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Finite Kerr medium: Macroscopic quantum superposition states
and Wigner functions on the sphere
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We propose a spin model which exhibits the main properties of the Kerr medium. The description of the
model uses a recently generalized quasiprobability distribution~Wigner function! for the SU~2! group. This
function is naturally defined on the sphere, which plays the role of phase space for the spin system. Our model
leads to macroscopic quantum superposition states on the sphere.@S1050-2947~99!06908-5#

PACS number~s!: 03.65.Bz, 42.50.Fx
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I. INTRODUCTION

To stress the intriguing implications of the quantum s
perposition of states which are macroscopically differe
Schrödinger@1# proposed quantum states with the followin
structure:

au living cat&1budead cat&, ~1!

where the two components are superposed with amplituda
andb. These have become known as Schro¨dinger cat states
It is certainly difficult to obtain and characterize states~1! in
Schrödinger’s original setting, so Yurke and Stoler@2# pro-
posed instead to take a single mode of a radiation field,
superpose its coherent states with macroscopically diffe
parameters. Similar ideas were formulated earlier
Bialynicka-Birula @3#, and we also point out the odd an
even coherent states discussed by Dodonov, Malkin,
Man’ko in Ref. @4#.

It was shown in Ref.@2# that a superposition of coheren
states with macroscopically different phases can be ge
ated in the course of the evolution of a single-field mode i
Kerr medium with the Hamiltonian@5#

HKerr5vn1xn2, ~2!

where\51. Here the operatorsa, a†, andn5a†a describe a
single-field mode of frequencyv, andx is the Kerr constant.
While the photon number distribution is clearly unchang
by Hamiltonian~2!, it still leads to a nontrivial phase evolu
tion.

In this paper, we propose a spin model which exhibits
main properties of the Kerr medium. The model is form
lated in terms of spin operatorsSi , i 51, 2, and 3, acting on
the (2l 11)-dimensional Hilbert space of a particle of spinl.
The natural phase space is a sphere of radiusl; the spin-
coherent states are thus represented by spots on the sp
Here our model leads to Schro¨dinger cat states on the spher
i.e., superpositions of several spots located ‘‘far’’ from ea
other. The description of the model and its dynamics will
made using a recently generalized Wigner quasiprobab
PRA 601050-2947/99/60~3!/1817~7!/$15.00
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distribution on the SU~2! group@6#. In the limit l˜`, when
the su~2! algebra of spin operators contracts to t
Heisenberg-Weyl algebra of boson operators, the sph
opens to the phase plane and the model coincides with
quantum harmonic oscillator or, through a renormalizati
with the common Kerr medium.

After a brief review of the Kerr dynamics in Sec. II w
formulate our model in Sec. III. Section IV describes t
Wigner function on the SU~2! group; we discuss the evolu
tion of the spin-coherent states into cat states in Sec.
Possible physical applications are briefly discussed in
concluding section~VI !.

II. KERR MEDIUM

The Kerr Hamiltonian~2! characterizes certain gener
properties of quantum dynamics. It can be used to gene
both quadrature@7# and amplitude squeezing@8# for short
times, when the initial wave packet spreads in phase
revolves around the origin in the phase plane@9#. When the
phase spread exceeds 2p, the front of the wave packet inter
faces with its tail. This self-interference is a quantum feat
and has no classical counterpart@10#. At some time instants
the self-interference leads to standing waves which co
spond to Schro¨dinger cat states. A similar phenomenon al
appears in other examples of quantum nonlinear evolut
such as the Jaynes-Cummings model@11#, where it is called
fractional revivals; the Dicke model@12#; Rydberg wave
packets@13#; and particles in one-dimensional anharmon
potentials@14,15#.

It is convenient to ignore the fast rotations of the pha
plane generated by the linear termvn in Eq. ~2!, and to
introduce the time scalet5xt. The nonlinear partn2 of
Hamiltonian ~2! has an integer spectrum, and which is
specific feature of the Kerr medium. It is distinct from th
Jaynes-Cummings and Dicke models, where the effect
field Hamiltonian~for special initial conditions@16#! is writ-
ten asH;An11/2 @17#. The latter will also lead to phas
spread and self-interference, but the standing waves are
so well pronounced as for the Kerr medium. Due to the
teger spectrum of Hamiltonian~2!, it is easy to prove that a
1817 ©1999 The American Physical Society
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1818 PRA 60CHUMAKOV, FRANK, AND WOLF
timesxt5pK/M ~whereK andM are mutually prime inte-
gers! the wave function is a superposition ofM copies of the
initial state, placed equidistant along the circlen̄5const@18#
~see also Ref.@19#!. When M51, the initial state is repro-
duced up to a global phase factor.

To describe a stateC of a quantum system, it is cleare
to draw the picture of the corresponding Wigner quasipr
ability distribution W(Cup,q), wherep and q are classical
coordinates of phase space@20#. Generalized coherent state
have Gaussian Wigner functions that are positive@21#.
Schrödinger cat states cannot be produced from a sin
Gaussian by linear dynamics. Quantum nonlinear dynam
introduces oscillations into the Wigner functions on pha
space@9#, with regions where the Wigner function take
negative values. For a two-component cat state, these o
lations are localized near the midpoint between the center
the Gaussians~i.e., the ‘‘smile of the cat’’@22#!.

III. ANALOG OF THE KERR HAMILTONIAN FOR SPIN
SYSTEMS

It is well known that the Heisenberg-Weyl algebra can
obtained by contraction from the su~2! algebra. For this pur-
pose we consider the su~2! commutation relations

@S3 ,S6#56S6 , @S1 ,S2#52S3 , S65S16 iS2 ,

and, in a definite unitary irreducible representationl, we
build the operators

b5
S2

A2l
, b†5

S1

A2l
, N5S31 l . ~3!

The su~2! algebra in this representation is thus written as

@N,b†#5b†, @N,b#5b, @b,b†#512
1

l
N. ~4!

In the limit l˜` these operators have the commutation
lations of the oscillator algebra, withb and b† being the
usual boson operators.

Let us keepl finite, however, and consider the oscillato
like Hamiltonian

H5
v

2
~bb†1b†b!. ~5!

In terms of the spin-l operators@Eq. ~3!#, this is written

H5
v

4l
~S1S21S2S1!5

v

2l
~S22S3

2!5vS N1
1

2
2

1

2l
N2D ,

~6!

wherev is a constant. The analogy of Eq.~6! with the usual
Kerr Hamiltonian ~2! is evident, since the operator of th
spin excitation numberN has a non-negative integer spe
trum k50,1,2, . . . . The difference between the photo
number operatorn andN is that the spectrum of the latter
bounded from above:k<2l .

Using the commutation relationf (N)S15S1 f (N11) we
obtain S1(t)5eitHS1e2 i tH , and from here the solution o
the Heisenberg equations of motion is
-

le
cs
e

il-
of

e

-

S1~ t !5eivt~2l 11!/2le2 iv~ t/ l !NS15@S2~ t !#†, S3~ t !5const,

in complete analogy with the Kerr medium@7,10#. We can
write this solution in the forms

S1~ t !5eivt/2l@cos~Vt !S12sin~Vt !S2#,
~7!

S2~ t !5eivt/2l@sin~Vt !S11cos~Vt !S2#,

where V5v(12N/ l ) is an angular frequency which de
pends on the excitation number operatorN. The time evolu-
tion of SW (t) is a rotation around thez axis, but the precession
frequency depends on the latitude on the sphere.

In the limit l˜`, Hamiltonian ~6! becomes the usua
quantum harmonic-oscillator Hamiltonian, i.e., the nonl
earity disappears. We can also modify Eq.~6! to obtain the
optical Kerr Hamiltonian in this limit, replacingv/2l by a
free parameterx. Indeed,

H5v~N1 1
2 !2xN2 ~8!

is the common Kerr Hamiltonian~2! as l˜`. Note, that in
molecular physics@23#, this model corresponds to a diatom
molecule approximated by a Morse potential. It was recen
shown @24# that the effective Hamiltonian of type~8! de-
scribes the interaction of the collective atomic system w
the off-resonant quantum radiation field in a dispersive c
ity.

IV. WIGNER FUNCTION ON SU „2…

In this section we define the Wigner function on the gro
SU~2! introduced in Refs.@22# and @6#. We do this in a
mathematically careful manner to avoid confusion with oth
different distribution functions on the sphere that have be
used for spin systems@25#. We stress that with this definition
we shall have full SU~2! covariance, that the generalize
overlap formula holds, and that the reconstruction of sta
and density matrices can be accomplished, just as in qu
tum mechanics with the usual Wigner function@26#.

We denote bySW 5$Si% i 51
d the row vector of spin operator

closing into the su~2! algebra. The generic SU~2! group ele-
ment in polar parametrization~indicated by brackets! is
given by a 3 vectoryW of length j5uyW u and unit directionuW
5yW /j5(sinu sinf,sinu cosf,cosu),

g@yW #5exp~2 iSW •yW !5exp@2 i j~S1u11S2u21S3u3!#.
~9!

This is a rotation by the anglej around the axisuW , with 0
<j<2p,0<u<p,0<f,2p; the group manifold is the 3
sphereS3 . The Euler angles are also often used, writing
arbitrary SU~2! group element in the form

g~a,b,g!5exp~ iaS3!exp~ ibS1!exp~ igS3!. ~10!

The connection between polar and Euler parameters is
known ~see, e.g., Ref.@27#!.

The three generatorsSW 5(S1 ,S2 ,S3) transform under the
action of the SU~2! group as the components of a row vect
with the 333 orthogonal matricesR of theadjoint represen-
tation
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g@yW #SW ~g@yW # !215SW R@yW #. ~11!

Applying the group transformationg5g@yW # to an arbitrary
operatorSW •xW from the su~2! algebra, we haveg(SW •xW )g21

5SW •xW8, where xW85RxW . Column vectorsxW belong to the
three-dimensional real spaceR3, conjugate to the vecto
space of the Lie algebra, and carry thecoadjointrepresenta-
tion of the group@28#, xW85RxW . This spacexWPR3 we will
call themetaphase-spaceof the classical dynamical system

Acting with all group transformationsg@yW # on an arbi-
trary fixed vectorxW0 in the coadjoint representation, we o
tain its grouporbit. This orbit has a symplectic structure an
is the common phase space@29,30#. When we choose a defi
nite irreducible representation of spinl, the group acts on the
Hilbert space of statesuC& of the corresponding quantum
system with the scalar product^FuC&5(m52 l

l fm* cm . An
arbitrary pure spin stateuC& is represented by a column ve
tor with componentsCm , m52 l , 2 l 11, . . . ,l . For sim-
plicity we use the same notation for the group elementg and
its unitary representation image@Eq. ~9!#.

We now define theWigner operatoras an operator-value
function on metaphase space,

Ww~xW !5E
SU~2!

dyW w~j!exp@ i ~xW2SW !•yW #

5E
SU~2!

dyW w~j!exp~ ixW•yW !g@yW #. ~12!

Here dyW5dy1dy2dy2 , j5uyW u, w(j) is a weight function,
and the integral is over the group manifold.

In Ref. @6# we considered the Haar invariant measure o

the group for integral~12!, wHaar(j)5 1
2 j22 sin2 1

2j. While
this is an obvious choice, it is not the only one; see belo
We shall drop the subscriptw from the Wigner operator
until more than one weight is used. For a given value ofl, the
Wigner operator is reduced to th
(2l 11)3(2l 11)-dimensional Hermitian matrix
iWm,m8

l (xW )i .
The Wigner~quasiprobability distribution! function is the

matrix element of the Wigner operator between the statesuC&
and uF& with definite l,

W~C,FuxW !5^CuW~xW !uF&5 (
m,m852 l

l

Cm* Wm,m8
l

~xW !Fm8 .

~13!

Most often this is used forC5F; then we indicate
W(C,CuxW ) by W(CuxW ), and we suppressl when conve-
nient. When instead of pure states we have a density ma
r, the Wigner function is

W~ruxW !5tr$W~xW !r%5 (
m,m852 l

l

Wm,m8
l

~xW !rm8,m . ~14!

The W-matrix elements are

Wm,m8
l

~xW !5E
0

2p

w~j!j2djE
S2

dvW exp~ i jvW •xW !Dm,m8
l

~jvW !,

~15!
r

.

rix

The casew5wHaar(j) was considered in Ref.@6#, where the
correspondingW-matrix elements were obtained in terms
the common D-matrix elements Dm,m8

l (yW )
5^ l ,muexp(2iyW•xW)ul,m8&, of angular momentum theory@31#,
also but independently associated with the name of Wig
~see the Appendix!. It was shown in Ref.@6# that the radial
projection of the Wigner function

W~x!5E
S2

duW W~CuxuW !, uxW u5x

has its maximum value over the sphere for radiusj
'Al ( l 11). The figures in this paper are values of t
Wigner functions plotted for this radius. We now list th
three most relevant properties of the Wigner function: co
riance, overlap formula, and density-matrix reconstructio

Covariance:From the form of integral~12! and the defi-
nition of the adjoint representation~11!, it follows that the
Wigner operator~12! satisfies the SU~2! covariance:

g@yW #W~xW !~g@yW # !215W„R~yW !xW…. ~16!

This means that the linear quantum dynamics can be c
pletely described by the corresponding transformation
classical metaphase space. Covariance holds for any ch
of the functionw(j) in Eq. ~12!.

Overlap formula:Consider two states of the same spinl,
uC& anduF&, with corresponding Wigner functionsWw(CuxW )
andWw̄(FuxW ), for two different weight functionsw(j) and
w̃(j). We shall prove that the overlap of the two states c
be calculated by integration over the metaphase space o
product of their Wigner functions, i.e.,

2l 11

16p5 E
R3

dxW Ww~CuxW !Ww̄~FuxW !5 z^CuF& z2, ~17!

if and only if the two weight functions are conjugate in th
following sense:

w~j!w̃~j!5wHaar~j!5
1

2j2 sin2
j

2
. ~18!

This is the counterpart of the corresponding well-know
property of the common Wigner function on the Heisenbe
Weyl group@20#, where the Haar weight function is 1.

The integral on the left-hand side of Eq.~17! can be un-
derstood as a mean value of an operatorŝ which acts on the
direct product of two Hilbert spaces of the same value ol,

E dxW Ww~Cux̂!Ww̃~FuxW !51^Cu2^FuŝuC&1uF&2 ,

~19!

where

ŝ5E
R3

dxWWw~CuxW ! ^Ww̃~FuxW !. ~20!

We will show now thatŝ is proportional to an exchang
operator. Integral~20! is found by replacing the definition o
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1820 PRA 60CHUMAKOV, FRANK, AND WOLF
the Wigner operator~12! into Eq.~20!; this can be integrated
over xW yielding a Diracd. Due to relation~18! between the
weight functions, we have

ŝ5~2p!3E
SU~2!

dg@yW #exp~ iyW•SW 1! ^ exp~2 iyW•SW 2!,

~21!

where dg@yW #5 1
2 sin2(j/2)dj df d cosu is the invariant

~Haar! measure, and the integral is over the group manifo
Let $um&1um8&2 , 2 l<m,m8< l % be an orthonormal basis i
the tensor product of the two copies of the Hilbert spa
Consider the matrix elements of Eq.~21!,

1^mu2^m8uŝun&1un8&25~2p!3E
SU~2!

dg Dmn
l ~g!

3Dm8n8
l

~g21!.

From unitarity we haveDm8n8
l (g21)5@Dn8,m8

l (g)#* . Be-
cause of the well-known property of orthogonality of th
D-matrix elements, we find

1^mu2^m8uŝun&1un8&25~2p!3E
SU~2!

dg Dmn
l ~g!

3@Dn8,m8
l

~g!#* 5
16p5

2l 11
dmn8dnm8 .

Thus the operatorŝ exchanges the states of the first and
second Hilbert spaces,

ŝuC&1uF&25
16p5

2l 11
uF&1uC&2 . ~22!

Comparing this result with Eq.~19!, we find Eq.~17!.
Clearly, if we choose the ‘‘self-conjugate’’ weight func

tion

w0~j!5w̃0~j!5
1

&j
sin

j

2
, ~23!

then the overlap formula holds for the samew Wigner func-
tion. Another interesting choice of the weight function
w(j)5w̃Haar51.

Reconstruction of the state:Given the Wigner function
W(ruxW )5tr$Ww(xW )r%, we can reconstruct the density matr
r of the corresponding state of the system. Let$u f n&%n52 l

l be
an orthonormal basis in the (2l 11)-dimensional Hilbert
space. Denote byW̃n,m the matrix elements of the
w̃-conjugate Wigner operator between the statesu f n& and
u f m&,

W̃n,m~xW !5^ f nuWw̃~xW !u f m&.

The elements of the density matrix in this basis are given

rn,m5
2l 11

16p5 E
R3

dxW W̃n,m~xW !W~ruxW !. ~24!

Indeed, for the pure statesr5uC&^Cu, from Eqs.~20! and
~22! it follows that
.

.

e

y

2l 11

16p5 E
R3

dxW W̃n,m~xW !W~CuxW !

5
2l 11

16p5 1^ f nu2^Cuŝu f m&1uC&2

51^ f nuC&1 2^Cu f m&25rn,m .

For mixed states, consider the basis$ur n&%n52 l
l where the

density matrix is diagonal:r5(cnur n&^r nu. Then W(ruxW )
5(cnW(r nuxW ), and we have

2l 11

16p5 E
R3

dxW W̃n,m~xW !W~ruxW !

5
2l 11

16p5 (
k

ckE
R3

dxW W̃n,m~xW !W~r kuxW !5rn,m .

We note that the SU~2! Wigner function provides the
SU~2! Q function used by Agarwal, Puri, and Singh in Re
@24#. Indeed, the overlap of thew Wigner function of a state
uC& with the w̃ Wigner function of a coherent statesua,b& on
the sphere~see below! is Q(a,b)5u^abuC&u, the non-
negative function studied in Ref.@24#.

V. EVOLUTION OF COHERENT STATES ON THE
SPHERE

The above concepts will be now applied to describe
evolution in a Kerr medium of spin-coherent states.

Spin-coherent states.We now particularize the spin-l
model to a system of 2l two-level atoms prepared initially in
a state symmetric under permutations of atoms. If the in
action Hamiltonian also has this symmetry, then there
2l 11 accessible statesum5k2 l &, 0<k<2l , called the
Dicke states@32#; here 2l 2k is the number of atoms in the
ground state, andk is the number of atoms in the excite
state.

The simplest examples of spin-coherent states@33,30#, are
the statesu0& ~spin down! and u2l & ~spin up!, both of which
have uncertaintiesDS350 and DS15DS25Al /2. All the
other spin-coherent statesua,b& can be produced by rotatio
from the stateu0&, as

g~a,b,g!u0&5eiaS3eibS1eigS3u0&

5e2 i l geiaS3eibS1u0&5e2 i l gua,b&, ~25!

where we have used Eq.~10!. The rotation angleg leads to a
phase factor which may be disregarded. Mathematically
corresponds to the reduction from SU~2! to the factor space
SU~2!/SU~1!5S2 @30#. The general form of spin-coheren
states is thusua,b&5eiaS3eibS1u0&. The manifold of spin-
coherent states is phase space@30#, and is a sphere of radiu
l ~called theBloch sphere in quantum optics and thePoin-
caré sphere in polarization optics@35#!. The components of
spin-coherent states in the eigenbasis ofS3 are the SU~2!
d-matrix elements@27#
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^mua,b&5eim~a2p/2!dm,0
l ~b!5eim~a2p/2!

3S ~2l !!

~ l 2m!! ~ l 1m!! D
1/2

cosl 1m
b

2
sinl 2m

b

2
.

~26!

The Wigner function of the spin-coherent stateua, b& is a
round, concentrated blob on this sphere, centered at the p
~a, b!. The radius of the Wigner blob on the sphere isAl /2,
whereas the radius of the sphere isl. The classical limit for
the spin system occurs when the dimension of the repre
tation, 2l 11, grows without bound and thus the direction
the vectorSW becomes sharper. Hence the classical limit o
spin system is a magnetic needle, i.e., a compass.

The evolution of the initial spin coherent state under
finite Kerr Hamiltonian@Eq. ~6!# is shown in Figs. 1~a!–1~f!
for l 58. The level plots of the Wigner function withw(j)
5wHaar(j) for the value of the radial coordinateuxW u
5Al ( l 11) are shown for various subsequent times. Let
analyze these figures.

We start in Fig. 1~a! at t50 with an eigenstate ofS1 of
eigenvaluel; this is a coherent state. As time evolves, t
points of phase space move only ina ~geographical longi-
tude, or phase!, keepingb ~colatitude! constant. This evolu-
tion multiplies eigenstatesum5k2 l & by phases

exp$2 i t @v~k1 1
2 !2xk2#%, ~27!

FIG. 1. Time evolution of the Wigner function on the sphe
governed by a nonlinear finite Kerr Hamiltonian, forl 58. The plots
have the following line code: , visible grid, positive, and zero
level lines;

• • •
, invisible grid and positive-level lines

, visible negative- and zero-level lines;̄ , invisible
negative-level lines. The times are~a! xt50 ~initial coherent state!,
~b! xt50.15, ~c! xt5p/3, and~d! xt5p/2.
int

n-

a

e

s

and keeps the probability distribution of the statesum&. The
phasevtk leads to the rigid rotation of the sphere around t
vertical axis; this will be extracted so that we consider on
the nonlinear phase shifttxk2. In analogy with the usua
Kerr medium, as time evolves we can expect phase sp
and squeezing along some direction different from
3-axis. Indeed, this is shown in Fig. 1~b!. Slanted squeezing
was reported previously for this Hamiltonian by Kitagaw
and Ueda@36#. For longer times, self-interference appea
This is shown in Figs. 1~c! and 1~d!, for triple and double
resonances, respectively, at timesxt5p/3 andp/2. We now
proceed to prove that the latter are true Schro¨dinger cat states
@24# and find the amplitudes of the components in the
states.

Schrödinger cats on the sphere.The figures suggest tha
at resonance timesxt5pK/M ~with K and M mutually
prime; we takeK51 for simplicity!, the initial coherent state
unfolds into a sum ofM coherent states placed equidista
around the equator.

Indeed, the nonlinear phase in Eq.~27! is produced by the
unitary operator exp(ixtN2), where N is the level number
operator defined in Eq.~3!. At timesxt5p/M , for M even,
the eigenvalues exp(ipk2/M) of the operator exp(ixtN2) are
periodic ink with periodM ~invariant under the substitution
k˜k1M ). For M odd, we consider instead the operat
exp@ixtN(N21)# times an oscillator phase~linear in N!. As
for the common Kerr medium@19,18#, this periodicity inN
allows us to use the finite Fourier transform basis of pha
$M 21/2e22p isk/M%s50

M21. Thus we expand@34#,

eipN2/M5
eip/4

AM
(
s50

M21

f se
22p isN/M,

f s5e2 ips2/M, M even, ~28!

eipN~N21!/M5
eip/4

AM
(
s50

M21

f se
22p isN/M,

f s5e2 ip~s21/2!2/M, M odd. ~29!

The evolution operator at cat times is therefore a sum
rotations e2p isN/M by angles 2ps/M , s50,1, . . . , M21,
acting on the initial coherent state. The wave function is th
a sum ofM coherent states with these rotation angles a
with the amplitudesf s i.e., anM-component Schro¨dinger cat
state. As in the case of the Heisenberg-Weyl algebra~the
Wigner function on the plane!, the Wigner function on the
sphere shows interference fringes between different com
nents of the cat state~the ‘‘smile of the cat’’!; see Figs. 1~c!
and 1~d!.

VI. CONCLUSIONS

We have used a recently defined Wigner function
SU~2! to understand spin-coherent states and their evolu
under a physically realistic Kerr Hamiltonian. This spin sy
tem is realized in quantum optics as a collective atomic s
tem @32,12#, as a pair of radiation field modes of two diffe
ent polarizations@35#, and also as an atomic interferomet
@37,38#. The effective nonlinearity in the case of a collectiv
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atomic system arises due to the dynamical Stark shift@39,40#
~and it has been proposed to generate the atomic Schro¨dinger
cat states in Ref.@41#! or due to the interaction with radiatio
field in a dispersive cavity out of resonance with the atom
transition frequency; see Ref.@24#, where the equivalen
model was described in terms of the atomicQ function ~the
diagonal matrix element of the atomic density matrix b
tween the spin-coherent states!. In an atomic interferomete
the nonlinearity may be created by a nonlinear active e
ment such as a Coulomb coupler@42#.

In wave optics our model describes the propagation o
finite number of transverse modes in a waveguide@6#. An
ideal ~Gaussian! waveguide corresponds to the infinite equ
distant spectrum and usually is described by a harmonic
cillator. In real waveguides with a finite number of mode
the spectrum is always different from the equidistant o
which leads to the effective nonlinearity. Finally, in molec
lar physics@23#, our model corresponds to a diatomic mo
ecule approximated by a Morse potential.
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APPENDIX

Here we give a convenient formula for the calculation
the Wigner function for a spin system. From the covarian
r-
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it follows that the Wigner operator at arbitrary pointxW
5h(sinu sinf,sinu cosf,cosu) can be obtained by the ro
tation of the Wigner operator at the North pole,W(hkW ), kW
5(0,0,1),

W~xW !5e2 ifSze2 iuSxW~hkW !eiuSxeifSz.

In turn, it is easy to prove that at the Wigner operator
diagonal at the North pole,Wm,m8

l
5dm,m8Wm . The quanti-

tiesWm(h) are the eigenvalues of the Wigner operator; th
depend only onh5uxW u and can be written in the form

Wm~h!52p (
k52 l

l E
21

1

d cosuudmk
l ~cosu!u2F~h cosu2k!,

F~y!5E
0

2p

dj j2w~j!ei jy.

where, for the casew(j)5(1/2j2)sin2(j/2),

F~y!5
~21!2l sin~2py!

8 F 21

y11
1

2

y
1

21

y21G ,
and for the casew(j)5(1/j)sin(j/2),

F~y!5~21!2l H pei2pyS 1

y11/2
2

1

y21/2D
1

~ei2py1~21!2l !

2i S 1

~y21/2!22
1

~y11/2!2D J .

Note thatk takes integer or half-integer values depending
whetherl is an integer or half-integer; this leads to the fac
(21)2l in the last equation.
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