the extension exp(X, C* Tir)
being the stability group of every point; hence only 4™ acts effectlvely on
this submanifold. For the new bundle coordinate ¢, exp(bJ, + yJ ) is the
stability subgroup while the rest of the extended group elements act as

{(eu 0a>, 0, [0]} ¢ =exp(a],) § = e™4, (6.6)

0 e

(1.5, 103} mexp(T. 407 g =g op (3 3 L)
(6.6b)

The latter expression yields the consistent integration constants of (6.1)
under this two-parameter group. Finally,

{1,0, [{¢¥}]} ¢ :=exp <Z C"’.Tk,> $=¢exp <K" Y C"ltkq’/l!) (6.6¢)
k,l k1

These equations thus provide a multiplier realization of ¢ on the new ,

bundle coordinates. The prolongation Z4w on the bundle of sections Z, is

straightforward through the use of (5.6).

The fact that 4"—or any other infinite normal extension of %
obtained through various integration-constant functions of ¢ alone as
described above—is the full symmetry group of (6.2) is obvious by con-
struction. For the g-integrated form of the same equation, in particular
(6.3), this statement is true only for Z™: any term F(z) ¢ replacing zero on
the right-hand side, would not be invariant under the full group, but could
be produced out of exponentiating the generators in other extensions.

As was done in the last section, the 4" group multiplication law
extending (5.2) may be obtained explicitly. For this one may use the sym-
bols in (6.6) plus various Baker—Campbell-Hausdorff relations to move
normal subgroups through the semidirect products. For n =2 (the BE case)
we obtain a subgroup of (4.13) for N=2. For the n=3 KdV case, the
expression is still sufficiently compact to merit its explicit display. Let

g={M,V,[{1}={M,V,[01}{1,0,[({1} eF?, (6.7a)
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with M and V as in (5.1a), and [{] := [£°, {'9, (°°]. Then, the product law
appears as

{Mla Vl’ [al: ﬂl’ yl]}{MZ’ VZa [062, BZ& 7’2]} = {Ma V’ [(Z, ﬁa yJ}’ (67b)

M=MM,, V=dalV,M,+V,, (6.7¢c)
a=a; ?Pa, +a, + IVKVT, (6.7d)
B=a;2B,+ B, —a; Px,0, + Hx + x,) VKVT, (6.7¢)
Y=y + 7y —a; Py0,+a; b8, + Ly + y,) VKV, (6.7f)

where K is the 2 x 2 symplectic metric matrix in (3.11c¢).

The last part of Section 4 identified the dependent variable satisfying the
tensor diffusion equation with a coset space coordinate represented by the
center of the symmetry group 4P (cf. Eq. (4.15¢)). The same construction
can be made with the solutions of Eq. (6.2) [and Hirota’s equation (6.3)
for K= —12c]. The subgroup chain Z®' > # ()= # and the coset space
parameters are the analogues of (5.3)(5.4) for 4, namely,

R NN Y ﬂ}effssn (632)
¢i(q, t) = {((1) w1t>, 0,9),[0,0, 0]}6@‘13)= 9?(13’\@‘3’, (6.8b)

EO:KH a91>, (x,0), [0 B, —12vcIna]be #,  (6.9a)
ZA$):={1,0,[0,0,KIn¢]1} e E,= A\H, (6.9b)

where the coset representatives of €§) = #F\F® may be clearly built as
Co(@, q, t)=7Cy(P) ¢1(g, t). The parameter v is the ¢-scaling multiplier
parameter for J, in (6.6a). The right action of the group 4 (Egs. (6.7))
on the above coset space coordinates has thus the differential equations
(6.2) and (6.3) for its coset bundle invariant. The latter is Hirota’s equation

when K= —12¢c.

7. CONCLUDING REMARKS

Whenever our starting point is a differential equation which possesses a
symmetry group ¥ larger than that of pure independent variable transfor-
mations, a subgroup chain may be found so that the differential equation
becomes a coset bundle invariant, and the structure presented in Section 2
applies. This is due basically to the fact that the dependent and indepen-
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dent variables constitute a homogeneous space for the symmetry group,
and all homogeneous spaces are coset spaces [5, 6]. Some ingenuity seems
to be necessary, however, to find concrete coordinates in specific
realizations. In Sections 3—-6 we have given four families of examples of this
(Egs. (3.12)—(3.14), (4.8)-(4.9), (5.1), and (6.2)-(6.3)).

In the language of coset bundles, the generalized Hopf-Cole map
appears to conform to the following pattern: (i) We produce an extension
of the symmetry group ¥ to a larger group Z=& A ¥, & being normal in
& in our examples & is, furthermore, abelian and possesses a one-dimen-
sional center for 4. We assume a subgroup chain # c #, =% has been
found for the equation as described in Section 2. (ii) We then build # =
& A #,, so that G, = #\G—the space parametrized by the independent
variables x—is a homogeneous space for 4 on which only the % subgroup
of 4 acts effectively, and so that its action be identical to the original action
of 4 on €, = #\¥9. There does not appear to be any reason in principle for
this to occur, but it is the case in the two families of examples treated here.
Lastly (iii) a subgroup # = # must be found so that & can act effectively
on 6, = #)\F—the space parametrized by the dependent variables ¢. If ¥
has a center, this must be involved in the coset representative so that the
action of & be effective; here it has been arranged so that it produces the
subgroup of scalings.

These three steps refer to the coset spaces for the two groups. We assume
we have constructed a coset bundle of sections Z; for the first equation as
in Section 2, and we do likewise for the second subgroup chain described
above, to obtain a second bundle of sections &, subject to the prolonged
action of 4. We then search for invariants &(Z) on the Z. bundle
z{x, #(x), ¢1(x),.., dr(x)}. We may expect k' > k.

The differential equation &(%) =0 will have for symmetry group -9,
and a one-to-one mapping M should exist between the old bundle coor-
dinates z and the orbits of Z under the extension subgroup & c %. If the
independent variables x in %, and 4, are the same, this mapping M will
only involve nontrivially the fiber coordinates %,\%, and €,\%,. This
framework would seem to include the possibility of very general Bicklund-
type transformations [14].

For the examples at hand, two simplifying features occur. First, the map-
ping M is of the form u(x)= M(Z) prolonged to the rest of Z, by differen-
tiation, and so the extension subgroup & is recognizable as the kernel of M.
Second, the invariant & may be written as a gradient: H(F.)=
Dd(M(Z,))=0,¥(Z._,), and the differential equation ¥(F, _,)=0 still
exhibits a symmetry group 4 with a finite-dimensional extension over %.

Relating the solutions of a nonlinear differential equation to the
solutions of a second such equation with a larger symmetry group seems to
be conducive to certain valuable results. The Burgers-to-diffusion transfor-
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mation through the Hopf-Cole map, KdV-to-primitive KdV, and modified
KdV-to-KdV through the Miura map [15] (the latter not included in this
paper: see [ 14] exemplify one-parameter extensions. The Hirota map for
the KdV equation exemplifies a three-parameter extension. Beyond this,
one should note the fruitful use of group representation and coupling
theory on homogeneous spaces to expect that group invariants on coset
bundles may provide additional insight into nonlinear differential
equations.
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