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Finite Kerr medium: Macroscopic quantum superposition states
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We propose a spin model which exhibits the main properties of the Kerr medium. The description of the
model uses a recently generalized quasiprobability distribufigigner function for the SU2) group. This
function is naturally defined on the sphere, which plays the role of phase space for the spin system. Our model
leads to macroscopic quantum superposition states on the spR&6&0-294{©9)06908-3

PACS numbd(s): 03.65.Bz, 42.50.Fx

[. INTRODUCTION distribution on the S(2) group([6]. In the limitl—c, when
the si2) algebra of spin operators contracts to the
To stress the intriguing implications of the gquantum su-Heisenberg-Weyl algebra of boson operators, the sphere
perposition of states which are macroscopically differentopens to the phase plane and the model coincides with the
Schralinger[1] proposed quantum states with the following quantum harmonic oscillator or, through a renormalization,

structure: with the common Kerr medium.
After a brief review of the Kerr dynamics in Sec. Il we
alliving cat)+ B|dead cat, (1)  formulate our model in Sec. Ill. Section IV describes the

Wigner function on the S(2) group; we discuss the evolu-

where the two components are superposed with amplitadestion of the spin-coherent states into cat states in Sec. V.
and 8. These have become known as Sclimger cat states. Possible physical applications are briefly discussed in the
It is certainly difficult to obtain and characterize stat&sin concluding sectiorfVl).
Schralinger’s original setting, so Yurke and Stolex] pro-
posed instead to take a single mode of a radiation field, and Il. KERR MEDIUM
superpose its coherent states with macroscopically different
parameters. Similar ideas were formulated earlier by The Kerr Hamiltonian(2) characterizes certain general
Bialynicka-Birula [3], and we also point out the odd and properties of quantum dynamics. It can be used to generate
even coherent states discussed by Dodonov, Malkin, anboth quadratur¢?7] and amplitude squeezin@] for short
Man’ko in Ref.[4]. times, when the initial wave packet spreads in phase and

It was shown in Ref[2] that a superposition of coherent revolves around the origin in the phase pla8¢ When the
states with macroscopically different phases can be genephase spread exceeds,2he front of the wave packet inter-
ated in the course of the evolution of a single-field mode in daces with its tail. This self-interference is a quantum feature

Kerr medium with the Hamiltoniaf5] and has no classical counterpgl6]. At some time instants,
the self-interference leads to standing waves which corre-
Hyenr= @n+ xn?, (2)  spond to Schrdinger cat states. A similar phenomenon also

appears in other examples of quantum nonlinear evolution,

wherefi=1. Here the operatom a', andn=a'a describe a  such as the Jaynes-Cummings mddél], where it is called
single-field mode of frequenay, andy is the Kerr constant. fractional revivals the Dicke model[12]; Rydberg wave
While the photon number distribution is clearly unchangedpackets[13]; and particles in one-dimensional anharmonic
by Hamiltonian(2), it still leads to a nontrivial phase evolu- potentials[14,15.
tion. It is convenient to ignore the fast rotations of the phase

In this paper, we propose a spin model which exhibits theplane generated by the linear term in Eq. (2), and to
main properties of the Kerr medium. The model is formu-introduce the time scale=yt. The nonlinear parn? of
lated in terms of spin operato&, i=1, 2, and 3, acting on Hamiltonian (2) has an integer spectrum, and which is a
the (2 + 1)-dimensional Hilbert space of a particle of spin  specific feature of the Kerr medium. It is distinct from the
The natural phase space is a sphere of ratlithe spin- Jaynes-Cummings and Dicke models, where the effective-
coherent states are thus represented by spots on the sphdield Hamiltonian(for special initial condition§16]) is writ-
Here our model leads to Scluimger cat states on the sphere, ten asH~ yn+1/2 [17]. The latter will also lead to phase
i.e., superpositions of several spots located “far” from eachspread and self-interference, but the standing waves are not
other. The description of the model and its dynamics will beso well pronounced as for the Kerr medium. Due to the in-
made using a recently generalized Wigner quasiprobabilityeger spectrum of Hamiltonia(2), it is easy to prove that at
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times yt=7K/M (whereK andM are mutually prime inte- S, (t)=g @@tV 1e/INg =15 (1)]", S4(t)=const,
gers the wave function is a superposition Mfcopies of the _ )
initial state, placed equidistant along the cirfte const[18] N complete analogy with the Kerr mediufi, 10]. We can
(see also Ref[19]). WhenM =1, the initial state is repro- Writé this solution in the forms
duced up to a global phase factor. et o

To describe a stat® of a quantum system, it is clearest Si(t) =€ [cog Q1) S, —sin(Q1) S,], -
to draw the picture of the corresponding Wigner quasiprob- _ et
ability distribution W(¥|p,q), wherep andq are classical So(0) =€ [SINQY S, +cod Q) S, ],
coordinates Qf phas;_e spal@o]. Qenerallzed cohere'nt states \,here Q=w(1—N/I) is an angular frequency which de-
have Gaussian Wigner functions that are posit(&d]. ends on the excitation number operatbrThe time evolu-

Schralinger cat states cannot be produced from a single. 2, . . .
Gaussian by linear dynamics. Quantum nonlinear dynamic on of (1) is a rotation arounq theaxis, but the precession
requency depends on the latitude on the sphere.

introduces oscillations into the Wigner functions on phas In the limit 1—c¢, Hamiltonian (6) b i |
space[9], with regions where the Wigner function takes n the timit 1—cc, Hamiltonian {5) bécomes the usua
uantum harmonic-oscillator Hamiltonian, i.e., the nonlin-

negative values. For a two-component cat state, these oscfiantun X .

lations are localized near the midpoint between the centers cﬂar!ty d|sappears: We. can aIsp mo@fy EE6) tp obtain the

the Gaussiané.e., the “smile of the cat’[22]). optical Kerr Hamiltonian in this limit, replacing/2l by a
' free parametey. Indeed,

Ill. ANALOG OF THE KERR HAMILTONIAN FOR SPIN H=w(N+ %)_XNZ (8
SYSTEMS

It is well known that the Heisenberg-Weyl algebra can be'S the common Kerr Hamiltonia(@) asl—. Note, that in

obtained by contraction from the @) algebra. For this pur- molecular physic§23], this model corresponds to a diatomic

: ; : lecule approximated by a Morse potential. It was recently
ose we consider the @) commutation relations mo : e
P @ shown [24] that the effective Hamiltonian of typé) de-

[S;,S.]=+S., [S,.S.]1=2S;, S.=S,=*iS,, scribes the interaction of the collective atomic system with
the off-resonant quantum radiation field in a dispersive cav-
and, in a definite unitary irreducible representatipnve ity.
build the operators
S S IV. WIGNER FUNCTION ON SU (2)
= a2 bT:\/%y N=S;+1I. 3 In this section we define the Wigner function on the group
SU(2) introduced in Refs[22] and [6]. We do this in a
mathematically careful manner to avoid confusion with other
different distribution functions on the sphere that have been
1 used for spin systenj&5]. We stress that with this definition
[N,b"]=b", [N,b]=b, [b,bT]Zl—I—N. (4)  we shall have full S(R) covariance, that the generalized
overlap formula holds, and that the reconstruction of states
In the limit |- these operators have the commutation re-2nd density matrices can be accomplished, just as in quan-
lations of the oscillator algebra, with and b’ being the UM mechanics with the usual Wigner functigé.

The sy2) algebra in this representation is thus written as

usual boson operators. We denote b)éz{si}?:l the row vector of spin operators
Let us keed finite, however, and consider the oscillator- closing into the s(2) algebra. The generic SB) group ele-
like Hamiltonian ment in polar parametrization(indicated by brackejsis

given by a 3 vectos of length é&=|y| and unit directiond

H— %(bb*+b*b). B =y/&=(sin@sin ¢,sin # cos¢,cosh),
_ o glyl=exp(—iS-y)=exd —i &(Syu; + Sup+ Squs) .
In terms of the spin-operatord Eq. (3)], this is written 9
® 0 5 1 1, This is a rotation by the anglé around the axigi, with 0
H= H(S+S—+S—S+): E(S —S) =[N+ P EN ' <¢<27,0<0<7,0< $<2m; the group manifold is the 3

(6) sphereS;. The Euler angles are also often used, writing an
arbitrary SU2) group element in the form
wherew is a constant. The analogy of E@) with the usual
Kerr Hamiltonian (2) is evident, since the operator of the g(a,B,y)=expiaS;)exp(iB8S))expiyS;).  (10)
spin excitation numbeN has a non-negative integer spec-
trum k=0,1,2 ... . The difference between the photon The connection between polar and Euler parameters is well
number operaton andN is that the spectrum of the latter is known (see, e.g., Re{.27)).
bounded from abovek=<2I. The three generatoiS=(S,,S,,S;) transform under the
Using the commutation relatioi{(N)S, =S, f(N+1) we  action of the S(2) group as the components of a row vector

obtain S, (t)=e'™S, e ™, and from here the solution of with the 3x 3 orthogonal matriceR of the adjoint represen-
the Heisenberg equations of motion is tation
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aIy18(9ry]) ~t=SR[V]. (11) The case/vz_wHaa;(g) was considered in Reﬁﬁ], w_here the
corresponding/V-matrix elements were obtained in terms of

Applying the group transformatiog=g[y] to an arbitrary the common  D-matrix elements D'm’m,(y)

operatorS-X from the si2) algebra, we havg(S-x)g~t  =(l.m|exp(—iy-9)|l,m’), of angular momentum theof1],
=S.%', where X' =RX. Column vectorsX belong to the also but independently associate.d with the name of Wigner
three-dimensional real spade®, conjugate to the vector (S€€ the Appendix It was shown in Ref6] that the radial
space of the Lie algebra, and carry twadjointrepresenta- Proiection of the Wigner function
tion of the group[28], X’=RX. This spacexe R® we will
call th_emet:_alphase—spaam‘ the classic_:al dygamical system. W(X)Zf daW(W|yl), |%l=x

Acting with all group transformationg[y] on an arbi- S,
trary fixed vectorX, in the coadjoint representation, we ob-
tain its grouporbit. This orbit has a symplectic structure and has its maximum value over the sphere for radigis
is the common phase spa@9,30. When we choose a defi- ~/l(I+1). The figures in this paper are values of the
nite irreducible representation of sgirthe group acts on the Wigner functions plotted for this radius. We now list the
Hilbert space of stateg¥V) of the corresponding quantum three most relevant properties of the Wigner function: cova-
system with the scalar produé®|¥)=3! __ ¢*y.,. An  riance, overlap formula, and density-matrix reconstruction.
arbitrary pure spin state) is represented by a column vec-  Covariance:From the form of integra(12) and the defi-
tor with componentsl ,,, m=—1, —1+1,...,l. For sim-  nition of the adjoint representatiofil), it follows that the
plicity we use the same notation for the group elemggand ~ Wigner operato(12) satisfies the S(2) covariance:
its unitary representation imaggq. (9)].

We now define th&Vigner operatoms an operator-valued aly V) (g[Y]) "t =WIR(Y)X). (16)

function on metaphase space,
This means that the linear quantum dynamics can be com-

o ~ L2 o pletely described by the corresponding transformation in
Wal(X) = fsu(z)dyw(g)eXQ|(x—S)-y] classical metaphase space. Covariance holds for any choice
of the functionw(¢) in Eq. (12).
_ 5 Y Overlap formula:Consider two states of the same spin
f Z)dyw(g)exp(lx y)aLyl. (12 |¥) and|®), with corresponding Wigner functiol,, (¥ |X)

. . ) . . and Wy (®|x), for two different weight functionsv(£) and
Here dy=dy,dy,dy,, £=[y], w(¢) is a weight function, g ¢). We shall prove that the overlap of the two states can
and the integral is over the group manifold. be calculated by integration over the metaphase space of the
In Ref.[6] we considered the Haar invariant measure OVehroduct of their Wigner functions, i.e.,

the group for integral12), Wyaa(&)=3& 2sin’ 3£ While

this is an obvious choice, it is not the only one; see below. 21+1 . . . 5
We shall drop the subscript from the Wigner operator, 167° ‘H3dXWw(‘P|X)Wv_v(‘I’|X):|<\P|‘I’>| . @D
until more than one weight is used. For a given valug tfe
Wigner operator is reduced to the if and only if the two weight functions are conjugate in the
(21+1)x (2l +1)-dimensional Hermitian matrix  following sense:
| -
||Wm’m’(x)||'
The Wigner(quasiprobability distributionfunction is the N 1 'nzg
matrix element of the Wigner operator between the staltes W(E)W(E) =Waal §) = 2—523| 5 (18

and|®) with definitel,
| This is the counterpart of the corresponding well-known

o = _ *\n) > property of the common Wigner function on the Heisenberg-
WP, ®[X) = (¥ M) @) mmzzfl W i Wop, () Py Weyl group[20], where the Haar weight function is 1.
’ (13 The integral on the left-hand side of Ed.7) can be un-

o o derstood as a mean value of an opera@tarhich acts on the
Most often this is used for#=®; then we indicate direct product of two Hilbert spaces of the same valug, of
W(P,¥|X) by W(¥|X), and we suppresk when conve-

nient. When instead of pure states we have a density matrix R . _ .
p, the Wigner function is f dX Wy, (P[5 We(P[R) = (P [ (@] G] V)| D)5,
| (19
W(p[R)=trMRpt= 2 Wy (Dpmrm (14 oo
mm’=—1
The W-matrix elements are
o= f 3d)?WW(\If|>?)@<>1/\J\7V(CI>|>?). (20
R

2
W ,zzf w(&) & f dv exp(i €v-X)D' (&),
man (X) 0 (§)&tde S, VeXPIEV-X)Dpy e (V) We will show now thato is proportional to an exchange
(15  operator. Integral20) is found by replacing the definition of
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the Wigner operatof12) into Eq.(20); this can be integrated 21+1 - . R
over X yielding a Diracé. Due to relation(18) between the WJ LAXW, () W(P[X)
weight functions, we have :
A5
o= [ daiylexstiy-Speex—iy Sy, = 165 ol V10wl
SuU(2)
(21 :1<fn|q’>1 2<q,|fm>2:pn,m-

where dg[y]=1% sir?(&2)déd¢ dcosd is the invariant

(Haay measure, and the integral is over the group manifoldFor mixed states, consider the bagis,)},__, where the
Let {{m);/m’),, —I<m,m’=<I} be an orthonormal basis in density matrix is diagonalp=2Xc|r,)(r,|. Then W(p|X)
the tensor product of the two copies of the Hilbert space==c,W(r,|X), and we have

Consider the matrix elements of E@1),

21+1 ~
l<m|2<m’|€r|n>1|n’>2=(27-r)3fsu(2)dg D!.(9) 1675 JdeXWn,m(X)W(p|X)
[ -1 21+1 . . .
XDy (975, = Tom5 2 G| A% Wn n(R)W(rd%)=pom-

From unitarity we haveD'm,n,(g‘l)z[D'n,'m,(g)]*. Be-
cause of the well-known property of orthogonality of the  \ye note that the S(2) Wigner function provides the

D-matrix elements, we find SU(2) Q function used by Agarwal, Puri, and Singh in Ref.
[24]. Indeed, the overlap of the Wigner function of a state
l<m|2<m'|a—|n>1|n’>2:(277)3f dg D'mn(g) | W) with theW Wigner function of a coherent stategs) on
SU2) the sphere(see below is Q(«,B8)=|(aB|¥)|, the non-
5 negative function studied in Ref24].

|
X[Dn’,m'(g)]* = 21+1 Omn' Onny -
V. EVOLUTION OF COHERENT STATES ON THE

Thus the operatoé exchanges the states of the first and the SPHERE
second Hilbert spaces,

1675 The above concepts will be now applied to describe the

G| W)1|®)o=5 7 [P)o| W) (220 evolution in a Kerr medium of spin-coherent states.
Spin-coherent statesWe now particularize the spih-
model to a system ofl2two-level atoms prepared initially in
a state symmetric under permutations of atoms. If the inter-
action Hamiltonian also has this symmetry, then there are
21+1 accessible stategn=k—1), 0<k<2I, called the
1 ¢ Dicke stateg32]; here 2—k is the number of atoms in the
Wo(&)=Wq(&)= —sin=, (23 ground state, andt is the number of atoms in the excited
Vg 2 state.
i The simplest examples of spin-coherent stf3s30, are

t_hen the overla}p formgla hoId; for the sam&/\igner func- _ the stateg0) (spin down and|2l) (spin up, both of which
tion. Another interesting choice of the weight function is , o uncertaintie\S;=0 and AS,=AS,=\I/2. All the

W(£) = Wiiaar= 1.' . . . other spin-coherent stat¢s,8) can be produced by rotation
Reconstruction of the statéSiven the Wigner function ¢ the statd0), as

W(p|X)=tr{W,(X)p}, we can reconstruct the density matrix
p of the corresponding state of the system. {lé)}},__, be

Comparing this result with Eq19), we find Eq.(17).
Clearly, if we choose the “self-conjugate” weight func-
tion

an orthonormal basis in the (2 1)-dimensional Hilbert g(a.pB,7)|0)=e'*%e!P51e'7%0)

space. Denote by\7Vn,m the matrix elements of the :e*ilyeiasseiﬁ31|o>=e*ilv|a”3>, (25)
W-conjugate Wigner operator between the stdfes and

[fm)s

where we have used E({L0). The rotation angle/ leads to a
A ()= (F Wa(R) | F . phase factor which may be disregarded. Mathematically this
’ corresponds to the reduction from @Yto the factor space
The elements of the density matrix in this basis are given bypU(2)/SU(1)=S, [30]. The general form of spin-coherent
states is thuga,8)=e€'*S2¢'#51|0). The manifold of spin-
21+1 o~ . . coherent states is phase spf®@)|, and is a sphere of radius
Pn.m= 1675 f‘HadXWn,m(X)W(MX)- (24| (called theBloch sphere in quantum optics and tRein-
care sphere in polarization optid85]). The components of
Indeed, for the pure statgs=|W¥)(W¥|, from Egs.(20) and  spin-coherent states in the eigenbasisSgfare the S\(2)
(22) it follows that d-matrix element$27]
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(@) ® and keeps the probability distribution of the staji@s The

z z phasewtk leads to the rigid rotation of the sphere around the
vertical axis; this will be extracted so that we consider only
the nonlinear phase shiftyk?. In analogy with the usual
Kerr medium, as time evolves we can expect phase spread
and squeezing along some direction different from the
3-axis. Indeed, this is shown in Fig(H. Slanted squeezing
was reported previously for this Hamiltonian by Kitagawa
and Ueda[36]. For longer times, self-interference appears.
This is shown in Figs. ) and Xd), for triple and double
resonances, respectively, at timgs= 7/3 and#/2. We now
proceed to prove that the latter are true Sdinger cat states
[24] and find the amplitudes of the components in the cat
states.

Schralinger cats on the spher@he figures suggest that
at resonance timegt=7K/M (with K and M mutually
prime; we takeK =1 for simplicity), the initial coherent state
unfolds into a sum oM coherent states placed equidistant
around the equator.

Indeed, the nonlinear phase in E87) is produced by the
unitary operator expgtN?), where N is the level number
operator defined in Ed3). At times yt= /M, for M even,
the eigenvalues expfk’/M) of the operator exptN?) are
periodic ink with periodM (invariant under the substitution
k—k+M). For M odd, we consider instead the operator

FIG. 1. Time evolution of the Wigner function on the sphere exdixtN(N—1)] times an oscillator phas@inear in N). As
governed by a Qonlipear finite Kerr_l—_|ami|to_nian, quS. The plots  tor the common Kerr mediurfi19,18, this periodicity inN
have the following line coder—, visible grid, positive, and zero- - g|6\s us to use the finite Fourier transform basis of phases

/]

level lines; —.—.—.—, invisible grid and positive-level lines; —1/2,—2miskk MM —1
— — —, visible negative- and zero-level lines;-, invisible M € }S=° . Thus we expan34],
negative-level lines. The times af@ yt=0 (initial coherent stafe gimaM-1
(b) xt=0.15,(c) xt=/3, and(d) yt= /2. ol ™NIM — E f e 2misNM,
\/M s=0
m|a,B :eim(afﬂrr/2)d| (B):eim(afﬂn'/Z) .
< ) mo L fo=e ™™ M even, (28)
(21)! B . ,_.B
(m CO§+m§SII’1I mE. ei,,.,./4M—1
! ! ei»n—N(N—l)/M: 2 fSe_ZWiSN/M’
(26) JM 0
. . . . _ a—im(s—1/2%IM
The Wigner function of the spin-coherent state 8) is a fi=e 757 12%M M odd. (29)

round, concentrated blob on this sphere, centered at the poi
(a, B). The radius of the Wigner blob on the spherg/I¢2,
whereas the radius of the spherd.iJhe classical limit for

The evolution operator at cat times is therefore a sum of
rotations e>™SN'M by angles 2rs/M, s=0,1,..., M—1,

acting on the initial coherent state. The wave function is thus

thg spin system oceurs when the dimension of th_e TEPreSeIl sum ofM coherent states with these rotation angles and

tation, 2 +91, grows without bound and thus the direction of | ...\ amplitude. i.e., anM-component Scliinger cat

spin system Is a magne_tu_:_needl_e, I.e., a compass. Wigner function on the planethe Wigner function on the
The evolution of the initial spin coherent state under thespnere shows interference fringes between different compo-

for I=8. The level plots of the Wigner function with(¢)  and xd).

=Whaal(€) for the value of the radial coordinatéx|
=yl(I+1) are shown for various subsequent times. Let us VI. CONCLUSIONS
analyze these figures.

We start in Fig. 18) at t=0 with an eigenstate d§; of
eigenvaluel; this is a coherent state. As time evolves, the
points of phase space move only in(geographical longi-
tude, or phase keepingg (colatitude constant. This evolu-
tion multiplies eigenstatesn=k—1) by phases

We have used a recently defined Wigner function on
SU(2) to understand spin-coherent states and their evolution
under a physically realistic Kerr Hamiltonian. This spin sys-
tem is realized in quantum optics as a collective atomic sys-
tem[32,12, as a pair of radiation field modes of two differ-
ent polarizationg35], and also as an atomic interferometer
exp{ —it[ w(k+3)— xk?]}, (27 [37,38. The effective nonlinearity in the case of a collective
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atomic system arises due to the dynamical Stark fB#40 it follows that the Wigner operator at arbitrary poisit
(and it has been proposed to generate the atomic 8clyer = (sin ¢sin ¢,sincose,cosé) can be obtained by the ro-

gat st.ates ip Re[41]) or QUe to the interaction wjth radiation. tation of the Wigner operator at the North pol/ ﬂ'z), K
field in a dispersive cavity out of resonance with the atomic_ (0,0,1)

transition frequency; see Ref24], where the equivalent T

model was de;;cribed in terms of the a_\torﬁicfunction (the W(X)= e~ 1#S:e~ 1 0San( nk’)ei 0S,ai $S;.

diagonal matrix element of the atomic density matrix be-

tween the spin-coherent stateb an atomic interferometer In turn, it is easy to prove that at the Wigner operator is
the nonlinearity may be created by a nonlinear active elediagonal at the North poleN'm m = Omm'Wn. The quanti-
ment such as a Coulomb coup[d?2]. tiesW,,( %) are the eigenvalues of the Wigner operator; they

~ Inwave optics our model describ_es the propagation of @epend only ory=|%| and can be written in the form
finite number of transverse modes in a wavegyieEe An

ideal (Gaussianwaveguide corresponds to the infinite equi- 1 | )
distant spectrum and usually is described by a harmonic 0sWm( 77):27Tk=2| 71d cos6|dp,(cosd)|*F (7 cosd—k),
cillator. In real waveguides with a finite number of modes,

the spectrum is always different from the equidistant one, 2m '
which leads to the effective nonlinearity. Finally, in molecu- F(y)=f dé £2w(é)e'sy.
lar physics[23], our model corresponds to a diatomic mol- 0
ecule approximated by a Morse potential. where, for the case/(&) = (1/26%)sird(&/2),
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APPENDIX
Note thatk takes integer or half-integer values depending on
Here we give a convenient formula for the calculation ofwhetherl is an integer or half-integer; this leads to the factor
the Wigner function for a spin system. From the covariancg —1)?' in the last equation.
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